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ПРЕДИСЛОВИЕ


Методические указания по выполнению практических работ  адресованы  студентам очной, заочной и заочной с элементами дистанционных технологий формы обучения.

Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам ,правильного составления отчетов.


Приступая к выполнению практической работы необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы. 


Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем. 

Наличие положительной оценки по практическим  работам  необходимо для получения зачета по дисциплине и допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую работу необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических (лабораторных) работ


1. Студент должен прийти на лабораторное занятие подготовленным к выполнению лабораторной работы.


2. После проведения лабораторной работы студент должен представить отчет о проделанной работе.


3. Отчет о проделанной работе следует выполнять в журнале лабораторных работ на листах формата А4 с одной стороны листа.

Оценку по лабораторной работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.


Зачет по выполнению лабораторных работ студент получает при условии выполнения всех предусмотренных программой лабораторных работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий. 

Обеспеченность занятия (средства обучения):

Учебно-методическая литература:

1. Гулин А.В. Введение в численные методы в задачах и упражнениях: учеб.пособие/А.В.Гулин,О.С.Мажорова,В.А.Морозова.-М.:ИНФРА-М, 2017

Справочная литература:

1. Лапчик М.П, Рагулина М.П, Хеннер Е.К. - Элементы численных методов: учебник для  студ.сред.проф. образования /  .  М.: Издательский центр «Академия», 2015. 

2. Колдаев В.Д. Численные методы и программирование : учеб. пособие / В.Д. Колдаев ; под ред. проф. Л.Г. Гагариной. — М.: ИД «ФОРУМ» : ИНФРА-М, 2017. — 336 с.: ил. — (Профессиональное образование).

Технические средства обучения:

· персональный компьютер.
· мультимедиа проектор;

· принтер;
· экран; 
· калькулятор  инженерный.

Программное обеспечение: компьютер по количеству обучающихся с лицензионным программным обеспечением: Microsoft Office 2003, MS Exсel, MathCad, Maple,  MatLab.
Порядок выполнения отчета по практической работе
1) Ознакомиться с теоретическим материалом по лабораторной работе.

2) Записать краткий конспект теоретической части.

3) Выполнить предложенное задание согласно варианту по списку группы.

4) Продемонстрировать результаты выполнения предложенных заданий преподавателю.

5) Записать код программы в отчет.

6) Ответить на контрольные вопросы.

7) Записать выводы о проделанной работе.

Практическая работа № 1 
 «Вычисление погрешностей результатов ариф​метических действий»
Цель работы: научиться производить арифметические действия с погрешностями
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

· давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;

знать: 

·  методы хранения чисел в памяти электронно-вычислительных машин (ЭВМ) и действия над ними, оценку точности вычислений.
Краткие теоретические и учебно-методические 
материалы по теме практической работ:
1.1. Учет погрешностей вычислений по заданной формуле
Наиболее распространенный вид вычислений — это вычисле​ния по готовой формуле. В ЭВМ вычисление при любой громозд​кости формулы обеспечивается, как правило, одной командой (оператором). Если при этом программно не предусматривается контроль за вычислительными погрешностями, вычислитель ана​лизирует результат в конце счета. Иногда условия вычислительной задачи заставляют вести пооперационный учет движения вы​числительной погрешности. Рассматривая в дальнейшем приемы вычислений, мы будем учитывать как пооперационную, так и итоговую методики оценки точности.
1.2. Вычисления по правилам подсчета цифр
При вычислении по правилам подсчета цифр явного учета погрешностей не ведется, правила показывают лишь, какое количество значащих цифр или десятичных знаков в результате можно считать надежными. Сами эти правила основываются на выводах, вытекающих из формул для оценки погрешностей арифметических действий и функций. Приведем эти правила в систематизированном виде:
1. При сложении и вычитании приближенных чисел младший из сохраняемых десятичных разрядов результата должен являться наибольшим среди десятичных разрядов, выражаемых последними верными значащими цифрами исходных данных. Следует избегать вычитания близких по величине чисел, а также при пооперационном применении правила для сложения и вычитания нескольких чисел подряд, стараться производить действия над числами в порядке возрастания их абсолютных величин.
2. При умножении и делении приближенных чисел нужно выбрать число с наименьшим количеством значащих цифр и округлить остальные числа так, чтобы в них было лишь на одну значащую цифру больше, чем в наименее точном числе.
В результате следует считать верными столько значащих цифр, сколько их в числе с наименьшим количеством значащих цифр.
3. При определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента следует грубо оценить значение модуля производной функции. Если это значение не превосходит единицы или близко к ней, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Если же модуль производной функции в окрестности приближенного значения аргумента превосходит единицу, то количество верных десятичных знаков в значении функции меньше, чем в значении аргумента на величину k, где k - наименьший показатель степени, при котором имеет место: 

[image: image2.wmf]k

x

f

10

)

(

'

<


4. При записи промежуточных результатов следует сохранять на одну цифру больше, чем рекомендуют правила 1—3. В окончательном результате эта запасная цифра округляется.
Правила подсчета цифр носят оценочный характер и не являются методом строгого учета точности вычислений. Обычно их применяют тогда, когда быстро и без особых затрат нужно получить результат, не особенно беспокоясь о его достоверности. Практическая надежность этих правил достаточно высока в результате вычислительной вероятности взаимопогашения ошибок, не учитываемой при строгом подсчете предельных погрешностей.
При операционном учете ошибок вычислений используется обычная расчетная таблица — так называемая расписка формулы.
Пример 1. Вычислите значение величины
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по правилам подсчета цифр для приближенных значений a= 2,156 и b= 0,927, у которых все цифры верны. Вычисления приведены в табл. 1. 

Прокомментируем ход вычислений. Сначала вычислим 
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=8,63652. Это дает нам оценку величины производной в этой же точке: 22156<
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 , т.е. в полученном значении следует сохранить на один десятичный знак меньше, чем в значении аргумента. Округляя с одной запасной цифрой, получаем 8,637 (запасная цифра выделена) и заносим результаты в табл. 1. Далее:
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=0,9628083, причем модуль производной 
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 меньше единицы, поэтому сохраняем после запятой три знака и один запасной: 0,9628. При вычислении суммы в числителе находим 8,637+0,9628 = 9,5998 и согласно правилу 1 округляем результат до тысячных; 9,600. При вычислении 
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 пользуемся правилом 2, при нахождении суммы а +
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 — правилом 1.
При определении количества верных цифр в значении ln 3,0153 снова применяем правило 3 (учитываем, что производная функции lnx при х> 1 имеет значение меньше единицы). Округляя окончательный результат без запасной цифры, получим А = 8,70 (три верные значащие цифры).
Допустим, что в результате вычисления заданного в примере 1 выражения (ехр(2,156)+sqrt(0,927))/ln(2,156+sqr(0,927)) на МК или ЭВМ было получено значение: 8,6873389294998. Как выделить в полученном числе верные цифры?  Сделать это можно и без подробного поэтапного анализа, который приведен ранее.
Действительно, так как выражение А представляет собою дробь, то последнее действие при его вычислении — деление, а следовательно, результат будет содержать верных значащих цифр не бо​лее, чем в наименее точном из операндов — числителе или зна​менателе. Учитывая, что корень квадратный дает верных цифр столько же, сколько и его аргумент (три), а экспонента в данном случае теряет не более одного верного знака после запятой (что. вместе с ненулевой целой частью, также дает не менее трех значащих цифр)?
Таблица 1.
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	А

	2,156
	0,927
	8,637
	0,9628
	9,600
	0,8593
	3,0153
	1,1037
	8,698


замечаем, что в числителе число верных значащих цифр будет равно трем. Очевидно, что в знаменателе число вер​ных цифр благодаря свойствам производной логарифма также не менее трех. Следовательно, значение А должно быть округлено до трех верных знаков: А=8,70. Там, где возможен подобный анализ, при использовании МК или ЭВМ в непосредственных вычисле​ниях 
по правилам подсчета цифр можно избежать пооперационного учета количества верных знаков.


1.3. Вычисления со строгим учетом предельных абсолютных погрешностей
Этот метод предусматривает использование правил вычисле​ния предельных абсолютных погрешностей, рассмотренных в п 1.1 и 1.2.
При пооперационном учете ошибок (который целесообразен прежде всего для ручных вычислений) промежуточные результаты, так же как и их. погрешности, заносятся в специальную таблицу, состоящую из двух параллельно заполняемых частей: для результатов и их погрешностей. В табл. 2 приведены пошаговые вычисления со строгим учетом предельных абсолютных погрешностей по той же формуле, что и в примере 1, и с предположе​нием, что исходные данные а и b имеют предельные абсолютные погрешности ∆а =∆b =0,0005 (т.е. у значений а и Ь все цифры верны в строгом смысле).
Промежуточные результаты вносятся в таблицу после округления до одной запасной цифры (с учетом вычисленной параллельно величины погрешности); значения погрешностей для удобства округляются (с возрастанием!) до двух значащих цифр. Проследим ход вычислений на одном этапе .
Используя калькулятор, имеем: е2,156 = 8,636552. Подсчитаем пре​дельную абсолютную погрешность (см. табл. 2): ∆ (е2,156 - 0,0005)=0,0043182 =0,0044. Судя по ее величине, в полученном значении экспоненты в строгом смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой: е2,156 =8,637 (за​пасная цифра выделена) и вносим его в таблицу. Вслед за этим вычисляется полная погрешность полученного результата (погреш​ность действия плюс погрешность округления: 0,0044+0,00048=0,0049), которая также вносится в таблицу.
Все последующие действия выполняются аналогично с применением соответствующих формул для предельных абсолютных погрешностей.
Округляя окончательный результат до последней верной в стро​гом смысле цифры, а также округляя погрешность до соответ​ствующих разрядов результата, окончательно получаем: A=8,7±0,1.
Вычисления по методу строгого учета предельных абсолютных погрешностей можно выполнить на ЭВМ с помощью программы. Однако в тех случаях, когда для вычислений выгоднее применять МК, можно обойтись и без составления программы. Рассмотрим, например, как можно получить итоговую оценку предельной по​грешности результата вычислений на МК по формуле с исполь​зованием предельной относительной погрешности.
Пример 2. Значения a=23,1 и b=5,24 даны цифрами, верными в строгом смысле. Вычислить значение выражения 
Таблица  2
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	0,0005
	0,0005
	0,0049
	0,00027
	0,0054
	0,0016
	0,0021
	0,00076
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С помощью МК получаем В= 0,2921247. Используя формулы относительных погрешностей частного и произведения, запишем:
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Пользуясь МК , получим 
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= 0,003, что дает ∆В=
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=0,0008. Это означает, что в результате две цифры после запятой верны в строгом смысле: B=0,29±0,001.
1.4. Вычисления по методу границ
Если нужно иметь абсолютно гарантированные границы воз​можных значений вычисляемой величины, используют специаль​ный метод вычислений — метод границ.
Пусть f(x, у) — функция, непрерывная и монотонная н неко​торой области допустимых значений аргументов х и  у. Нужно по​лучить ее значение f(a, b), где а и b — приближенные значения аргументов, причем достоверно известно, что
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Здесь НГ, ВГ — обозначения соответственно нижней и верх​ней границ значений параметров. Итак, вопрос состоит в том, чтобы найти строгие границы значения  f(a, b) при известных границах значений а и b.
Допустим, что функция f (х, у) возрастает по каждому из аргу​ментов х и у. Тогда
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Пусть f (х, у) возрастает по аргументу х и убывает по аргументу у. Тогда будет строго гарантировано неравенство
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Указанный принцип особенно очевиден для основных ариф​метических действий. Пусть, например, f(x, у) = х + у. Тогда оче​видно, что
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Точно так же для функции  f (х, у) = х-у (она по х возрастает, а по у убывает) имеем
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Анатогично для умножения и деления:
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Рассмотрим функцию 
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 EMBED Equation.3  [image: image53.wmf])
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 Замечаем, что при увеличении х она убывает, а с увеличением у — возрастает (разумеется, при соблюдении условий существования). Следовательно, имеет место неравенство
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Вычисляя по методу границ с пошаговой регистрацией промежуточных результатов, удобно использовать обычную вычисли​тельную таблицу, состоящую из двух строк: отдельно для вычисления НГ и ВГ результатов (по этой причине метод границ называют еще методом двойных вычислений). При выполнении про​межуточных вычислений и округлении результатов используются все рекомендации правил подсчета цифр с одним важным допол​нением: округление нижних границ ведется по недостатку, а верхних — по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.
Пример 3 В табл. 3 приведены вычисления по формуле
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методом границ. Нижняя и верхняя границы значений а и b определены из условия, что в исходных данных a= 2,156 и b = 0,927 все цифры верны в строгом смысле (∆а =∆b  = 0.0005), т. е. 2,1555 < а< 2,1565; 0,9265 < Ь< 0,9275.Таким образом, результат вычислений значения А по методу границ имеет следующий вид:
8,6894 <А< 8,7041.
 Способ границ связан со способом строгого учета предельных абсолютных погрешностей следующим образом. Пусть X — точное значение, некоторой величины, ех — его приближение с извест​ными границами 
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Примем x равным значению  
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погрешность ех этого приближения (рис. 4) будет заведомо не больше полуразности 
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Так. по результатам вычислений в табл. 3 получаем: 
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что дает А = 8,697±0,008, или  при записи цифрами, верными в строгом смысле:
А =8.7±0,01.
Вычисления по методу границ можно вести и без пошагового фиксирования промежуточных результатов.  Пусть, например,
нужно найти границы значения выражения: 
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, если 4,845<x<4,855; 
1,215 <у< 1,225.
 Таблица  3
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	НГ
	2,1555
	0.9265
	8,63220
	0,96255
	9,59475
	0,8584*1
	3,01434
	1,10338
	8,6894

	ВГ
	2.1565
	0,9275
	8,64084
	0,96307
	9,60391
	0,86026
	3,01676
	1,10419
	8,7041


      
[image: image70.wmf]x

H

Г

                            
[image: image71.wmf]x

e

                                        
[image: image72.wmf]x

B

Г



                                   X               x
Рис. 4. 

Связь между абсолютной погрешностью и границами
Имеем:

[image: image73.wmf])

)

(

ln(

2

y

x

x

НГ

ВГ

НГ

-

<Z<
[image: image74.wmf])

)

(

ln(

2

y

x

x

ВГ

НГ

ВГ

-


С помощью МК вычислим значения нижней и верхней гра​ниц Z:
1,807895009 < Z< 1,825100030.
Если нет нужды держать в результате слишком большое число значащих цифр, его можно округлить (нижнюю границу — по убыванию, верхнюю — по возрастанию). Так, округляя границы Z до сотых, получим l,80<Z< 1,83, т.е. Z= 1,81 + 0,01.
Задания для практического занятия:
Задание 1. Число х, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа х1 ≈ х найдите абсолютную и предельную относительные погрешности. В записи числа х1 укажите количество верных цифр (в строгом и широком смыслах).

Задание 2. Вычислите с помощью МК значение величины Z при заданных значениях параметров a,b,c, используя ручные расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:

1) по правилам подсчета цифр

2) с систематическим учетом границ абсолютных погрешностей

3) по способу границ

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

Пояснения к выполнению заданий

Исходные данные для выполнения всех заданий содержатся в таблице. (числа x,a,b,c – приближенные, в их записи все цифры верны в строгом смысле, коэффициенты – точные числа).

Таблица

	Номер варианта
	х
	Z
	a
	b
	c
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Контрольные вопросы 
1.  Как формулируются правила подсчета цифр?
2.  В каких случаях рекомендуется применять правила подсчета цифр?
3.  Какие два способа применения правил подсчета цифр возможны в вычислениях на МК и ЭВМ?
4.  Какова последовательность действий на каждом промежуточном этапе расчетной таблицы в вычислениях по правилам подсчета цифр с пооперационным учетом ошибок? на заключительном этапе?
5.  Как оформляются вычисления со строгим учетом предельных погрешностей при пооперационном учете ошибок?
6.  Какова последовательность действий на каждом промежуточном этапе расчетной таблицы в вычислениях по методу строгого учета предельных погрешностей с пооперационным учетом ошибок? на заключительном этапе?
7.  Как вычисляются предельные погрешности результата при использовании методики итоговой оценки ошибки вычислений?
8. Охарактеризуйте целочисленные типы данных: какие они могут принимать значения, в каких операциях могут принимать участие, сколько места занимают в памяти.

9. Какие типы отношений определены над данными целого типа? Какие стандартные функции определены для целых чисел?

10. Чем отличаются вещественные числа от целых?
11.  В чем основное отличие метода границ от вычислений по методу строгого учета границ погрешностей?
12.  Какова последовательность действий на каждом промежуточном этапе расчетной таблицы в вычислениях по методу границ с поопераци​онным учетом ошибок? На заключительном этапе?
Практическая работа № 2
 «Приближенные вычисления с помощью программных пакетов»

Цель работы: научиться производить приближенные вычисления с помощью программных пакетов
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

· давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;

-  разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.

знать: 

· методы хранения чисел в памяти электронно-вычислительных машин (ЭВМ) и действия над ними, оценку точности вычислений;
Краткие теоретические и учебно-методические материалы по теме практической работ: МАТЕМАТИЧЕСКАЯ МОДЕЛЬ И ПОГРЕШНОСТИ

Процесс решения задач из физики, техники, экономики или химии с помощью методов математического моделирования состоит из нескольких этапов, показанных на рисунке:


1. На первом этапе проводится исследование объекта и формулируется содержательная (физическая, техническая, экономическая, химическая и др.) постановка задачи. Для того, чтобы задачу можно было описать количественно, нужно провести качественный и количественный анализ свойств объекта и выделить основные параметры, оказывающие на них наиболее существенное влияние.

2. Следующим этапом является математическая постановка задачи, в процессе которой осуществляется построение математической модели объекта. Под математической моделью понимают систему математических соотношений (уравнений, неравенств, краевых, начальных условий), которым должна удовлетворять система основных параметров задачи или объекта. Одно из основных требований, предъявляемых к математической модели – соответствие исследуемому объекту, т.е. адекватность. Другое немаловажное требование – чтобы модель была не слишком сложной, доступной для математической обработки. Умение находить оптимальное сочетание адекватности и сложности зависит от квалификации и даже интуиции исследователя.

3. На следующем этапе необходимо найти методы (алгоритмы) решения математической задачи. В наиболее простых случаях удается построить аналитическое решение задачи. Такие решения являются наиболее привлекательными, поскольку позволяют не только количественно, но и, что не менее важно, качественно проанализировать исследуемые параметры. Но в подавляющем большинстве случаев это не представляется возможным, и для решения математической задачи применяются численные методы. На следующем рисунке приведена классификация методов решения вычислительных задач: 


4. Четвертым этапом является разработка программы решения задачи на компьютере, ее тестирование и отладка. Возможно, что рассматриваемая математическая задача исследована, и для ее решения разработаны стандартные программы, которые могут существовать отдельно или входить в пакеты прикладных программ. 

5. На заключительном этапе выполняют вычислительные эксперименты на компьютере и проводят анализ результатов. Если результаты не удовлетворяют исследователя, требуется совершенствование алгоритма или метода решения задачи, ее математической модели, а в некоторых случаях – корректировка содержательной постановки.

Источники и классификация погрешностей

Основные источники погрешностей:

а) параметры, входящие в описание задачи, заданы неточно; соответствующую погрешность называют неустранимой;

б) математическая модель описывает изучаемый объект приближенно с учетом основных, наиболее существенных факторов (погрешность математической модели);

в) численный алгоритм, применяемый для решения математической задачи, зачастую дает лишь приближенное решение (погрешность метода);

г) в процессе вычислений на компьютере промежуточные и конечные результаты округляются (вычислительная погрешность или погрешность округления). Методы, причисляемые к точным, не учитывают наличие вычислительной погрешности.

Часто первые два вида погрешности объединяют в один и называют неустранимой погрешностью.

Пусть I – абсолютная погрешность результата, а IH, IM, IO – абсолютные величины неустранимой погрешности, погрешности метода и округления соответственно, поэтому верно неравенство:

I ( IH + IM + IO
Это неравенство дает оценку для погрешности результата. Из этого неравенства можно сделать вывод: полную погрешность результата нельзя сделать меньше, чем наибольшая из составляющих ее погрешностей.

Элементы теории погрешностей

Приближенным значением некоторой величины а называется число ар, которое незначительно отличается от точного значения этой величины.

Абсолютной погрешностью ( приближенного значения называется модуль разности между точным и приближенным значениями этой величины:

( = | a – ap |

Относительной погрешностью приближенной величины ар называется отношение абсолютной погрешности приближенной величины к абсолютной величине ее точного значения:

δ = ( / |a|

или

( = δ*|a|

На практике, как правило, точное значение величины неизвестно. Поэтому вместо теоретических понятий абсолютной и относительной погрешностей используют практические понятия предельной абсолютной погрешности и предельной относительной погрешности.
Под предельной абсолютной погрешностью приближенного числа понимается всякое число (а, не меньшее абсолютной погрешности этого числа:

( = |а– aр |< (а

Неравенство позволяет для точного значения величины получить оценку

ар– (а<а<ар+ (а
Часто это неравенство записывают в другой форме

а = ар ± (а = ар(1± δа)

На практике в качестве предельной абсолютной погрешности выбирают наименьшее из чисел (а, удовлетворяющих неравенству, однако это не всегда возможно.

Пример 1.1.

Оценить предельную абсолютную погрешность приближенного значения ар = 2б72 числа е , если известно, что е = 2,718281828…

Решение.

Очевидно, что |ap – e| < 0,01. Следовательно, (а=0,01. Справедливо неравенство |ap – e | = | 2,720 – 2,71828…|< 0,002. Получаем другое значение предельной абсолютной погрешности (а=0,002. Это значит, что следует выбрать наименьшее из найденных значений предельной погрешности, так как это позволит сузить диапазон, в котором находится точное значение изучаемой величины.

Предельной относительной погрешностью данного приближенного числа называется любое число, не меньшее относительной погрешности этого числа:

δ ( δа

Так как справедливо неравенство:

δ = ( /|a| ( (а /|a|
то можно считать, что предельные абсолютная и относительная погрешности связаны формулой:

δа = (а /|a|       или       (а = |a|* δа
Если абсолютная погрешность (а значительно меньше точного значения |а|, то относительную погрешность определяют приближенно как отношение абсолютной погрешности к приближенному значению:

δа = (а /|ap|,   (а ( |ap|* δа
Часто в формуле вместо знака «(» используют знак точного равенства « = ».

Относительную погрешность иногда задают в процентах.

Значащие цифры

Значащими цифрами в записи приближенного числа называются:

– все ненулевые цифры;

– нули, содержащиеся между ненулевыми цифрами; 

– нули, являющиеся представителями сохраненных десятичных разрядов при округлении.

Первые n значащих цифр в записи приближенного числа называются верными в узком смысле, если абсолютная погрешность числа не превосходит половины единицы разряда, соответствующего п-й значащей цифре, считая слева направо.

Иногда это определение перефразируют:

Первые n значащих цифр в записи приближенного числа называются верными в широком смысле, если абсолютная погрешность числа не превосходит единицы разряда, соответствующего n – ой значащей цифре.

Правило округления чисел
Чтобы округлить число до n значащих цифр, отбрасывают все цифры, стоящие справа от n-й значащей цифры, или, если это нужно для сохранения разрядов, заменяют их нулями. При этом:

1) если первая отброшенная цифра меньше 5, то оставшиеся десятичные знаки сохраняют без изменения;

2) если первая отброшенная цифра больше 5, то к последней оставшейся цифре прибавляют единицу;

3) если первая отброшенная цифра равна 5 и среди остальных отброшенных цифр есть ненулевые, то к последней оставшейся цифре прибавляют единицу;

4) если первая из отброшенных цифр равна 5 и все отброшенные цифры являются нулями, то последняя оставшаяся цифра оставляется неизменной, если она четная, и увеличивается на единицу, если нет (правило четной цифры).
Это правило гарантирует, что сохраненные значащие цифры числа являются верными в узком смысле, т. е. погрешность округления не превосходит половины разряда, соответствующего последней оставленной значащей цифре. Правило четной цифры должно обеспечить компенсацию знаков ошибок.

Теорема. Если положительное приближенное число имеет n верных значащих цифр, то его относительная погрешность δ не превосходит величины 101-n, деленной на первую значащую цифру (н:

δ ( 101-n / (н

Эта формула позволяет вычислить предельную относительную погрешность

δa = 101-n / (н
Погрешности арифметических операций

Предельная абсолютная погрешность суммы приближенных чисел равна сумме предельных абсолютных погрешностей слагаемых, т. е.

(u = (x + (y
Из формулы  следует, что предельная абсолютная погрешность суммы не может быть меньше предельной абсолютной погрешности наименее точного из слагаемых, т. е. если в состав суммы входят приближенные слагаемые с разными абсолютными погрешностями, то сохранять лишние значащие цифры в более точных не имеет смысла.

Пример 1.2.

Найти сумму приближенных чисел, все цифры которых являются верными в широком смысле, и ее предельную абсолютную и относительную погрешности u=0,259+45,12+1,0012.

Решение.

Предельные абсолютные погрешности слагаемых здесь равны соответственно 0,001; 0,01; 0,0001.

Суммирование производится, согласно следующим правилам:

1) Выделяется наименее точное слагаемое (слагаемые) и оставляется без изменения;

2) Остальные числа округляются по образцу выделенных, оставляя один или два запасных знака;

3) Складываются данные числа, с учетом всех сохраненных знаков; 

4) Полученный результат округляется до точности наименее точного слагаемого.

Итак, (u = 0,001 + 0,01 + 0,0001 = 0,0111

U = 0,259+45,12+1,0012 ( 0,26+45,12+1,00=46,38(0,01

Если все слагаемые в сумме имеют один от же знак, то предельная относительная погрешность суммы не превышает наибольшей из предельных относительных погрешностей слагаемых:

δu  (  max (δx1, δx2, … , δxn)

При вычислении разности двух приближенных чисел и = х. – у ее абсолютная погрешность равна сумме абсолютных погрешностей уменьшаемого и вычитаемого,, а предельная относительная погрешность

δu = ((x + (y) / |x-y|

Предельная относительная погрешность произведения u = x*y приближенных чисел, отличных от нуля, равна сумме предельных относительных погрешностей сомножителей, т.е. 

δu = δx + δy
Предельная относительная погрешность частного равна сумме предельных относительных погрешностей делимого и делителя.

Погрешность произвольной функции

Пусть имеется некоторая область Х в пространстве переменных x1, x2,,…, xn и известно, что 
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(1.1)

соответственно, предельной относительной погрешностью называют величину:
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(1.2)

В случае, когда область X – прямоугольник: 
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(1.3)

При практической работе вместо погрешности (1.3) пользуются  следующей формулой:
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(1.4)

называемой линейной оценкой погрешности.

Пример 1.3.

Вычислить погрешности функции y = ln (sin (x2)),заданной на промежутке [0.8;1.0], (х*=0.1, х*=0.9 по формулам (1.1)–(1.4). Провести сравнительный анализ полученных погрешностей. 

Решение.

Определим предельную абсолютную погрешность функции на промежутке:
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Предельная относительная погрешность функции будет равна: 
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Рассчитаем другие оценки функции y по формулам (1.3) и (1.4):
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 EMBED Equation.3  
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Согласно проведенным расчетам, наибольшее значение оценки функции получено с использованием формулы (1.3), наименьшее по формуле (1.4).

Следовательно, значение функции  y = ln (sin (x2)) на промежутке [0.8;1.0], при (х*=0.1, х*=0.9 имеет следующие оценки: 

предельная абсолютная погрешность равна 0.19;

предельная относительная погрешность равна 0.60;

погрешность ((y*) по формуле (3) равна 0.22;

погрешность ((y*) по формуле (4) равна 0.17.

Соответственно, можно задать пределы изменения значения y(x) на указанном промежутке:

y(x) = 0.32 ± 0.19

y(x) = 0.32 ± 0.22

y(x) = 0.32 ± 0.17

Пример 1.4.

Вычислить погрешности функции z= ln (sin (x(y)) , заданной на прямоугольнике G=[0.8;1.0]×[0.3;0.5], (х*=0.1, х*=0.9, (y*=0.1, y*=0.4 по формулам (1.1)–(1.4). Провести сравнительный анализ полученных погрешностей. 

Решение.

Для определения погрешностей функции, зависящей от двух переменных, удобно пользоваться таблицами. Построение таблиц проведем в Excel.

Вначале рассчитаем значения функции в точках прямоугольника G:
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Построив таблицу отклонений значений функции:
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определим предельную абсолютную погрешность функции на прямоугольнике G:
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Предельная относительная погрешность функции будет равна: 
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Рассчитаем другие оценки функции y:
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с использованием таблицы производной функции z:
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Из этой же таблицы можно определить, что по формуле (4) (z* есть:
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Из найденных значений, наибольшее значение оценки функции получено с использованием формулы (1.3), наименьшее по формуле линейной оценки погрешности (1.4).

Следовательно, для функции y = ln (sin (x(y)) на прямоугольнике G=[0.8;1.0]×[0.3;0.5], при (х*=0.1, х*=0.9, (y*=0.1, y*=0.4 можно задать пределы изменения ее значений:

z(x,y) = -1.04 ± 0.39

z(x,y) = -1.04 ± 0.45

z(x,y) = -1.04 ± 0.35
Задания для практического занятия:

Задание 1.

Вычислить погрешности  одномерной функции y= y(x) по формулам (1.1)–(1.4). Провести сравнительный анализ полученных погрешностей. 

а) 
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Задание 2.

Вычислить погрешности  двумерной функции z= z(x,y) по формулам (1.1)–(1.4). Провести сравнительный анализ полученных погрешностей. 

а) 
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, G=[-N;-N+1]×[1.2;1.4], (x*=0.5, х*=-N+0.5, (y*=0.1, y*=1.3.

б) 
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Контрольные вопросы 
1. Перечислите этапы решения прикладной задачи.

2. Какие причины погрешностей бывают?

3. Приведите формулу, связывающую абсолютную и относительную погрешности.

4. В чем отличие абсолютной погрешности от абсолютной предельной погрешности.

5. Какие цифры в записи числа называют верными и значащими?

6. Приведите правила округления чисел.

7. Как вычислить предельную абсолютную погрешность суммы чисел?

8. Как вычислить предельную относительную погрешность произведения?

9. Как рассчитать предельную абсолютную погрешность одномерной функции?

10. Как рассчитать предельную абсолютную погрешность двумерной функции?

Практическая работа № 3
 «Решение алгебраических и трансцендентных уравнений приближенными методами (методы половинного деления, касательных, хорд)»

Цель работы: научиться решать алгебраические и трансцендентные уравнения приближенными методами
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

-    использовать основные численные методы решения математических задач;

· разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.
знать: 

           -   методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.
-.

Краткие теоретические и учебно-методические материалы
по теме практической работ:

1 .Отделение корней   Пусть имеется уравнение вида      f(х) = 0,                                 (1)
где f (х) — алгебраическая или трансцендентная функция. Напомним, что функция называется алгебраической, если для получения значения функции  по данному значению х  нужно выполнить арифметические операции и возведение в степень с рациональным показателем. К трансцендентным функциям относятся все неалгебраические функции – показательная 
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 и обратные тригонометрические 
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Решить уравнение (1) — значит установить, имеет ли оно корни, сколько корней, и найти значения корней с требуемой точностью. Решение указанной задачи в общем случае начинают с этапа отделения корней, который заключается в установлении ко​личества корней, а также наиболее тесных промежутков, каждый из которых содержит только один корень.
Грубое отделение корней во многих случаях можно произвести  графическим методом. При этом задачу часто удается сильно упростить, заменив уравнение (1) равносильным ему уравнением
                     f1(x)=f2(x)                              (2)

В этом случае строятся графики функций  f1(х) и  f2(x), а потом на оси ОХ отмечаются по возможности наименьшие отрезки, лока​лизующие абсциссы точек пересечения этих графиков с осью ОХ.
Пример 1. Для графического отделения корней уравнения sin2х- 1n х = 0 преобразуем его к равносильному уравнению sin2х = lnх и отдельно построим графики функций sin2х и lnx (рис. 1).
Из графика вполне очевидно, что уравнение имеет единствен​ный корень ξ и этот корень находится на отрезке [1; 1,5].
[image: image126.png]



Рис. 1  Графическое отделение корня уравнения sin2х-lnx = 0
При решении задачи об отделении корней бывают полезными следующие очевидные 
положения:
1) если непрерывная на отрезке [а; b] функция f (х) принимает на его концах значения разных знаков (т.е. f (а) f (b) < 0), то уравнение F(х) = 0 имеет на этом отрезке, по меньшей мере, один корень;

2) если функция f (х) к тому же еще и монотонна, то корень на отрезке [а; b] единственный.

Вычислим для проверки значения функции f (х)=sin2х - lnх на концах отрезка [1;1,5]: 

                                     f (1) = 0,909298;                  f ( 1,5) = -0,264344.
     Как видно, на отрезке [1; 1,5] действительно имеется корень. Рассмотренный прием позволяет при желании сузить отрезок, полученный графическим способом. Так, в нашем примере имеем  f (1,3) = 0,253138 > 0, так что отрезком, на котором находится корень, можно считать [1,3; 1,5].

В простейших случаях графическое отделение корней можно осуществить вручную, однако в более сложных случаях для исследования вопроса о наличии (и количестве) корней уравнения на заданном отрезке целесообразнее воспользоваться инструментальным пакетом или составить программу для ЭВМ на языке программирования. Рассмотрим коротко суть идеи для применения указанных подходов.

Пусть имеется уравнение f (х) = 0, причем известно, что все интересующие вычислителя корни находятся на отрезке [А; В], в котором функция f (х) определена, непрерывна и f (А) f (В) < 0. Требуется отделить корни уравнения, т.е. указать все отрезки [а; b]  из  [А; В], содержащие по одному корню.

Будем вычислять значения f (х), начиная с точки х = А, двигаясь вправо с некоторым шагом h (рис. 2). 

Как только обнаружится пара соседних значений f (х), имеющих разные знаки, и функция f (х) монотонна на этом отрезке, так соответствующие значения аргумента х (предыдущее и следующее) можно считать концами отрезка, содержащего корень.
[image: image127.png]- y=Flx)





Рис. 2  Иллюстрация к процессу отделения корней
Кроме графического способа отделения корней существует аналитический метод отделения корней. Опишем порядок действий при нем:

1. Найти 
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2. Составить таблицу знаков функции f(x), полагая х равным: а) критическим значениям (корням) производной или ближайшим к ним; б)  граничным значениям  (исходя и области  допустимых значений неизвестного)

3. Определить интервалы, на концах которых функция принимает  значения противоположных знаков. Внутри этих интервалов содержится по одному и только одному корню.

Пример 2.  Отделить корни уравнения 
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аналитическим методом.

Решение: обозначим 
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. Область определения функции f(x) – вся числовая ось. Найдем первую производную:  
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Составим таблицу знаков функции f(x), полагая х равным а) критическим значениям производной или ближайшим к ним; б) граничным значениям (из области допустимых значений неизвестного):
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 Уравнение имеет два корня, т.к.  происходит две смены знака функции.  Составим новую таблицу, с более мелким интервалом изоляции корня

	х
	-1
	0
	1
	2
	3
	4
	5

	знак f(x)
	+
	-
	-
	-
	-
	-
	+


Корни уравнения находятся в промежутках  (-1; 0) и (4; 5)
2.  Уточнение корня уравнения методом половинного деления
Второй этап приближенного решения алгебраических и трансцендентных уравнений – уточнение корней.

 Пусть уравнение f (х) = 0 имеет на отрезке [а; b]   единственный корень, причем функция f(х) на этом отрезке непрерывна. Раз​делим отрезок [а; b]  пополам точкой  с=(а+b )/2.  Если   

f (с)≠0 (что наиболее вероятно), то возможны два случая: либо f (х) меняет знак на отрезке [a; с] (рис. 2, а), либо на отрезке [с; b] (рис. 2, б).
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                                            Рис. 2 (а)                                           Рис.2 (б)

 К решению уравнения   f (х) = 0 методом половинного деления

Выбирая в каждом случае тот из отрезков, на котором функ​ция меняет знак, и продолжая 
процесс половинного деления даль​ше, можно дойти до сколь угодно малого отрезка, содержащего 
корень уравнения.
Рассмотренный метод, его называют методом половинного де​ления (другое название — метод дихотомии), можно использовать как метод решения уравнения с заданной точностью. 
Действительно, если на каком-то этапе процесса получен отрезок [а; b], содержащий корень, то, приняв приближенно х=(а + b)/2, полу​чим ошибку, не превышающую значения
           ∆х=(b-а)/2
                               (3)
(заметим, что речь в данном случае идет о погрешности метода). Метод половинного деления требует утомительных ручных вычислений, однако он легко реализуется с помощью программы на ЭВМ.

Пример 3. Методом половинного деления  уточнить до 
[image: image136.wmf]3

10

-

=

e

меньший корень уравнения 

                                                                   
[image: image137.wmf]0

3

3

2

3

=

-

+

х

х

.

Решение: отделим корни этого уравнения аналитически.  Функция f(х) определена на всей числовой оси. Приравняем производную нулю и найдем критические точки:
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Составим таблицу знаков функции:
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Из таблицы видим, что левый корень принадлежит интервалу (
[image: image141.wmf]¥
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Следовательно,  корни уравнения принадлежат промежуткам  (-3; -2); (-2; -1); (0; 1). Уточним меньший корень, лежащий в интервале (-3; -2), метом половинного деления. Для удобства вычислений составим таблицу (знаки «-» и «+» в верхних индексах 
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	0
	-3
	-2
	-2,500
	-15,625
	18,750
	0,125

	1
	-3
	-2.500
	-2,750
	-20,800
	22,689
	-1,111

	2
	-2,750
	-2.500
	-2.625
	-17, 90
	20,670
	-0,320

	3
	-2,625
	-2,500
	-2,563
	-16,840
	19,701
	-0,130

	4
	-2,563
	-2,500
	-2,532
	-16,230
	19,233
	0,003

	5
	-2,563
	-2,532
	-2,548
	-16,540
	19,479
	-0,071

	6
	-2,548
	-2,532
	-2,540
	-16,390
	19,356
	-0,034

	7
	-2,540
	-2,532
	-2,536
	-16,310
	19,293
	-0,014

	8
	-2,536
	-2,532
	-2,534
	-16,270
	19,263
	-0,007

	9
	-2.534
	-2,532
	-2,533
	-16, 250
	19,248
	-0,002

	10
	-2,533
	-2,532
	
	
	
	


Итак, корень уравнения 
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Метод хорд. Будем полагать, что функция f(x) дважды дифференцируема на [a,b] функция. 

Суть метода: проводится хорда для функции, соединяющая точки (a,f(a)) и (b,f(b)). Точка, в которой хорда пересекает ось Ох, становится первым приближением к корню. Продолжая операцию, получим: [a,х1] ( [a,х2] (… То есть, кривая заменяется хордами, проходящими через концы отрезков, в которых f(x) имеет противоположные знаки. 

Метод хорд требует, чтобы один конец отрезка [a,b], был неподвижен. Условие неподвижности точки: 

f ”(xн) ( f(xн) > 0


(7)

Расчетная формула для определения n-ого приближения: 
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(8)

При выполнении условия (4.6) за решение принимается х*=xn. 

Метод касательных (метод Ньютона). Будем полагать, что функция f(x) – это дважды дифференцируемая на [a,b] функция. 

Метод заключается в следующем: из точки, для которой выполняется условие (7) испускается касательная к кривой y=f(x), которая пересекает ее в точке х1 – эта точка станет первым приближением к корню х*, затем вновь проводим касательную к кривой в точке (х1,f(x1)) – получим х2 и т.д. 
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	Формула определения абсцисс точек пересечения касательных с осью Ох имеет вид:
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Точка xn будет являться корнем уравнения (1) при выполнении (6).  
Геометрическое представление метода показано на рисунке:


Пример 4.1. 

Найти решение уравнения f(x)=x-cos(x)=0 на отрезке [0,1] с ε=0, 01 с помощью каждого описанного метода.

Решение:

Для этой функции на указанном отрезке выполняются следующие условия:

f’>0, f’’>0.

Следующая таблица показывает работу метода половинного деления: 

	
	Метод половинного деления
	
	
	

	
	а=
	0
	b=
	1
	ε=
	0,01
	

	№ ит
	А
	c
	b
	Знак

(f(a))
	Знак

(f(c))
	Знак

(f(b))
	Δ

	0
	0
	0,5
	1
	-
	-
	+
	1

	1
	0,5
	0,75
	1
	-
	+
	+
	0,5

	2
	0,5
	0,625
	0,75
	-
	-
	+
	0,25

	3
	0,625
	0,688
	0,75
	-
	-
	+
	0,125

	4
	0,688
	0,719
	0,75
	-
	-
	+
	0,0625

	5
	0,719
	0,734
	0,75
	-
	-
	+
	0,03125

	6
	0,734
	0,742
	0,75
	-
	+
	+
	0,015625

	7
	0,734
	0,738
	0,742
	-
	-
	+
	0,007813

	8
	0,738
	0,740
	0,742
	-
	+
	+
	0,003906


Как видно из таблицы на 7 -ой итерации получен корень уравнения х=0,738. Точность равна 0,01. (для определенности оставим в значении корня третий знак после запятой)

Замечание. Для метода половинного деления всегда можно определить количество требуемых итераций по формуле: 

n > log2 ((b-a)/()

где n – ближайшее большее целое число.

Следовательно, для нашей задачи: n > log2 ((1-0)/0.01) = log2100 = 6.64 , то есть n=7, что и видно из таблицы.

Последовательность вложенных сегментов имеет вид:

-[0,1]+ ( -[0.5,1]+ ( -[0.5,0.75]+ ( -[0.625,0.75]+ ( -[0.688,0.75]+ ( -[0.719,0.75]+ ( -[0.734,0.75]+ ( -[0.734,0.742]+ ( 0.738

Верхние индексы, стоящие слева и справа от отрезка, показывают знак функции соответственно в левом и правом конце интервала.

Метод хорд. Определим неподвижную точку, для этого проверим условие (4.7) в точках a и b: 

f ”(а) ( f(а) < 0, f”(b) ( f(b) > 0
Значит, неподвижной точкой является точка b.

Таблица по работе метода хорд имеет вид:

	
	Метод хорд
	
	
	

	а=
	0
	b=
	1
	ε=
	0,01

	
	х_неп=1, f(x_неп)= 0,459698
	х0=0
	

	№
	X
	f(x)
	Δ
	
	

	0
	0
	-1
	1
	>
	0,01

	1
	0,685
	-0,0893
	0,685073
	>
	0,01

	2
	0,736
	-0,00466
	0,051226
	>
	0,01

	3
	0,739
	-0,00023
	0,002646
	<
	0,01

	4
	0,739
	-1,2E-05
	0,000133
	<
	0,01


Как видно из таблицы на 3 -ей итерации получен корень уравнения x=0,739. Точность равна 0,01. (для определенности оставим в значении корня третий знак после запятой)

Последовательность вложенных сегментов имеет вид:

-[0,1]+ ( -[0.685,1]+ ( -[0.736,1]+ ( -[0.739,1]+ ( 0.739

Верхние индексы, стоящие слева и справа от отрезка, показывают знак функции соответственно в левом и правом конце интервала.

Метод касательных.  
	
	Метод касательных
	
	
	
	

	
	а=
	0
	
	b=
	1
	ε=
	0,01

	№
	Х
	f(x)
	f'(x)
	Δ
	
	
	

	0
	0,5
	-0,37758
	1,479426
	1
	>
	0,01
	

	1
	0,755
	0,027103
	1,685451
	0,255222
	>
	0,01
	

	2
	0,739
	9,46E-05
	1,673654
	0,016081
	>
	0,01
	

	3
	0,739
	1,18E-09
	1,673612
	5,65E-05
	<
	0,01
	

	4
	0,739
	0
	1,673612
	7,06E-10
	<
	0,01
	


Как видно из таблицы на 3 -ей итерации получен корень уравнения x=0,739. Точность равна 0,01. (для определенности оставим в значении корня третий знак после запятой)

Последовательность вложенных сегментов имеет вид:

-[0,1]+ ( -[0,755]+ ( -[0,0.739]+ ( -[0,0.739]+ ( 0.739.

Верхние индекс, стоящие слева и справа от отрезка, показывают знак функции соответственно в левом и правом конце интервала.
4. Решение уравнений в MathCad.
Для численного поиска  корней уравнения в MathCad  используется встроенная функция root( f(x), x, a, b ). Она позволяет решать уравнение вида f(x)=0, где f(x) – уравнение, корни которого необходимо найти, х – неизвестная. Использование функции root требует задания начального приближения x:=
[image: image156.wmf]0
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 или отделенного отрезка [a,b].

Функция polyroots(v) возвращает вектор, который имеет все корни многочлена, коэффициенты которого задаются вектором v. Коэффициенты у вектора v располагаются в порядке возрастания степеней  в уравнении и могут быть определены соответствующей командой из меню Symbolіc. 

Существует возможность символьного решения уравнения. Для этого необходимо обратиться к меню  Symbolіc/Varіable/Solve. Корни уравнения выводят в виде вектора. 

Можно также находить решение  уравнения графически. Графическое решение заключается в определении по графику функции, которая отвечает левой части уравнения, при какой величине аргумента данная функция принимает значение, равное правой части уравнения. 

Для решения систем нелинейных уравнений (а равно и линейных) используется "блок решений", который начинается из ключевого слова gіven и  заканчивается вызовом функции fіnd. Между ними находятся уравнение. Всем неизвестным в уравнении должны быть присвоены начальные значения. В уравнении, для которого необходимо найти решение, нужно использовать знак логического равенства = (жирный) на панели инструментов Evaluatіon. Неизвестные, которые необходимо найти передаются в функцию как аргументы.

С помощью символьного процессора MathCad  можно получать аналитические решения системы уравнений, используя оператор  solve. В этом случае система заносится в виде вектора в левый маркер оператора. Переменные, значения которых отыскиваются, следует вводить через запятую в правый маркер. Ответ будет возвращен в виде матрицы, в строках которой будут записаны найденные значения неизвестных системы уравнений. Например, для одного уравнения 
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Приближенные решения системы уравнений можно получить с использованием встроенной функции mіnerr( x1,...). Эта функция подобная по своей работе к функции fіnd, однако она имеет другие условия для завершения итеративного процесса поиска решений. Функция mіnerr позволяет находить решение в том случае, когда их не находит функция  fіnd.

Задания для практического занятия:
Задание 1. Отделите корни заданного уравнения, пользуясь графиче​ским методом (схематически, на бумаге). Это же задание выполните с помощью программы для компьютера и с применением одного из инст​рументальных средств.
Задание 2. По методу половинного деления вычислите один корень заданного уравнения с точностью 10-3 с помощью ручной расчетной таблицы и МК;
Задание . По методу Ньютона и хорд вычислите один корень заданного уравнения с точностью 10-3  с помощью программы для ЭВМ.

Варианты заданий приведены в таблице
	№ 

варианта
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Контрольные вопросы 
1. В чем заключается этап отделения корней при использовании численных методов решения уравнения?

2. Каким образом графической отделение корней уточняется с помощью вычислений? Какие свойства функций одной переменной при этом используются?

3. В чем состоит основная идея метода половинного деления?

4. Может ли метод половинного деления дать точное значение корня уравнения?

                                                       Практическая работа № 4
 «Решение алгебраических и трансцендентных уравнений приближенными методами (комбинированный метод хорд и ка​сательных, метод итераций)»

Цель работы: научиться решать алгебраические и трансцендентные уравнения приближенными методами 

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

·  использовать основные численные методы решения математических задач;

· давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;

знать: 

            - методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.
Краткие теоретические и учебно-методические материалы по теме практической работ:

Пусть рассматривается некий процесс, зависящий от одного параметра х и описываемый функцией y=f(x). Поставим задачу: определить такие значения параметра х, равные х*, которые вызывают остановку процесса, то есть выполнение условия: 

f(x)=0




(4.1)
Теорема о существовании нуля непрерывной функции: Если функция f(x) непрерывна на отрезке [a,b] и принимает на его концах значения разных знаков, то на этом отрезке существует по крайней мере один корень уравнения (3.1).

Пусть известно, что на [a,b] существует единственный корень уравнения (1). Потребуем, чтобы функция: 

1) была непрерывна на [a,b] вместе со своими производными f((x) и f((x); 

2) в точках a и b функция имеет разные знаки, т.е. f(a)(f(b)<0; 

3) производные f((x), f((x) – сохраняют знак на всем [a,b], т.е. функция должна быть строго монотонной на [a,b].

Метод итераций. Предположим, что уравнение (3.1) можно переписать в виде: 

x=((x)



(4.4)

Возьмем произвольное значение х0 из области определения функции ((x) и будем строить последовательность чисел {xn}, определенных с помощью рекуррентной формулы 

xn+1 = ((xn),   n=0, 1, 2, …


(4.5)

Последовательность {xn} называется итерационной последовательностью.

Точность найденного решения определяется формулой (4.3):

(n = |xn – xn-1|  < (


(4.6)

где ( – заданная точность.

Метод хорд. Будем полагать, что функция f(x) дважды дифференцируема на [a,b] функция. 

Суть метода: проводится хорда для функции, соединяющая точки (a,f(a)) и (b,f(b)). Точка, в которой хорда пересекает ось Ох, становится первым приближением к корню. Продолжая операцию, получим: [a,х1] ( [a,х2] (… То есть, кривая заменяется хордами, проходящими через концы отрезков, в которых f(x) имеет противоположные знаки. 

Метод хорд требует, чтобы один конец отрезка [a,b], был неподвижен. Условие неподвижности точки: 

f ”(xн) ( f(xн) > 0


(4.7)

Расчетная формула для определения n-ого приближения: 
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(4.8)

При выполнении условия (4.6) за решение принимается х*=xn. 

Метод касательных (метод Ньютона). Будем полагать, что функция f(x) – это дважды дифференцируемая на [a,b] функция. 

Метод заключается в следующем: из точки, для которой выполняется условие (4.7) испускается касательная к кривой y=f(x), которая пересекает ее в точке х1 – эта точка станет первым приближением к корню х*, затем вновь проводим касательную к кривой в точке (х1,f(x1)) – получим х2 и т.д. 

	 SHAPE  \* MERGEFORMAT 



	Формула определения абсцисс точек пересечения касательных с осью Ох имеет вид:
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Точка xn будет являться корнем уравнения (4.1) при выполнении (4.6).  
Геометрическое представление метода показано на рисунке:


Комбинированный метод хорд и касательных. Для ускорения сходимости используют комбинированный метод хорд и касательных. Здесь одновременно из точки (b,f(b)) проводят касательную, а из точки (a,f(a)) – хорду. Получается новый интервал (a1, b1) и процедура повторяется до выполнения условия
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В этом случае за «истинное» решение уравнения (4.1) можно принять значение
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Пример 4.1. 

Найти решение уравнения f(x)=x-cos(x)=0 на отрезке [0,1] с ε=0, 01 с помощью каждого описанного метода.

Решение:

Для этой функции на указанном отрезке выполняются следующие условия:

f’>0, f’’>0.

Комбинированный метод хорд и касательных

	Комбинированный метод хорд и касательных

	а=
	0
	b=
	1
	ε=
	0,01

	
	х_неп=
	1
	
	f(x_неп)=
	0,459698

	
	a(Xорд)
	b(Kасат)
	Δ.
	
	

	0
	0
	0,5
	0,5
	>
	0,01

	1
	0,685
	0,755
	0,070149
	>
	0,01

	2
	0,736
	0,739
	0,002843
	>
	0,01

	3
	0,739
	0,739
	0,00014
	<
	0,01

	4
	0,739
	0,739
	7E-06
	<
	0,01


Как видно из таблицы на 3 -ей итерации получен корень уравнения, равный  x=(a3+b3)/2=0,739. Точность равна 0,01. (для определенности оставим в значении корня третий знак после запятой)

Последовательность вложенных сегментов имеет вид:

-[0,1]+ ( -[0.685,0.755]+ ( -[0.736,0.739]+ ( -[0.739,0.739]+ ( 0.739.

Верхние индексы, стоящие слева и справа от отрезка, показывают знак функции соответственно в левом и правом конце интервала.

Пример.   Образец выполнения: x3-2x2-4x+7=0
Отделим корни аналитически. Находим
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Составим таблицу знаков функции ƒ(x):

	x
	-∞
	-2/3
	2
	+∞

	sign
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И так, уравнение имеет три действительных корня: 
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Уменьшим промежутки, содержащие корни, до длины, равной 1:

	x
	-2
	-1
	0
	1
	2
	3

	sign
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Значит, 
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Уточним корни комбинированным методом хорд и касательных.
1.
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. Для расчетов применяем формулы
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где 
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 - значения корня соответственно по избытку и недостатку. Полагаем 
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Все вычисления производим в таблице, обозначив
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Вычисления производим в таблице, обозначив
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Задания для практического занятия:
Задание 1. Вычислите один корень заданного уравнения с помощью программы для компьютера с точностью 10-6, используя метод простой итерации.
Задание 2. Вычислите один корень заданного уравнения с помощью программы для компьютера с точностью 10-6, используя комбинирован​ный метод хорд и касательных.
Задание 3. Вычислите один корень заданного уравнения с точностью 10-6, используя один из инструментальных пакетов.
Сопоставьте и прокомментируйте полученные результаты.
1. 2x3-3x2-12x-5=0

2. x3-3x2-24x-3

3. x3-3x2+3=0

4. x3-12x+6=0

5. x3+3x2-24x-10=0

6. 2x3-3x2-12x+10=0

7. 2x3+9x2-21=0

8. x3-3x2+2,5=0

9. x3+3x2-2=0

10. x3+3x2-3,5=0

11. x3+3x2-24x+10=0

12. x3-3x2-24x-8=0

13. 2x3+9x2-10=0

14. x3+12x+10=0

15. x3+3x2-3=0

16. 2x3-3x2-12x+1=0

17. x3-3x2-24x-5=0

18. x3-4x2+2=0

19. x3-12x-5=0

20. x3+3x2-24x+1=0

21. 2x3-3x2-12x+12=0

22. 2x3+9x2-6=0

23. x3-3x2+1,5=0

24. x3-3x2-24x+10=0

25. x3+3x2-1=0

26. x3-12x-10=0

27. 2x3+9x2-4=0

28. 2x3-3x2-12x+8=0

29. x3+3x2-1=0

30. x3-3x2+3,5=0

Контрольные вопросы 
1. Каковы достаточные условия сходимости итерационной последовательности к корню уравнения?
2. Какова последовательность действий при решении уравнения F(x)=0 методом простой итерации?
3. Какое условие является критерием для достижения заданной точности при решении уравнения x=f(x) методом простой итерации?

4. По каким причинам методы хорд и касательных предпочтительнее метода простой итерации?

5. Какова последовательность действий при решении уравнения F(x)=0 методом касательных? Методом хорд?
6. Каков порядок определения начальных приближений при использовании комбинированного метода хорд и касательных?

7. Какое условие следует применять в качестве критерия для достижения заданной точности при решении уравнения F(x)=0 методом касательных? Методом хорд? Комбинированным методом хорд и касательных?
Практическая работа № 5
 «Решения линейных и трансцендентных систем  уравнений с помощью ЭВМ»

Цель работы: научиться решать линейные и трансцендентные системы уравнений с помощью ЭВМ 
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

·  использовать основные численные методы решения математических задач;

· разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата.
знать: 

            -   методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.
Краткие теоретические и учебно-методические материалы по теме практической работ:

1. Прямые методы
Система линейных алгебраических уравнений (СЛАУ) имеет вид: 
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Ее можно представить в матричном виде:

A×X = B
где A – матрица коэффициентов,  столбец ХT=(x1, x2, … , xn) – столбец неизвестных переменных, ВT=(b1, b2,…, bn) – столбец правых частей системы.

Для того, чтобы система могла иметь решение, нужно, чтобы ее определитель не был равен нулю, тогда матрица А — будет невырожденной, а сама система называется совместной.

Способы решения СЛАУ.

1. Метод Гаусса.
Он может быть реализован в аналитическом или алгоритмическом виде. Суть аналитического решения по методу Гаусса (МГ): 

1) преобразовать СЛАУ к ступенчатому виду – прямой ход МГ; 

2) восстановить значения неизвестных переменных с хn до х1 –обратный ход МГ.

Алгоритм прямого хода МГ имеет три шага: 

1. Проверка aii=0. Если условие выполняется, то заменить элементы i-ой и (i+1)-ой строк.

2. Преобразовать элементы i-ой строки так, чтобы aii =1, то есть поделить элементы этой строки на aii.

3. Все строки с номерами i+1, i+2, …, n преобразовать так, чтобы ai+1,i , ai+2,i , … , an,i были равны нулю, то есть вычесть последовательно из каждой i+1, i+2, …, n-ой строки i-ую строку, умноженную на ai+1,i. 

Пример 2.1:

3x+2y+z=5
(1стр):3

x+2/3y+1/3z=5/3

(2с)-(1с)

x+y-z=0

(

x+y-z=0


( 

4x-y+5z=3


4x-y+5z=3

(3с)-(1с)*4

x+2/3y+1/3z=5/3

 (2с)*3    x+2/3y+1/3z=5/3     (3с)-(2с)*(-11/3)

    1/3y-4/3z=-5/3

(
 y – 4z = -5

(
-11/3y +11/3z=-11/3

-11/3y +11/3z=-11/3


x+2/3y+1/3z=5/3

(3с):(-11)
x+2/3y+1/3z=5/3


 y – 4z = -5

(

y – 4z = -5
(
 -11z=-22



 z=2

x+2/3y+1/3z=5/3

x+2/3*3+1/3*2=5/3

x=-1

 y-4*2=-5
(
y=3


(
y=3

z=2

 
z=2



z=2

Однако, следует указать недостаток МГ:

Поскольку на каждой ступеньке приходится определять ведущий коэффициент аii, то при его значении значительно меньшем единицы, деление на него на шаге 2 приводит к увеличению значений коэффициентов, стоящих в i-ой строке. Причем, чем меньше аii, тем сильнее увеличение. Это сказывается на погрешностях расчетов и получаемые значения будут далеки от верных.

Для преодоления недостатка между шагами 1 и 2 вводят дополнительный шаг, заключающийся в выборе максимального из элементов  ai,i, ai+1,i , ai+2,i , … , an,i. После определения такого максимального элемента, находящегося в k-ой строке,  строчки I и k просто меняют местами. Введение дополнительного шага не сказывается на значениях переменных.

Пример 2.1 с устранением недостатка:

3x+2y+z=5
(1c)<->(3c)
4x-y+5z=3
(1c):4



x+y-z=0
(


x+y-z=0

(



4x-y+5z=3


3x+2y+z=5


x-1/4y+5/4z=3/4

(2с)-(1с)
x-1/4y+5/4z=3/4
      (2)<->(3)

x+y-z=0


(

5/4y-9/4z=-3/4

(
3x+2y+z=5

(3с)-(1с)*3
11/4y -11/4z=11/4

x-1/4y+5/4z=3/4
    (2с):(11/4)
x-1/4y+5/4z=3/4
          (3с)-(2с)*(5/4)

11/4y -11/4z=11/4       (

 y –   z=1

(
   5/4y-9/4z=-3/4


5/4y-9/4z=-3/4

x-1/4y+5/4z=3/4    (3): (-1)
x-1/4y+5/4z=3/4

x=-1

        y –   z=1
      (

y-2=1

(
y=3

             -z=-2


z=2


z=2

Как видно, решение в обоих случаях одинаковое.

В случае составления программы алгоритм следующий:

1. Для k от 1 до (n-1) выполнить следующее:

2.      Для i от (k+1) до n выполнить следующее:

3.              
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5.               Для j от (k+1) до n выполнить следующее: 

6.                     
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7. Для k от n до 1 выполнить следующее:

8.        
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Первые шесть шагов называются прямым ходом метода Гаусса, шаги 7-8– Обратным ходом Метода Гаусса. 

Устранение недостатка МГ означает добавление в алгоритм между шагами 1 и 2следующие строчки:

Найти m>=k такое, чтобы |amk|=max{|aik|} при всех i>=k
Если |amk|<eps, то остановить работу (однозначного решения нет), иначе поменять местами bk и bm, akj и amj при k<=j<=n
Программа, написанная на языке Pascal, имеет вид:

Uses crt;

Const n1=10;

Var      k,i,j,n:integer; sum:real;

l,a,a1:array[1..n1,1..n1] of real;

b,b1,x:array[1..n1] of real;

BEGIN

Write('n=');read(n);

{БЛОК ВЫВОДА МАТРИЦЫ A}

For i:=1 to n do

  begin

   For j:=1 to n do


      begin



 writeln(‘введите a[',i,',',j,'] элемент');

 

readln(a[i,j]);

         end;

   writeln('введите b[',i,'] элемент');

   readln(b[i]);

   end;

{БЛОК ПОКАЗА МАТРИЦЫ А НА ЭКРАНЕ}

writeln(исходная матрица А');

for i:=1 to n do

  begin

     for j:=1 to n do write(a[i,j],'  ');

     writeln;

  end;

{ БЛОК НАХОЖДЕНИЯ МАТРИЦЫ А'=А1}

For k:=1 to n-1 do

   For i:=k+1 to n do

       begin


l[i,k]:=a[i,k]/a[k,k];


b[i]:=b[i]-l[i,k]*b[k];


for j:=k+1 to  n do a[i,j]:=a[i,j]-l[i,k]*a[k,j];

       end;

For i:=1 to n do

   For j:=1 to n do


begin


     a1[i,j]:=a[i,j]/a[i,i];


     b1[i]:=b[i]/a[i,i];


end;

{БЛОК ПОКАЗА МАТРИЦЫ А1 НА ЭКРАНЕ}

writeln('преобразованная матрица А');

For i:=1 to n do

  begin

     for j:=1 to n do write(a1[i,j],'  ');

     writeln;

  end;

{БЛОК РАСЧЕТА МАТРИЦЫ X}

For k:=n downto 1 do


begin

   for j:=k+1 to n do sum:=sum+a1[k,j]*x[j];

   x[k]:=b1[k]-sum; sum:=0;

end;

{БЛОК ВЫВОДА ПЕРЕМЕННЫХ НА ЭКРАН}

writeln('переменные равны:');

For i:=1 to n do writeln('x[',i,']=',x[i]);

Readln;

END.

2. Метод LU разложения матрицы

LU – разложение матрицы – это представление квадратной матрицы А в виде произведения лево-треугольной матрицы L и верхнетреугольной матрицы U. Такое разложение обосновывается следующей теоремой:

Теорема: Любая квадратная матрицы А, главные миноры которой

 отличны от нуля, представима в виде произведения двух матриц A=LU, где
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Причем разложение единственно с точностью до диагональных элементов.

На практике для удобства элементы u11, u22, …,unn принимают равными единице. 

После того, как разложение A=LU получено, для нахождения решения СЛАУ можно использовать два шага:

1. Найти набор Y из решения системы L*Y=B (прямой ход МГ)

2. Найти значения переменных Х их решения U*X=Y (обратный ход МГ)

Отметим, что это разложение A=LU помогает тогда, когда требуется найти решение СЛАУ при разных правых частях уравнений.

В случае составления программы алгоритм следующий:

1. L – нулевая матрица, U – единичная.

2. Для i=1..n
3.    Для j=1..n 

4.      Если i>=j, то 
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 EMBED Equation.3  
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5. Для i=1..n
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6. Для i=n..1 
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Программа, написанная на языке Pascal, имеет вид:

Uses crt;

Const n1=10;

Var k,i,j,n:integer; l,a,u:array[1..n1,1..n1] of real; b,y,x:array[1..n1] of real; sum:real;

{определяем типы используемых массивов}

BEGIN  

Write(‘n=’);read(n);

{БЛОК ВВОДА МАТРИЦЫ А}

For i:=1 to n do

   begin

   For j:=1 to n do

     begin

   
write('введите a[',i,',',j,']  '); readln(a[I,j]);

      end;

     write('введите b[',i,']  ');read(b[i]);

      end;

{БЛОК ПОКАЗА МАТРИЦЫ А НА ЭКРАНЕ}

Writeln(‘Исходная матрица А’);

For i:=1 to n do 

  begin

   For j:=1 to n do write(a[i,j],’  ‘); Writeln;

  end;

{БЛОК НАХОЖДЕНИЯ МАТРИЦ L и U}

For i:=1 to n do u[i,i]:=1; {матрица U – единичная}

For i:=1 to n do

   For j:=1 to n do

        If i>=j then



Begin




For k:=1 to j-1 do sum:=sum+l[i,k]*u[k,j];




l[I,j]:=a[I,j]-sum;




sum:=0;



end


        else



begin




For k:=1 to i-1 do sum:=sum+l[i,k]*u[k,j];




u[i,j]:=(a[i,j]-sum)/l[i,i];




sum:=0;



end;

{БЛОК ПОКАЗА МАТРИЦЫ L НА ЭКРАНЕ}

Writeln(‘Преобразованная матрица L’);

For i:=1 to n do 

  begin

   For j:=1 to n do write(l[i,j],’  ‘);

   Writeln;

  End;

{БЛОК ПОКАЗА МАТРИЦЫ U НА ЭКРАНЕ}

Writeln(‘Преобразованная матрица U’)

For i:=1 to n do 

  begin

   For j:=1 to n do write(u[i,j],’  ‘);

   Writeln;

  End;

{БЛОК ПОДСЧЕТА  И ПОКАЗА ПЕРЕМЕННЫХ Y}

For i:=1 to n do


Begin


   For j:=1 to i-1 do sum:= sum+l[i,j]*y[j];


   Y[i]:=(b[i]-sum)/l[I,i]; writeln(‘y[’,I,’]=’,y[i]);


   Sum:=0;


End;

{БЛОК ПОДСЧЕТА  И ПОКАЗА ПЕРЕМЕННЫХ X}

For i:=n downto 1 do


begin

   For j:=i+1 to n do sum:=sum+u[i,j]*x[j];

   X[i]:=y[i]-sum; 

   writeln(‘x[’,i,’]=’,x[i]);

   sum:=0;

End;   

Readln;

END.

Пример 2.2:

Дана матрица А. Найти элементы матриц   L и U.


3 
2
1 

A=
1
1
-1


4
-1
5

Решение:
0
0
0

1
0
0

1.Пусть L=
0
0
0,         U=
0
1
0



0
0
0

0
0
1

2.i=1

3. j=1

4.  1>=1 then l11=a11=3

3.j=2

4.  1>=2 else u12=(a12-0)/l11 = 2/3

3.j=3

4.  1>=3 else u13=(a13-0)/l11 = 1/3

2.i=2

3. j=1

4.  2>=1 then l21=a21=1

3.j=2

4.  2>=2 then l22=a22-l21*u12 = 1/3

3.j=3

4.  2>=3 else u23=(a23-l21*u13)/l22 = -4

2.i=3

3. j=1

4.  3>=1 then l31=a31=4

3.j=2

4.  3>=2 then l32=a32-l31*u12 = -11/3

3.j=3

4.  3>=3 then l33=(a33-l31*u13-l32*u23) = -11

Таким образом, получены матрицы  


3
0
0

1
2/3
1/3

 L=
1
1/3
0,          U=
0
1
-4


4
-11/3
-11

0
0
1

5.i=1
 y1=b1/l11=5/3

5.i=2
y2=(b2-l21*y1)/l22=(0-1*5/3)/  1/3 = -5

5.i=3
y3=(b3-l31*y1-l32*y2)/l33 = (3-4*5/3-(-11/3)*(-5))/(-11) = 2

Таким образом, получен столбец Y=(5/3, -5, 2)

6.i=3
x3=y3=2

6.i=2
x2=(y2-u23*x3)=(-5-(-4)*2)=3

6.i=1
x1=(y1-u12*x2-u13*x3)=5/3-2/3*3-1/3*2=-1

Таким образом, получены неизвестные х1=-1, х2 = 3, х3 = 2.

3. Нахождение обратной матрицы методом Гаусса
Ненулевая матрица А называется обратимой, если существует матрица А-1, называемая обратной, и выполнено условие:

А-1∙А = А∙А-1 = Е

Пусть Х – обратная матрица, тогда А∙Х = Е. Представляя матрицы Х и Е в виде хi=(x1i x2i … xni)T и еi=(0 … 1 … 0)Т, получим n систем 

A∙xi = ei,  где 1<=i<=n, 

где в качестве неизвестных векторов выступают столбцы искомой матрицы Х, а в качестве известных векторов правой части системы – поочередно столбцы единичной матрицы. Разложение матрицы А достаточно сделать один раз.

Пример 2.3:

Дана матрица А. Найти обратную к ней.


3 
2
-1 

A=
1
1
-1


4
-1
5

Решение: 

Приведем аналитическое решение.

Итак, необходимо решить три системы (количество решаемых систем равно порядку исходной матрицы, n=3) любым удобным способом.

1) 3x11+2x21+x31=1

x11+2/3x21+1/3x31=1/3

       x11+ x21 – x31=0
(
x11+     x21  –   x31=0
(


     4x11 – x21+5x31=0

4x11 –   x31 +  5x31=0



x11+2/3x21+1/3x31=1/3

x11+2/3x21+1/3x31=1/3

1/3x21 – 4/3x31=-1/3
(
x21  –   4x31=-1

(
-11/3x21+11/3x31=-4/3
 
-11/3x21+11/3x31=-4/3


x11+2/3x21+1/3x31=1/3

x11+2/3x21+1/3x31=1/3
x11=-4/11

 x21  –   4x31=-1

(
x21  –   4x31=-1

x21=9/11

 -11x31= -5


x31=5/11


x31=5/11

2) 3x12+2x22+x32=0

x12+2/3x22+1/3x32=0


      x12+ x22 – x32=1
(
x12+     x22  –   x32=1
(


     4x12 – x22+5x32=0

4x12 –   x32 +  5x32=0



x12+2/3x22+1/3x32=0

x12+2/3x22+1/3x32=0


1/3x22 – 4/3x32=1

(
 x22  –   4x32=3

(
-11/3x22+11/3x32=0

-11/3x22+11/3x32=0



x12+2/3x22+1/3x32=0

x12+2/3x22+1/3x32=0
x12=1

 x22  – 4x32=1

(
 x22  –   4x32=3

x22=-1

-11x32= 11

 
 x32=-1


x32=-1

3) 3x13+2x23+x33=0

x13+2/3x23+1/3x33=0


       x13+ x23 – x33=0
(
x13+     x23  –   x33=0
(


     4x13 – x23+5x33=1

4x13 –   x33 +  5x33=1

     

x13+2/3x23+1/3x33=0

x13+2/3x23+1/3x33=0


       1/3x23 – 4/3x33=0
(                      x23  –   4x33=0
(


    -11/3x23+11/3x33=1

    -11/3x23+11/3x33=1



x13+2/3x23+1/3x33=0

x13+2/3x23+1/3x33=0
x13=3/11

            x23  –   4x33=0
(
 x23  –   4x33=0
x23=-4/11

                    -11x33= 1

x33=-1/11

x33=-1/11

Таким образом, обратная матрица к матрице A имеет вид:



-4/11
1
3/11

X=
9/11
-1
-4/11


5/11
-1
-1/11

Проверка: А∙Х = Е

3   2  1 

-4/11  1
  3/11

1  0  0

1   1  -1    ×
9/11  -1
  -4/11
=
0  1  0

4  -1  5

5/11  -1  -1/11

0  0  1

В случае составления программы алгоритм следующий:

1. Для z от 1 до n  выполнить следующее:

2.   b[z,z]=1
3.     Для k от 1 до (n-1) выполнить следующее:

4.         Для i от (k+1) до n выполнить следующее:

5.              
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7.               Для j от (k+1) до n выполнить следующее: 

8.                     
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9.   Для k от n до 1 выполнить следующее:

9.        
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Программа, написанная на языке Pascal, имеет вид:

Uses crt;

Const n1=10;

Var      z,k,i,j,n:integer;

l,a,x,b,a1,b1:array[1..n1,1..n1] of real;

sum:real;

BEGIN  clrscr;

write('n=');read(n);

For i:=1 to n do

For j:=1 to n do


begin

Write('vvedite a[',i,',',j,']=');

readln(a[i,j]);



end;

Writeln(' matrix À');

For i:=1 to n do

Begin

For j:=1 to n do write(a[i,j],'  ');

Writeln;

End;

For z:=1 to n do  b[z,z]:=1;

For k:=1 to n-1 do

             For i:=k+1 to n do

                        Begin

                             l[i,k]:=a[i,k]/a[k,k];

                             for z:=1 to n do b[i,z]:=b[i,z]-l[i,k]*b[k,z];

                             For j:=k+1 to  n do a[i,j]:=a[i,j]-l[i,k]*a[k,j];

                        End;

For i:=1 to n do

   For j:=1 to n do


Begin


     A1[i,j]:=a[i,j]/a[i,i];

       for z:=1 to 3 do B1[i,z]:=b[i,z]/a[I,i];

   end;

for z:=1 to n do

For k:=n downto 1 do

begin

For j:=k+1 to n do sum:=sum+a1[k,j]*x[j,z];

x[k,z]:=(b1[k,z]-sum)/a1[k,k]; sum:=0;




end;

writeln;

Writeln('matrix À^(-1)');

For i:=1 to n do

begin

For j:=1 to n do write(x[i,j],'  ');

Writeln;

end;

Readln;

END.

2. Итерационные методы
2.1. Метод простых итераций

Альтернативой прямым методам являются итерационные методы, основанные на многократном уточнении 
[image: image304.wmf])
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 - приближенно заданного решения задачи Ax=b. Верхним индексом в скобках здесь и далее по тексту обозначается номер итерации (совокупность повторяющихся действий).

Суть простейшего итерационного метода – метода простых итераций, состоит в выполнении следующих процедур.

1. Исходная задача Ax=b преобразуется к равносильному виду:

[image: image305.wmf]b

a

+

=

x

x

,                   (1.12)
где 
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 - квадратная матрица, 
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 - вектор, i, j=1,…,n. Это преобразование может быть выполнено различными путями, но для обеспечения сходимости итераций нужно добиться, чтобы 
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 была меньше единицы. Понятие нормы приводится ниже.)

2. Вектор 
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 принимается в качестве начального приближения 
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 и далее многократно выполняются действия по уточнению решения согласно рекуррентному соотношению
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или в развернутом виде
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3. Итерации прерываются при выполнении условия
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где 
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 - заданная точность, которую необходимо достигнуть при решении задачи, или более простого условия:
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Оба условия носят апостериорный характер (a posteriori – “после”).

Замечания:
1. Процесс (1.13) называется параллельным итерированием, так как для вычисления (k+1)-го приближения всех неизвестных учитываются вычисленные ранее их k-е приближения.

2. Начальное приближение 
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 может выбираться произвольно или из некоторых соображений. При этом может использоваться априорная информация о решении или просто «грубая» прикидка.

При выполнении итераций (любых) возникают следующие вопросы:

а) сходится ли процесс (1.13), т.е. имеет ли место 
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[image: image322.wmf],

¥

®

k

 где 
[image: image323.wmf]*

x

 - точное решение?

б) если сходимость есть, то какова её скорость?

в) какова погрешность найденного решения, 
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 т.е. чему равна норма разности 
[image: image325.wmf]?

*

)

(

x

x

k

-


Для их разрешения необходимо сравнивать векторы 
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 Это сравнение (а также математическое обоснование и других задач вычислительной математики) осуществляется на основе норм матриц и векторов. Приведем основные сведения о них.

Нормой матрицы 
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 называется действительное число (обозначаемое 
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), удовлетворяющее условиям:
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Здесь 
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 и 
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 - матрицы, для которых соответствующие операции имеют смысл.

Условия 1-4 – это условия нормы, а их непосредственное вычисление может производиться различными путями. Наиболее употребительными являются следующие формулы для вычисления значений норм матриц и векторов, образованных действительными компонентами.

	Нормы матрицы А
	Нормы вектора x

	1) 
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Здесь приведены согласованные нормы матриц и векторов. Согласование их осуществляется связью:
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Заметим, что в случае 
[image: image352.wmf]3
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 согласованная норма равна 
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 - максимально собственное значение матрицы 
[image: image355.wmf]A
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. Однако её вычисление связанно с весьма трудоемкими операциями. Можно доказать, что справедливо неравенство


[image: image356.wmf]å

å

=

=

=

£

n

i

n

j

ij

T

a

A

A

A

1

1

2

3

max

.

)

(

l


Так как величина 
[image: image357.wmf]3
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 вычисляется относительно просто, то она часто используется в оценках. Третья норма 
[image: image358.wmf]3
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 называется евклидовой, для вектора она соответствует длине вектора, исходящего из начала координат. В множестве действительных относительных чисел 
[image: image359.wmf].
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Ответ на вопросы о сходимости дают следующие две теоремы, приводящиеся без доказательства.

Теорема 1.1 (о достаточном условии сходимости метода простых итераций).

Метод простых итераций, реализующийся в процессе последовательных приближений (1.13), сходится к единственному решению исходной системы Ax=b при любом начальном приближении x(0) со скоростью не медленнее геометрической прогрессии, если какая либо норма матрицы 
[image: image360.wmf]a

 меньше единицы, т.е. 
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Замечания.

1. Условие теоремы 1.1, как достаточное, предъявляет  завышенные требования к матрице 
[image: image363.wmf]a

, и потому иногда сходимость будет, если даже 
[image: image364.wmf].
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2. Сходящийся процесс обладает свойством самоисправляемости, т.е. отдельная ошибка в вычислениях не отразится на окончательном результате, так как ошибочное приближение можно рассматривать как новое начальное.

3. Условия сходимости выполняются, если в матрице А диагональные элементы преобладают, т.е.
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и хотя бы для одного i неравенство строгое. Иначе, модули диагональных коэффициентов в каждом уравнении системы больше сумм модулей недиагональных  коэффициентов (свободные члены не рассматриваются).

4. Чем меньше величина нормы 
[image: image367.wmf],

a

 тем быстрее сходимость метода.

Теорема 1.2 (о необходимости и достаточном условии сходимости метода простых итераций).

Для сходимости последовательности (1.13) при любых x(0) и 
[image: image368.wmf]b

 необходимо и достаточно, чтобы собственные значения матрицы 
[image: image369.wmf]a

были по модулю меньше единицы, т.е. 
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Замечание. Хотя теорема 1.2 дает более общие условия сходимости метода простых итераций, чем теорема 1.1, однако ею воспользоваться сложнее, так как нужно предварительно вычислить границы собственных значений матрицы 
[image: image371.wmf]a

 или сами собственные значения.

Рассмотрим последовательность 
[image: image372.wmf]{
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 сходящуюся к 
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. Предположим, что все её элементы различны и не один из них не совпадает с 
[image: image374.wmf]*
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. Наиболее эффективный способ оценивания сходимости состоит в сопоставлении расстояния между 
[image: image375.wmf])
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 и 
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 с расстоянием между x(k) и 
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Последовательность 
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 называется сходящейся с порядком р, если р – максимальное число, для которого
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Поскольку величина р определяется предельными свойствами 
[image: image380.wmf]{
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, она называется асимптотической скоростью сходимости.

Если последовательность 
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 - сходящаяся с порядком р, то число 
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 называется асимптотическим параметром ошибки.

Если p=1, c<1, то сходимость линейная, если р=2 – квадратичная, если р=3 – кубичная и т.д. Если р>1 или р=1, с=0, то сходимость сверхлинейная. Линейная сходимость является синонимом сходимости со скоростью геометрической прогрессии. Сверхлинейная сходимость является более быстрой, чем определяется любой геометрической прогрессией.

Теорема 1.3 (о погрешности приближений, вычисляемых методом простых итераций).

Если в итерационном процессе норма матрицы 
[image: image383.wmf]a

, согласованная с нормой вектора х, меньше единицы 
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, то справедлива следующая оценка погрешности:
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Это соотношение может быть переписано через начальное приближение 
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Неравенство (1.17) позволяет провести апостериорную оценку погрешности k-го приближения посредством вычисления нормы из двух последовательных приближений x(k), x(k-1) и нормы матрицы 
[image: image388.wmf]a

. На основе этой оценки осуществляется выход из итерационного процесса по результатам расчета (см. (1.14)):
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На основе неравенства (1.18) можно записать априорную оценку погрешности
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из которой ещё до расчета можно получить число итераций k, требуемых для достижения заданной точности:
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Преобразование системы Ax=b к виду 
[image: image392.wmf]b
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 с матрицей 
[image: image393.wmf]a

, удовлетворяющей условиям сходимости, может быть выполнено несколькими способами. Приведем способы, используемые наиболее часто.

1. Уравнения, входящие в систему Ax=b, представляются так, чтобы выполнялось условие (1.16) преобладания диагональных элементов (для той же цели можно использовать другие элементарные преобразования). Затем первое уравнение разрешается относительно x1, второе – относительно х2 и т.д. При этом получается матрица 
[image: image394.wmf]a

 с нулевыми диагональными элементами.

Например, система

-2.8х1+х2+4х3=60,

10х1-х2+8х3=10,

-х1+2х2-0,6х3=20
с помощью перестановки уравнение приводится к виду

10х1-х2+8х3=10,

-х1+2х2-0,6х3=20,

-2,8х1+х2+4х3=60
где 
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 т.е. диагональные элементы преобладают.

Выражая х1 из первого уравнения, х2 – из второго, а х3 – из третьего, получаем систему
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где 
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Заметим, что 
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, т.е. условие теоремы 1.1 выполнено.

Проиллюстрируем применение других элементарных преобразований. Так, система

4х1+х2+9х3=-7,

3х1+8х2-7х3=-6,

х1+х2-8х3=7
Путем сложения первого и третьего уравнений и вычитания из второго уравнения третьего уравнения преобразуется к виду

5х1+2х2+х3=0,

2х1+7х2+х3=-13,

х1+х2-8х3=7
с преобладанием диагональных элементов.

2. Уравнения преобразуются так, чтобы выполнялось условие преобладания диагональных элементов, но при это коэффициенты 
[image: image402.wmf]ii
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 не обязательно равнялись нулю.

Например, систему

1,02х1-0,15х2=2,7,

0,8х1+1,05х2=4

можно записать в форме

х1=-0,02х1+0,15х2+2,7,

х2=-0,8х1-0,05х2+4,

для которой 
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3. Если 
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 систему Ax=b следует умножить на матрицу 
[image: image405.wmf],

1

e

-

=

-

A

D

 где 
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 - матрица с малыми по модулю элементами. Тогда получается система 
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 достаточно малы, условие сходимости выполняется.

Методика решения задачи
1. Преобразовать систему Ax=b к виду 
[image: image414.wmf]b
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 одним из описанных способов.

2. Задать начальное приближение решения х(0) произвольно или положить 
[image: image415.wmf],
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 а так же малое положительное число 
[image: image416.wmf]e

 (точность). Положить k=0.
3. Вычислить следующее приближение 
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[image: image418.wmf].

)

(

)

1

(

b

a

+

=

+

k

k

x

x


4. Если выполнено условие 
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 или (1.14), процесс завершить и положить и положить 
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 Иначе положить k=k+1 и перейти к п.3.

Пример 1. Методом простых итераций с точностью 
[image: image421.wmf]01
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 решить систему линейных и алгебраических уравнений:

2х1+2х2+10х3=14,

10х1+х2+х3=12,

2х1+10х2+х3=13.

Предварительно определить число итераций.

1. . Так как 
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, условие (1.16) не выполняется. Переставим уравнения местами так, чтобы выполнялось условие преобладания диагональных элементов:

10х1+х2+х3=12,

2х1+10х2+х3=13,

2х1+2х2+10х3=14
Получаем 
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. Выразим из первого уравнения х1, из второго х2, из третьего х3.
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[image: image430.wmf].
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Заметим, что 
[image: image431.wmf]{
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 следовательно, условие сходимости (теорема 1.1) выполнено.

По формуле (1.19) вычисляем число итераций, обеспечивающих заданную точность:
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Таким образом, для решения задачи необходимо выполнить не менее пяти итераций.

2. Зададим 
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. В поставленной задаче 
[image: image435.wmf].
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3. Выполним расчеты по формуле (1.13):


[image: image436.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

×

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

-

-

-

=

+

4

,

1

3

,

1

2

,

1

0

2

,

0

2

,

0

1

,

0

0

2

,

0

1

,

0

1

,

0

0

)

(

3

)

(

3

)

(

1

)

1

(

k

k

k

k

x

x

x

x

, k=0,1,…,

или


[image: image437.wmf];

4

,

1

2

,

0

2

,

0

;

3

,

1

1

,

0

2

,

0

;

2

,

1

1

,

0

1

,

0

)

(

2

)

(

1

)

1

(

3

)

(

3

)

(

1

)

1

(

2

)

(

3

)

(

2

)

1

(

1

+

-

-

=

+

-

-

=

+

-

-

=

+

+

+

k

k

k

k

k

k

k

k

k

x

x

x

x

x

x

x

x

x

 k=0,1,…,
до выполнения условия окончания и результаты занесем в таблицу 1.4

Таблица 1.4
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	0
	1,2000
	1,3000
	1,4000
	-

	1
	0,9300
	0,9200
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4. Расчет закончен, поскольку условие окончания 
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Приближенное решение задачи: 
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 Очевидно, точное решение 
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На рис. 1.4 показан характер сходимости 
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Видно, что значения 
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Приведем результаты расчетов для другого начального приближения 
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 (таблица 1.5).

Таблица 1.5
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Приближенное решение задачи: 
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1.2. Метод Зейделя
Этот метод является модификацией метода простых итераций и в некото​рых случаях приводит к более быстрой сходимости.

Итерации по методу Зейделя отличаются от простых итераций (1.13) тем, что при нахождении i-ой компоненты 
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-го приближения с меньшими номерами 1,2,…i-1. При рассмотрении развернутой формы системы итерационный процесс записывается в виде


[image: image462.wmf],

...

1

)

(

1

)

(

3

13

)

(

2

12

)

(

1

11

)

1

(

1

b

a

a

a

a

+

+

+

+

+

=

+

k

n

n

k

k

k

k

x

x

x

x

x



[image: image463]

[image: image464.wmf],

...

2

)

(

2

)

(

3

23

)

(

2

22

)

1

(

1

21

)

1

(

2

b

a

a

a

a

+

+

+

+

+

=

+

+

k

n

n

k

k

k

k

x

x

x

x

x

                   (1.20)
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В каждое последующее уравнение подставляются значения неизвестных, полученных из предыдущих уравнений, что показано в записи (1.20) стрелками.
Теорема 1.4 (о достаточном условии сходимости метода Зейделя).

Если для системы 
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 меньше единицы, т.е. 
[image: image469.wmf]1

<

s

a

 
[image: image470.wmf]})

3

,

2

,

1

{

(

Î

s

, то процесс последовательных приближений (1.20) сходится к единственному решению исходной системы  Ax=и при любом начальном приближении 
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Записывая (1.20) в матричной форме получаем


[image: image472.wmf],.

)

(

)

1

(

|)

1

(

b

+

+

=

+

+

k

k

k

Ux

Lx

x

                   (1.21)
где L, U являются разложениями матрицы 
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Преобразуя (1.21) к виду 
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, получаем матричную форму итерационного процесса метода Зейделя:
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Тогда достаточное, а так же необходимое условие и достаточное условия сходимости будут соответственно такими (см. теоремы 1.1 и 1.2):
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Замечания.

1. Для обеспечения сходимости метода Зейделя требуется преобразовать систему Ax=b к виду 
[image: image480.wmf]b

a

+

=

x

x

 с преобладанием диагональных элементов в матрице 
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 (см. метод простых итераций).

Например, в системе 
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диагональные элементы преобладают, так как 
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Соотношения метода Зейделя (1.20) принимают вид
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Выберем в качестве начального приближения 
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 (рис. 1.5,а). Тогда 
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 соответствует движение по горизонтали до пересечения с прямой, описываемой вторым уравнением. Продолжая вычисления, получаем 
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. В результате имеем процесс, сходящийся к точке 
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Переставим уравнение в системе:
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В полученной системе диагональные элементы не преобладают. Уравнения метода Зейделя  имеют вид
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При 
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 и т.д. В результате имеем расходящийся процесс (рис. 1.5,б).

2. Условие преобладания диагональных элементов является достаточным для сходимости, но не является необходимым.

Например, в системе 
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в первом уравнении диагональный элемент не является преобладающим, а процесс итераций по методу Зейделя сходится (рис. 1.6).
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3. Процесс (1.20) называется последовательным итерированием, так как на каждой итерации полученные из предыдущих уравнений значения подставляются в последующие. Как правило, метод Зейделя обеспечивает лучшую сходимость, чем метод простых итераций (за счет накопления информации, полученной при решении предыдущих уравнений). Метод Зейделя может сходиться, если расходится метод простых итераций, и наоборот.
4. При расчетах на ЭВМ удобнее пользоваться формулой (1.22).

5. Преимущество метода Зейделя, как и метода простых итераций, является его самоисправляемость.

6. Метод Зейделя имеет преимущества перед методом простых итераций,  так как он всегда сходится для нормальных систем линейных алгебраических уравнений, т.е. таких систем, в которых матрица А является симметрической и положительно определенной. Систему линейных алгебраических уравнений с невырожденной матрицей А всегда можно преобразовать к нормальной, если её умножить слева на матрицу 
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Методика решения задачи

1. Преобразовать систему Ax=b к виду 
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 одним из описанных способов.

2. Задать начальное приближение решения 
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, а так же малое положительное число 
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 (точность). Положить k=0.
3. Произвести расчеты по формуле (1.20) или (1.21) и найти 
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4. Если выполнено условие окончания 
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, процесс завершить и положить 
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Пример 2. Методом Зейделя с точностью 
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 решить систему линейных алгебраических уравнений:

2х1+2х2+10х3=14,

10х1+х2+х3=12,

2х1+10х2+х3=13.

1. Приведем систему Ax=b к виду 
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 так же, как в примере 1.11:
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Так как 
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 условие сходимости выполняется.

2. Зададим 
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. В поставленной задаче 
[image: image518.wmf].

001

,

0

=

e


3. Выполним расчеты по формуле (1.20):
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 k=0,1,…,
и результаты занесем в таблицу 1.6.

Таблица 1.6
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Очевидно, найденное решение 
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4.  Расчет завершен, поскольку условие окончания 
[image: image526.wmf]e

<

=

-

-

0,0004

)

1

(

)

(

k

k

x

x

 выполнено.

Пример 3. Методом Зейделя с точностью 
[image: image527.wmf]005
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 решить систему линейных алгебраических уравнений:

4х1-х2+х3=4,

х1+6х2+2х3=9,

-х1-2х2+5х3=2.

1. Так как 
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 в данной системе диагональные элементы преобладают. Выразим из первого уравнения х1, из второго х2, из третьего х3:
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2. Зададим 
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3. Выполним расчеты по формулам (1.20):
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и результаты занесем в таблицу 1.7.

Таблица 1.4
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Очевидно, найденное решение 
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4. Расчет завершен, поскольку 
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3.Решение СЛАУ в MathCad
Систему линейных алгебраических уравнений проще всего представить в виде матричного уравнения. MathCad с помощью встроенных функций позволяет матрицы объединять, выделять в них подмассивы, определять размеры массивов, максимальные, минимальные значения, нахождение собственных чисел и векторов. Для матриц определенны следующие операции: добавление, произведение, обращение, транспонирование, и т.п.

Создать матрицу можно следующим образом. Записать оператор присваивания, для введения правой части использовать команду Іnsert/Matrіx  или на панели инструментов Matrіx. В окне, которое раскроется, задать  число строк и столбцов матрицы. Вектор является матрицей с одним столбцом. Ввести значение элементов матрицы в соответствующие места. Дальше можно выполнять все необходимые операции с матрицами. 

Для работы с элементами матрицы используются индексы элементов. Нумерация строк и столбцов матрицы начинается  из нуля. Индекс элемента определяется на панели инструментов Matrіx кнопкой Subscrіpt (рис. 2.1 е)), например 
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. Два индекса, которые определяют элемент матрицы, отделяются запятой. Номер столбца матрицы отображается как верхний индекс, который заключен в угловые скобки, для чего используется кнопка Column на панели инструментов Matrіx, например, 
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Проведение операций с матрицами в символьном виде осуществляется через меню Symbolіc / Matrіx (рис. 3.2).

Решить СЛАУ средствами MathCad можно разными способами:

· вычислить матричное уравнение 
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A

;

· вызвать встроенную функцию lsolve(A,f);

· используя функцию lu(A) для LU-разложения матрица A;

· встроенными средствами программирования. 
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	Рис. 3.2. Меню Symbolic для работы с матрицами в символьном виде.


Способы решения системы встроенными возможностями:
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При решении системы методом Гаусса требуется находить LU-разложение:
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Задания для практического занятия:

Задание 1.Найти решение заданной в варианте СЛАУ методом Гаусса , методом простых итераций, методом Зейделя с заданной точностью. Полученные решения сравнить.
	Вариант
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решение
	Решение с 
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Контрольные вопросы
1. Что такое «главный» (ведущий) элемент в методе Гаусса последовательного исключения неизвестных переменных?

2. Назовите условия диагонального преобладания матрицы.

3. Дайте определение точного метода решения СЛАУ.

4. Дайте определение итерационного метода решения СЛАУ.

5. Сформулируйте условия сходимости МПИ (критерий).

6. Метод Якоби и метод Зейделя. Что общего? Какие отличия?

7. Основные отличия (преимущества и недостатки) прямых и итерационных методов решения СЛАУ.

8. Основные виды погрешности. 

9. Объясните алгоритм нахождения элементов обратной матрицы через решение СЛАУ.

Практическая работа № 6
 «Составление интерполяционных формул Лагранжа и Ньютона»

Цель работы: научиться составлять интерполяционные формулы Лагранжа и Ньютона
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

·  использовать основные численные методы решения математических задач;

· выбирать оптимальный численный метод для решения поставленной задачи;

· давать математические характеристики точности исходной информации и оценивать точность полученного численного решения.
знать: 

           -  методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.
Краткие теоретические и учебно-методические материалы по теме практической работ:

На отрезке [a,b] рассматривается функция y=f(x), значения которой определены лишь в конечном числе точек. Эти точки образуют на отрезке [a,b] сетку 

a=x0<x1<x2<…<xn-1<xn=b


(5.1)

а соответствующие им значения функции f:

yi=f(xi), i=0, 1, 2, …, n



(5.2)

представляют собой сеточную функцию. Такой способ задания функции называется табличным. 

Задача аппроксимации заключается в следующем: по сеточной функции (5.1),(5.2) построить функцию непрерывного аргумента g(x), аппроксимирующую функцию f(x): g(x)(f(x). 

Это позволит приближенно вычислять функцию f(x) в любой точке отрезка [a,b], а не только в точках сетки (5.1).

1. Интерполирование.

Пусть дана система функций (0(x), (1(x), …, (n(x), определенная на отрезке [a,b]. Для этой системы ищется аппроксимирующая функция g(x) в виде линейной комбинации функций:
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5.3)

Требование: в точках сетки (5.1) функция g(х) должна принимать такие же значения (5.2), что и функция f(x): 

g(xi)=f(xi)


 (5.4)

Сформулированную таким образом задачу построения функции непрерывного аргумента g(x), аппроксимирующей функцию f(x), называют задачей интерполирования. 

Наиболее часто рассматривают интерполирование полиномами, тогда: 

(0(x)=1,   (1(x)=x, …, (n(x)=xn.

(5.5)

В этом случае функция g(x) записывается как полином n-ой степени:

g(x)=Pn(x)=a0+a1x+a2x2+…+anxn.

(5.6)

Существует несколько форм его записи, одна из них принадлежит Лагранжу:
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(5.7)

При этом условие (4.6) выполняется во всех точках сетки:

Pn(xi)=yi,    i=0, 1, 2,…,n


(5.8)

Пример 5.1. Построить интерполяционный полином для функции y=sin(x). Сетка состоит из трех точек: x0 = 0,  x1 = π/6,  x2 = π/2. Сеточная функция имеет вид:  y0 = 0,  y1 = 1/2,  y2 = 1.

Решение:

Поскольку максимальный индекс точек сетки равен 2, то и степень интерполяционного полинома будет равна двум.  Используя формулу Лагранжа (4.7), получится:
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Легко проверить, что в точках сетки этот полином Р2(х) принимает нужные значения. 
Для определения погрешности интерполирования можно рассчитать значение sin(x) и P2(x) в точке х= π/4:  



e=sin(π/4) – P2(π/4) = 0.7071 – 0.6875 = 0.02

Значительная величина погрешности определяется тем, что на отрезке длиной π/2, взята грубая сетка, состоящая всего из трех точек. 

2. Метод наименьших квадратов.

А) аппроксимация полиномами.

В методе наименьших квадратов аппроксимирующая функция y(x) ищется в виде суммы, аналогичной (5.3), но содержащей сравнительно небольшое число слагаемых:
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(5.9)

Предполагая, что каким-то образом выбраны коэффициенты ak, тогда в каждой точке сетки (451) можно вычислить погрешность:
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(5.10)

Функция δ, принимающая значения δ1, δ2, …, δn, представляет собой сеточную функцию и называется погрешностью решения .

Сумма квадратов этих величин называется суммарной квадратичной погрешностью:
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(5.11)

Возникает задача: найти такой набор коэффициентов ak, при которых суммарная квадратичная погрешность J оказывается минимальной.
Функцию (5.9) с набором коэффициентов, удовлетворяющих этому требованию, называют наилучшим приближением по наименьших квадратов.

Построение наилучшего приближения сводится к задаче поиска экстремума функции J от нескольких переменных:
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   (5.12)

Уравнения (4.12) можно переписать в виде:
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где 
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(5.14)

Таким образом, получена система линейных алгебраических уравнений (5.14), в которой роль неизвестных играют искомые коэффициенты разложения a0, a1, … , am. 

Пример 5.2. Пусть известны экспериментальные значения концентрации некоторого вещества M в зависимости от времени протекания реакции:
Таблица 1.

	t, min
	M, моль/л

	30
	1,526

	40
	1,341

	50
	1,195

	60
	0,962

	70
	0,871


Считая, что концентрация вещества описывается полиномом второй степени, определить его коэффициенты. 

Решение:

Здесь общее количество точек равно 5, степень полинома m=2, (0(х)=1, (1(х)=х, (2(х)=х2. 

Для нахождения коэффициентов полинома, необходимо решить систему линейных уравнений. Определим ее коэффициенты:
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и коэффициенты, стоящие в правых частях системы:
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b0=5,895, b1=277,86, b2=14237,6

Итоговая система для определения коэффициентов имеет вид:
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Для решения этой системы можно использовать любые имеющиеся пакеты математических прикладных программ, в том числе можно использовать и написанную программу для решения систем линейных алгебраических уравнений,  приведенной  в теме 2.

Применяя эту программу, можно рассчитать коэффициенты а0, а1, а2.

Окно ввода этой программы будет иметь вид:
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Данные в программу вводятся согласно вышеописанной системе. 

После введения данных программа выдает исходную матрицу А и после этого преобразованную матрицу. Поскольку матрица верхнетреугольная, то при выводе второй и  третьей строк они  немного смещены влево относительно  первой строки. В правой части каждой строки стоят значения bi.

Значения полученных переменных даны в виде x[1], x[2], x[3].

Следует учитывать, что коэффициент x[1] – это коэффициент, стоящий при х2, т.е. а2 ; коэффициент х[2]  это коэффициент, стоящий при х, т.е. а1; а x[3] – это коэффициент, стоящий без х, т.е. а0..
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Зная эти значения, можно выписать уравнение квадратичной функции, аппроксимирующей экспериментальные данные:

Р2(х) = 7(10-5 x2 – 0,024 x + 2,19


(4.15)

Экспериментальные и расчетные значения показаны в таблице:

	t, min
	M, моль/л
	P2

	30
	1,526
	1,531229

	40
	1,341
	1,340686

	50
	1,195
	1,164571

	60
	0,962
	1,002886

	70
	0,871
	0,855629


Рассчитаем суммарную квадратичную погрешность замены экспериментальных значений функцией вида (4.15):
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Таким образом, найденная зависимость, описываемая уравнением (5.15),  имеет достаточно хорошую согласованность с эмпирически полученными значениями М., что видно по следующему рисунку:
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Б) аппроксимация методом выравнивания (линеаризация).

Очень часто вид эмпирической зависимости подсказывает исследователю, какой именно аналитической функцией ее можно описать. Но, зачастую, количество параметров, от которых зависит выбранная аналитическая функция больше двух. Для их определения необходимо применять методы оптимизации, которые дадут значения параметров с некоторой погрешностью.

Однако, если выбранная аналитическая зависимость характеризуется лишь двумя параметрами, то можно использования метод выравнивания. Лишь после этого можно перейти к отысканию тех значений постоянных коэффициентов, которые дадут наилучшее приближение экспериментальных и расчетных величин. 

Метод выравнивания заключается в преобразовании функции y=((x) таким образом, чтобы превратить ее в линейную функцию. Достигается это путем замены переменных х и y новыми переменными:
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(5.16)

которые выбираются так, чтобы получилось уравнение прямой: 

Y=A+BX


(5.17)

Числовые значения коэффициентов А и В определяются как:
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(5.18)

Пример 5.3. Изменение концентрации вещества M в реакции подчиняется экспоненциальному закону 
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. Необходимо определить начальное значение вещества M0 и значение константы скорости расхода вещества k.
Решение:

Для того, чтобы превратить исходную экспоненциальную зависимость в линейную, необходимо ее прологарифмировать. Тогда получим:
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(5.19)

Вводя новые переменные:  Y = ln(M),  A = ln(M0),  B = –-kP,  X = t
cоставим дополнительную таблицу (помимо таблицы 1) для расчета коэффициентов линейной зависимости Y(X):

Таблица 2.

	X
	Y
	XY
	X2

	30
	0.423
	12.678
	900

	40
	0.293
	11.736
	1600

	50
	0.178
	8.905
	2500

	60
	-0.039
	-2.322
	3600

	70
	-0.138
	-9.667
	4900

	250
	0.717
	21.330
	13500


В последней строке таблицы приведены суммы величин.

Подставляя требуемые значения в формулу (4.18), рассчитаем коэффициенты линейной зависимости:
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Отсюда, kP=1.45(10-2, М0 = е0.87 = 2.39.

Следовательно, экспоненциальное уравнение, описывающее изменение концентрации вещества M в реакции имеет вид: 
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(5.20)

Таблица данных, содержащая экспериментальные значения М и расчетную зависимость приведена ниже:

	t, min
	M_расч
	М_расч

	30
	1,526
	1,546963

	40
	1,341
	1,338157

	50
	1,195
	1,157536

	60
	0,962
	1,001294

	70
	0,871
	0,866142


Таблица проиллюстрирована на следующем рисунке:
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Рассчитаем суммарную квадратичную погрешность замены экспериментальных значений функцией вида (5.20):
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Таким образом, найденная зависимость, описываемая уравнением (5.20),  имеет также достаточно хорошую согласованность с эмпирически полученными значениями М. 

В) Сравнение методов

Проанализируем полученные в пунктах А) и Б) значения. Для этого достаточно сравнить эти значения между собой.

Сравнение можно провести путем поиска наименьшего среди суммарных отклонений функции. 

В данном случае наилучшее приближение дает описание экспериментальной кривой полиномом второго порядка. Квадратичная погрешность замены экспериментальных значений функциональной зависимостью равна: 
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Это означает, что полином второго порядка лучше приближен к экспериментальным точкам, чем экспоненциальная зависимость.  Хотя, экспоненциальная зависимость дает возможность определять недостающие кинетические параметры: начальную концентрацию и константу скорости реакции.

Поэтому, при решении задачи аппроксимации выбор аппроксимирующей функции следует делать, исходя из требований и условий задачи.
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Как видно по рисунку, сравнение «на глаз» невозможно, поскольку графики расчетных зависимостей сливаются между собой, поэтому единственно допустимым способом выбора вида аппроксимирующей функции остается поиск наименьшей суммарной квадратичной погрешности.

Вообще говоря, некоторые пакеты прикладных программ имеют в своем арсенале готовые модули, позволяющие подбирать для экспериментальной зависимости аналитические функции различного вида. 

Выбор той или иной аппроксимирующей функции пользователь делает сам, а на экран выдается коэффициент корреляции.

Задания для практического занятия:

Задание 1. По заданной таблице значений функции

	x
	X0
	X1
	X2
	X3

	y
	Y0
	Y1
	Y2
	Y3


составьте формулу интерполяционного многочлена Лагранжа. Пост​ройте его график и отметьте на нем узловые точки  Mi(xi ,yi), i=1,2,3.  Это же задание выполните с помощью инструментальных программ​ных средств.
Задание 4. С помощью программы для ЭВМ уплотните часть таблицы заданной функции, пользуясь интерполяционными формулами Ньютона. 
	Вариант
	X0
	X1
	X2
	X3
	Y0
	Y1
	Y2
	Y3

	1
	-1
	0
	3
	4
	-3
	5
	2
	-6

	2
	2
	3
	5
	6
	4
	1
	1
	2

	3
	0
	2
	3
	5
	-1
	-4
	2
	-8

	4
	7
	9
	13
	15
	2
	-2
	3
	-4

	5
	-3
	-1
	3
	5
	7
	-1
	4
	-6

	6
	1
	2
	4
	7
	-3
	-7
	2
	8

	7
	-1
	-1
	2
	4
	4
	9
	1
	6

	8
	2
	4
	5
	7
	9
	-3
	6
	-2

	9
	-4
	-2
	0
	3
	2
	8
	5
	10

	10
	-1
	1,5
	3
	5
	4
	-7
	1
	-8

	11
	2
	4
	7
	8
	-1
	-6
	3
	12

	12
	-9
	-7
	-4
	-1
	3
	-3
	4
	-9

	13
	0
	1
	4
	6
	7
	-1
	8
	2

	14
	-8
	-5
	0
	2
	9
	-2
	4
	6

	15
	-7
	-5
	-4
	-1
	4
	-4
	5
	10

	16
	1
	4
	9
	11
	-2
	9
	3
	-7

	17
	7
	8
	10
	13
	6
	-2
	7
	-10

	18
	-4
	0
	2
	5
	4
	8
	-2
	-9

	19
	-3
	-1
	1
	3
	11
	-1
	6
	-2

	20
	0
	3
	8
	11
	1
	5
	-4
	-8


Контрольные вопросы 
1. Как ставится задача аппроксимации?

2. Какая функция называется сеточной?

3. Что такое интерполяция?

4. Какой многочлен называется интерполяционным?

5. Выпишите формулу интерполяционного многочлена Лагранжа? 

6. В чем его преимущества и недостатки?

7. В чем заключается метод наименьших квадратов?

8. Какова максимальная и минимальная степени интерполяционного полинома?

9. Как вычислить суммарную квадратичную погрешность?

10. На чем основан выбор аппроксимирующей функции? 

Практическая работа № 7
 «Интерполяция сплайнами, оценка точности полученного численного решения»

Цель работы: научиться интерполировать сплайнами, оценивать точность полученного численного решения
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

· использовать основные численные методы решения математических задач;

· давать математические характеристики точности исходной информации и оценивать точность полученного численного решения.
знать: 

           - методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем     уравнений с помощью ЭВМ

.

Краткие теоретические и учебно-методические материалы по теме практической работ:

1 . Интерполяция сплайнами
При большом количестве узлов интерполяции сильно возрастает степень интерполяционных многочленов, что делает их неудобными для вычислений. Высокой степени многочлена можно избежать, разбив отрезок интерполяции на несколько частей, с последующим построением на каждой части самостоятельного интерполяционного многочлена. Однако такое интерполирование наталкивается на существенный недостаток: в точках стыка разных интерполяционных многочленов будет разрывной их первая производная.

В этом случае удобно пользоваться особым видом кусочно-полиномиальной интерполяции — интерполяции сплайнами (от англ. spline — рейка). Суть этого подхода заключается в следующем.

Определение. Функция Sm(x) называется интерполяционным сплайном порядка т для функции f(x), заданной таблицей

	x
	x0
	x1
	…
	хn

	y
	y0
	y1
	…
	yп


если:

1)
на каждом отрезке [x i; xi+l] (i = 0, 1, …, n-1)

S(x) является многочленом порядка т;

2)
S(x) и ее производные до (m - 1)-го порядка включительно непрерывны на [х0; хn];

3)
S(xi) = уi (i = 0, 1, …, п) — непосредственно условие интерполяции.

Можно доказать, что эти условия достаточны для существования сплайна порядка т (m≥2), но не гарантируют его единственности.

Остановимся на построении наиболее популярных в практике аппроксимации функций кубических сплайнов.

Согласно определению кубический сплайн S(x) можно представить в виде
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2.Интерполирование функции в MathCad
В MathCad для обработки экспериментальных данных существуют встроенные функции, которые позволяют выполнять интерполяцию.

Для построения линейной интерполяции служит встроенная функция linterp .

linterp(x, y, t) – функция, которая аппроксимирует данные векторов х и у кусочно-линейной зависимостью. Здесь:

– х –вектор действительных значений аргумента (узлы);

– у –вектор действительных значений (значения функции в узлах);

– t –значение аргумента, при котором вычисляется интерполяционная функция. 

Замечание: элементы вектора х должны быть определены по порядку возрастания. 

Чтобы осуществить линейную интерполяцию, надо выполнить следующие действия:

1. Ввести векторы данных х и у. 

2. Определить функцию lіnterp (х, y, t ) .

3. Вычислить значение этой функции в необходимых точках, например, lіnterp(x,y,2.4) =3.52 или lіnterp(х,в,6) =5.9, или построить ее график.

Замечание: функция A(t) на графике имеет аргумент t, а не х. Это означает, что функция A(t) вычисляется не только при заданных значениях аргумента, а в гораздо большем количестве аргументов на интервале изменения переменной. Mathсad, по умолчанию, соединяет точки графика прямыми линиями,  осуществляет их линейную интерполяцию.

В большинстве практических приложений желательно соединить экспериментальные точки не ломанной линией, а гладкой кривой. Лучше всего для этих целей подходит интерполяция кубическими сплайнами, т.е. отрезками кубических парабол.

 іnterp(s,x,y,t) - функция, которая аппроксимирует данные векторов х и у кубическими сплайнами;

· s –вектор вторых производных, созданный одной из функций csplіne, psplіne или lsplіne;

· х –вектор действительных данных аргумента в порядке возрастания;

· y –вектор действительных значений того же размера;

· t –значение аргумента интерполируемой функции.

Перед применением функции іnterp необходимо предварительно определить первый из ее аргументов – векторную переменную s. Выполняется это с помощью одной из трех встроенных функций тех же аргументов (х,у):
· іsplіne(x,y) –вектор значений коэффициентов линейного сплайна;

· psplіne(x,y) –вектор значений коэффициентов квадратичного сплайна;

· csplіne(x,y) –вектор значений коэффициентов кубического сплайна;

· х, y –векторы данных.
Более сложный тип интерполяции – так называемая интерполяция В-сплайнами. В отличие от обычной сплайн-интерполяции, сшивание элементарных В-сплайнов выполняется не в точках х и у, а в других точках, координаты которых предлагается ввести пользователю. Сплайны могут быть полиномами 1, 2 или 3 степени (линейные, квадратичные или кубические). Интерполяция В-сплайнами осуществляется точно так же, как и обычная сплайн-интерполяция, разница состоит только в определении вспомогательной функции коэффициентов сплайна.
Ниже представлен пример, демонстрирующий построение многочлена Лагранжа. 
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Задания для практического занятия:
	№

варианта
	Узлы интерполяции и значения функции

в них
	a

	0. x

y
	1

5
	2

8
	3

10
	4

5
	0.5

	1. x
y
	1

-3
	2

5
	3

2
	4

1
	1.5

	2. x
y
	2

4
	3

1
	4

7
	5

3
	2.5

	3. x
y
	-1

-1
	0

-4
	1

2
	2

1
	0.5

	4. x
y
	1

2
	2

-2
	3

3
	4

1
	3.5

	5. x
y
	3

-3
	4

5
	5

2
	6

1
	3.5

	6. x

y
	-1

-3
	0

-7
	1

2
	2

1
	-0.5

	7. x

y
	1

-3
	2

1
	3

5
	4

2
	3.2

	8. x

y
	-1

-3
	0

5
	1

2
	2

1
	1.2

	9. x

y
	1

-2
	2

4
	3

2
	4

3
	2.3

	10. x

y
	2

-3
	3

5
	4

2
	5

1
	4.2

	11. x

y
	1

4
	2

1
	3

7
	4

3
	2.4

	12. x

y
	1

-1
	2

5
	3

3
	4

0
	2.8

	13. x

y
	2

-2
	3

6
	4

2
	5

1
	3.6

	14. x

y
	-1

-4
	0

7
	1

4
	2

1
	0.8

	15. x

y
	1

-3
	2

5
	3

2
	4

1
	3.1

	16. x

y
	-2

-3
	-1

1
	0

-2
	1

2
	-0.2

	17. x

y
	1

-3
	2

-1
	3

5
	4

1
	2.5

	18. x

y
	-1

-3
	0

-1
	1

5
	2

1
	0.8

	19. x

y
	2

-5
	3

2
	4

0
	5

-3
	3.2

	20. x

y
	1

-4
	2

5
	3

2
	4

0
	2.2

	21. x

y
	1

-5
	2

0
	3

3
	4

1
	2.6

	22. x

y
	1

-3
	2

5
	3

2
	4

-1
	1.8

	23. x

y
	-1

-3
	0

3
	1

2
	2

-1
	0.8

	24. x

y
	-1

5
	0

-2
	1

2
	2

1
	0.2

	25. x

y
	1

-3
	2

5
	3

2
	4

1
	2.5


Контрольные вопросы 
1. Раскройте понятия интерполяции и аппроксимации функций.

2. Основное условие интерполяции.

3. Что общего и какие отличия между интерполяционными формулами Лагранжа и Ньютона?

4. Что такое конечные разности (какие бывают, где применяются)?

5. Что такое разделенные конечные разности?

6. Оценочная формула погрешности интерполяции. Назовите ключевые этапы ее вывода.

7. Что такое интерполяционный сплайн?

8. Что можно сказать о точности интерполяции, если интерполируемая функция – многочлен степени n?

Практическая работа № 8
 «Вычисление интегралов при помощи формул Ньютона-Котеса»

Цель работы: научиться вычислять интегралы при помощи формул Ньютона-Котеса
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

·  использовать основные численные методы решения математических задач;

-  давать математические характеристики точности исходной информации и оценивать точность полученного численного решения.
знать: 

          -    методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.
.

Краткие теоретические и учебно-методические материалы по теме практической работ:

Формула прямоугольников.

 Пусть отрезок [a,b] разбит на n равных частей длины h=(b-a)/n, и в качестве точек ξk выбраны средние точки соответствующих отрезков: ξk = a + h(k – 1/2) (k=1,2,…,n). В этом случае выражение для интегральной суммы примет вид:

In = (f(ξ1) + f(ξ2) + … + f(ξn))(b-a)/n


(1)

Если функция f(x) интегрируема на отрезке [a,b], то
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Согласно этой формуле выражение для интеграла J можно записать в виде J=In + αn, причем 
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=0. Пренебрегая величиной (n , получают приближенную формулу для вычисления интеграла J, которую и называют формулой прямоугольников:
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(3)

Таким образом, интеграл J – это площадь фигуры криволинейной трапеции, а интегральная сумма, которой приближенно аппроксимируется интеграл, –  площадь фигуры, составленной из прямоугольников.

.
Вид ступенчатой фигуры показан на рисунке.

Формула трапеций.

Предположим, что отрезок [a,b] разбит на n равных частей длины h=(b-a)/n точками xk=a+kh (k=0,1,2,…,n, x0=a, xn=b). При этом, на каждом из отрезков [xk-1, xk] определим линейную функцию такую, что в граничных точках она принимает те же значения, что и функция f(x). Обобщая эту линейную функцию на n отрезков, можно выписать линейную функцию gn(x):
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(4)

x([xk-1, xk], k=1,2,…,n
Ее график представляет собой ломаную линию, начальная,  конечная и угловые точки которой принадлежат также графику функции f(x). 


С увеличением n число общих точек графика растет и ломаная y=gn(x) приближается к линии y=f(x).

Интеграл равен площади фигуры, ограниченной графиком функции gn(x), осью х и вертикальными линиями x=xk-1, x=xk. В этом случае фигура является трапецией и, соответственно, полученная формула показывает площадь этой трапеции.

Переходя ко всему отрезку [a,b]:
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(5)

Формула трапеций имеет второй порядок точности.

Формула Симпсона.

Идея замены графика функции f(x) на отрезке [xk-1, xk] линейной функций была использована Симпсоном, который предложил в качестве функции gn(x) использовать полином второго порядка. Тогда интеграл J будет равен:
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J(In=(f(a)+4f(x1)+2f(x2)+…+2f(xn-2)+4f(xn-1)+f(b))(b-a)/(3n)
Единственное условие для возможности применения формулы Симпсона для приближенного расчета интеграла – это четное число отрезков разбиения, то есть n-четно.


На данном рисунке количество частей разбиении исходного отрезка равно четырем – четное число.

Поскольку аппроксимирующая функция более гладкая по сравнению с другими, то порядок формулы равен 4-м.

Пример 1.

Найти интеграл 
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 по формулам при n=10:


а) Ньютона-Лейбница; б) прямоугольников; в) трапеций; г) Симпсона.

Решение.

Приведем графическую интерпретацию поставленной задачи.


Требуется найти площадь фигуры, ограниченной слева прямой х=2, справа – прямой х=3, снизу – осью абсцисс, а сверху – графиком функции y=x2.

А) Используя формулу Ньютона-Лейбница, получается:
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=33/3 – 23/3 = 19/3 = 6,3333     

Б) Для наглядности решение поставленной задачи по формуле прямоугольников приведем в виде таблицы:

	X
	K
	Ξk
	f(ξk)

	2
	0
	 
	 

	2,1
	1
	2,05
	4,2025

	2,2
	2
	2,15
	4,6225

	2,3
	3
	2,25
	5,0625

	2,4
	4
	2,35
	5,5225

	2,5
	5
	2,45
	6,0025

	2,6
	6
	2,55
	6,5025

	2,7
	7
	2,65
	7,0225

	2,8
	8
	2,75
	7,5625

	2,9
	9
	2,85
	8,1225

	3
	10
	2,95
	8,7025

	
	
	S=
	63,325

	h=(3-2)/10=
	0,1
	I=h*S=
	6,3325


Ошибка расчета составит: Er=|6,3333-6,3325|=0,0005.

В) Аналогично представим расчет по формуле трапеций в виде таблицы:

	X
	K
	f(x)

	2
	0
	4

	2,1
	1
	4,41

	2,2
	2
	4,84

	2,3
	3
	5,29

	2,4
	4
	5,76

	2,5
	5
	6,25

	2,6
	6
	6,76

	2,7
	7
	7,29

	2,8
	8
	7,84

	2,9
	9
	8,41

	3
	10
	9

	
	
	

	h=0,1
	I=
	6,335


Ошибка расчета составит: Er=|6,3333-6,3350|=0,0020.

Г) Таблица для формулы Симпсона:

	X
	K
	f(x)

	2
	0
	4

	2,1
	1
	4,41

	2,2
	2
	4,84

	2,3
	3
	5,29

	2,4
	4
	5,76

	2,5
	5
	6,25

	2,6
	6
	6,76

	2,7
	7
	7,29

	2,8
	8
	7,84

	2,9
	9
	8,41

	3
	10
	9

	
	
	

	h=0,1
	I=
	6,33333


Ошибка расчета составит: Er=|6,3333-6,3333|=0,0000.

Как видно из приведенного примера, наилучшее приближение к значению интеграла, найденного по формуле Ньютона-Лейбница, имеет формула Симпсона.

Задания для практического занятия:

Задание 1. Вычислите интеграл от заданной функции [image: image696.png]f(x)



 на отрезке [а; b] при делении отрезка на 10 равных частей  по фор​мулам: 1)прямоугольников 2) трапеций; 3) Симпсона.

 Произведите оценку по​грешности методов интегрирования и сравните точность полученных ре​зультатов.
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Контрольные вопросы 
1.Чем заменяется интеграл при использовании любой численной формулы?

2. Какая формула используется в  методе прямоугольников?

3. Как будет выглядеть графически метод прямоугольников?

4. Какая формула используется в  методе трапеций?

5. Как будет выглядеть графически метод трапеций? 

6. Какая формула используется в  методе Симпсона?

7. Как будет выглядеть графически метод Симпсона?

8. Каков порядок метода трапеций?

9. Какой порядок метода Симпсона?

10. Укажите, в чем различие между этими тремя формулами?

Практическая работа № 9
 «Нахождение решений обыкновенных дифференциальных уравнений при помощи формул Эйлера, оценка точности полученного численного решения»
Цель работы: научиться находить решение обыкновенных дифференциальных уравнений при помощи формул Эйлера, оценивать точность полученного численного решения.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

· использовать основные численные методы решения математических задач;

· давать математические характеристики точности исходной информации и оценивать точность полученного численного решения.

знать: 

           -    методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ

.

Краткие теоретические и учебно-методические 
материалы по теме практической работ:

Дифференциальные уравнения первого порядка.Задача Коши.

Пусть требуется найти решение дифференциального уравнения:

u’=f(x,u)



(1)

в виде функции u=φ(x), принимающей в точке х=х0 заданное значение u=u0:

u(х0)=φ(x0)=u0


(2)

Задача вида (1)-(2) называется задачей с начальными условиями или задачей Коши.
Теорема существования и единственности решения задачи Коши:

Пусть D – некоторый прямоугольник с центром в начальной точке (х0, u0):

x0 – a ( x ( x0 + a,   u0 – b ( u ( u0 + b

(3)
и пусть функция f(x,u) и ее частная производная  [image: image726.png]e
-



 непрерывны в прямоугольнике D по совокупности аргументов x,u. Тогда можно указать отрезок 

x0 – с ( x ( x0 + с

(4)
для с < a, на котором существует единственное решение задачи Коши (6.1)-(6.2) в виде u=φ(x).

Теорема существования и единственности служит обоснованием постановки задачи Коши. Она показывает, что множество всех решений дифференциального уравнения (1), которое принято называть общим решением, зависит от одного параметра:

u=φ(x,С).

За параметр С обычно принимают начальное значение u, но не всегда. Придавая С различные значения, будут получаться из общего решения различные частные решения.

1. Метод ломаных Эйлера.

Пусть необходимо решить задачу Коши (1)-(2) на некотором отрезке [a,b]. Отрезок делится на n равных частей точками: 

a=x0 < x1 < x2 < … < xn-1 < xn=b.

Точки деления xk , k=0,1,…,n будут иметь координаты:

xk = x0 + kh,  где h=(b-a)/n.


(5)

они образуют на отрезке [a,b] равномерную cетку с шагом h. 

Задаче Коши (1)-(2) сопоставляется вспомогательная задача:


[image: image729.png]e = f(x k)
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 , k=0,1,…,n-1
(6)

y0=u0


                  
(7)

Условия разностной задачи (6)-(7) можно переписать в виде:

y0=u0

yk+1 = yk + h f(xk,yk) ,     k=0,1,…,n-1

(8)

Рекуррентная формула  позволяет по начальному значению y0 вычислить y1, затем по y1 вычислить y2 и т.д. Повторяя эту операцию n раз, последовательно определяются все yk и строится решение задачи (6)-(7). Последовательность чисел yk представляет собой функцию, определенную для конечного числа аргументов xk. Такие функции называются сеточными.
Теперь решение задачи Коши (1)-(2) u(x) определим в точках xk: uk = u(xk), k=0,1,…,n. Числа uk также образуют сеточную функцию, порожденную функцией непрерывного аргумента u(x). Необходимо сравнить между собой две сеточные функции yk и uk.

Для этого составляются разности:

zk = yk –  uk , k=0,1,…,n 

(9)

при этом согласно (8)

z0 = 0

            
(10)

Сеточную функцию zk называют погрешностью решения, ее определяют по формуле: 

Z = max|zk|           (11)

Рассматривая сеточную функцию
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(12)

ее называют погрешностью аппроксимации дифференциального уравнения (1) разностным уравнением (6). За погрешность аппроксимации также берут величину:

( = max|(k|



(13)

Разностное уравнение (6) аппроксимирует дифференциальное уравнение (1) с первым порядком точности относительно h. Это означает, что при h(0 величина ((0 стремится к нулю со скоростью, пропорциональной h. 

Используя формулу (8) определяется набор точек (xk, yk), k=0,1,…,n. Соединяя эти точки отрезками, получается ломаная, называемая ломаной Эйлера. Она приближенно описывает  решение u(x) задачи Коши : u(x) (y(x).    

Пример 1. 

Определить численное решение дифференциального уравнения 
[image: image733.png]T
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 методом Эйлера на [0,1] с шагом h=0,5 и начальным условием: u(0)= – 0,5. Сравнить его с аналитическим частным решением. Найти погрешность замены аналитического решения численным решением.

Решение:

Его общее решение имеет вид: 
[image: image736.png]


[image: image734.wmf]C

x

C

x

u

2

1

2

)

(

2

-

=



 QUOTE  

. При подстановке в него u(0)= – 0,5 определяется С=1

Определим решение методом Эйлера с шагом 0,5: 

y(0)=u(0)= – 0,5

y(0,5) = y(0)+0,5*f(0,-0,5)=-0,5+0,5*(0/(
[image: image739.png]07 + (<05
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 – (-0,5)) = – 0,5

y(1,0) = y(0,5)+0,5*f(0,5;y(0,5)) = – 0,5 + 0,5*(0,5/(
[image: image742.png]
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 – (-0,5)) = -0,29289

Аналитическое решение дает значения: u(0)=-0,5; u(0,5)= -0,375; u(1,0)= 0

Расчетная таблица имеет вид:

	X
	y_Eiler
	u_analit
	z
	Psi

	0
	-0,5
	-0,5
	0
	0,25

	0,5
	-0,5
	-0,375
	0,125
	0,249656

	1
	-0,29289
	0
	0,292893
	


Погрешность замены аналитического решения численным решением будет равна:
Z = max|zk| = max{0,0.125, 0.29289}=0.29289.

Погрешность аппроксимации: 

( = max|(k| = max{0.25; 0.249656}-0.25

Соответствие решений, найденных аналитически и по методу Эйлера, показано на рис. 1.
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Как видно по рис.1, метод Эйлера не совпадает с аналитическим решением. Это связано с тем, что метод имеет малую точность. 
Для решения начальной задачи для обыкновенного дифференциального уравнения численные методы Эйлера и Рунге-Кутта реализуем в процедурном стиле.

Метод Эйлера:

procedure EYLER(x0,xn,y0:Real;n:Integer;f:Func;var y:Vect);

  var 

     i:Integer;

     h:Real; 

     x:Vect;

begin

     h := (xn-x0)/n; 

     For i:=0 To n Do x[i]:=x0+i*h;

     y[0]:=y0; 

     For i:=1 To n Do 

            y[i] := y[i-1] + f(x[i-1],y[i-1]) * h;     

end;
Метод Рунге–Кутта:

procedure RK4(x0,xn,y0:Real;n:Integer; f:Func; var y:Vect);

  var 

     i:Integer;

     h,k1,k2,k3,k4,dy:Real; 

     x:Vect;

begin

     h:=(xn-x0)/n;

     For i:=0 To n Do x[i]:=x0+i*h;

     y[0]:=y0; 

     For i:=1 To n Do 

     begin

            k1 := h* f( x[i-1], y[i-1] );

            k2 := h* f( x[i-1]+0.5*h, y[i-1]+0.5*k1 ); 

            k3 := h* f( x[i-1]+0.5*h, y[i-1]+0.5*k2 ); 

            k4 := h* f( x[i-1]+h, y[i-1]+k3 ); 

            dy := ( k1 + 2*k2 + 2*k3 + k4 ) / 6;

            y[i] := y[i-1] + dy;     

     end;

end;

Здесь x0,xn – концы отрезка, на котором ищется решение, n –разбиение отрезка [x0,xn], x0,y0 – начальное условие, функция f:Func – правая часть уравнения, одномерный массив y:Vect – найденное решение (значения искомой функции в точках из отрезка [x0,xn], разбитого на n частей). 

Ниже показано использование описанных процедур EYLER и RK4 на примере решения задачи.

Задача. 

Аналитическое решение дифференциального уравнения 
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. Найти его численное решение на отрезке 
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 методами: Эйлера, Рунге–Кутта. Построить графики численных решений. Сравнить с аналитическим решением.

Решение.

Для решения задачи воспользуемся приведенными выше процедурами: 

function F(x,y: real):real; forvard;

begin

   F := cos(2*x); {правая часть}
end;

const 

       n=100;

type 

var y_el, y_rk :Vect;

{ Основная программа }

...

EYLER(0,1, 1, 10, F, y_el);

RK4(0,1, 1, 10, F, y_rk); 

  // double* Y  – вектор решения

Полученные результаты (векторы y_el и y_rk) запишем соответственно в файлы с именами: «y_x_EYLER.dat», «y_x_RK.dat». Массив узлов запишем в файл «x.dat».  В пакете MathCad создадим векторы с расчетными данными из указанных файлов (рис.8). Построим графики аналитического и численных решений в одной системе координат (рис. 9).
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	Рис. 8. Векторы решений.
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	Рис. 9. Графики решений на [0,1].


Рисунок 10 демонстрирует графические решения, полученные на отрезке [0,3] с тем же разбиением n=10.
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	Рис. 10. Графики решений на [0,3].


Обыкновенные ДУ в MathCad
С помощью MathCad можно найти решение задач Коши, для которых заданы начальные условия, производные искомых функций, и их значения в начальной точке интервала интегрирования уравнения. В большинстве случаев дифференциальное уравнение первого порядка можно записать в стандартной форме (форме Коши):
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и только с такой формой уравнения может работать вычислительный процессор MathCad.  Вместе с уравнением необходимо задать начальные условия у(t0)=y0 – значение функции у(t)  в некоторой точке t=t0. Таким образом, необходимо найти функцию у(t) на интервале [t0, t]. 

Для численного интегрирования в  MathCad  есть возможность использовать блок Given/Odesolve или встроенные функции. Вычислительный блок Given/Odesolve, который реализовывает решение одного обыкновенного дифференциального уравнения методом Рунге–Кутта, состоит из трех частей:

1) ключевое слово Given;

2) дифференциальное уравнение и начальное условие, которые записаны с помощью логических операторов, причем начальное условие должно записываться в форме  

у(t0)=b;

3) Odesolve(t,tn) – встроенная функция для решения обыкновенного дифференциального уравнения относительно переменной t на интервале   [t0, tn] (см. рис. 11).
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	Рис.11. Результат функции Odesolve для д.у.


Для решения обыкновенного дифференциального уравнения можно использовать также встроенные функции Rkfixed, Rkadapt, Bestoer.

Рассмотрим решение задачи Коши для ОДУ с помощью встроенную функцию rkfixed, которую удобно использовать для проверки полученных решений, в случае, когда точное (аналитическое) решение не задано.

На рисунке 12  представлен фрагмент документа MathCad, где с помощью функции rkfixed найдено решение задачи Коши для ДУ.
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	Рис.12. Результат функции rkfixed для уравнения.
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Контрольные вопросы 
1. Какая задача называется задачей Коши?

2. Соблюдение каких условий требуется для решения задачи Коши?

3. Опишите суть метода ломаных Эйлера.

4. Что такое точность метода?

5. Дайте определение разностной схемы метода.

6. Что такое порядок метода?

7. Что такое точность метода?

8. Дайте определение погрешности аппроксимации и погрешности решения.

9.. В чем недостаток и преимущество метода Эйлера?

10. Каков порядок метода Рунге-Кутты?

Практическая работа № 10
 «Выбор оптимального  численного метода для решения поставленной задачи»

Цель работы: научиться производить приближенные вычисления с помощью программных пакетов

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен 

уметь: 

· выбирать оптимальный численный метод для решения поставленной задачи;

· давать математические характеристики точности исходной информации и оценивать точность полученного численного решения;

· разрабатывать алгоритмы и программы для решения вычислительных задач, учитывая необходимую точность получаемого результата;

.

знать: 

- методы решения основных математических задач – интегрирования, дифференцирования, решения линейных и трансцендентных уравнений и систем уравнений с помощью ЭВМ.
Краткие теоретические и учебно-методические
 материалы по теме практической работ:
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В дальнейшем будем рассматривать задачу минимизации
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Оптимальное решение задачи (1) – это допустимое решение, минимизирующее 
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Глобальный минимум всегда является и локальным минимумом, но не наоборот.

1. Методы одномерной минимизации
1.1. Основные понятия
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Пример 1.3. Пусть 
[image: image852.wmf]x

x

f

ln

)

(

=

, 
[image: image853.wmf]{

}

1

0

:

£

<

=

x

x

X

. Здесь 
[image: image854.wmf]Æ

=

*

X

, так как во всех точках из 
[image: image855.wmf]X

 функция принимает конечные значения, а для последовательности 
[image: image856.wmf]k

x

k

/

1

=

, 
[image: image857.wmf]=

k

 1, 2,…, имеем 
[image: image858.wmf]-¥

=

¥

®

)

(

lim

k

k

x

f

.

Определение 1.2. Функция 
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Аналогично формулируются определения понятий: функция ограниченная (неограниченная) сверху, верхняя грань функции, максимизирующая последовательность, точка максимума, наибольшее (максимальное) значение функции, точка локального и строгого локального максимума функции.
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1.2. Постановка задачи об оптимальных методах
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Этот процесс выбора точек отдельными порциями продолжается до тех пор, пока не будет выбрана последняя n-ая точка и определена соответствующая локализующая тройка 
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Примерами последовательного метода служат методы деления отрезка пополам, золотого сечения [6, 7, 14].

Определение 1.11. Пусть 
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Примером пассивного метода является метод равномерного перебора [6, 7, 14].

Задача А. С помощью n  вычислений значений функции 
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Определение 1.12. Пусть на отрезке 
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1.3. Оптимальные пассивные методы
Пусть 
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 – класс унимодальных функций на отрезке 
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Определение 1.13. Величина
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называется наилучшей гарантированной точностью n-точечных пассивных методов для задачи А на классе 
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.

Пассивный метод 
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Теорема 1.2. Для задачи А для всех 
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Теорема 1.3. Для задачи Б при всех нечетных 
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1.4. Оптимальный последовательный метод для задачи А
Теорема 1.5. Для задачи А метод Фибоначчи 
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 [6, 7, 14] является единственным оптимальным последовательным методом на классе 
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Следствие 1.5.1. Количество необходимых при решении задачи А вычислений значений функции 
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1. 5. Оптимальный последовательный метод для задачи Б
Теорема 1.6. Для задачи Б наилучшая гарантированная на классе 
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Следствие 1.6.1. Количество необходимых при решения задачи Б вычислений значений функции 
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Следствие 1.6.2. Для любого последовательного метода 
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1.6. Применение средств пакета Mathcad для решения задачи одномерной минимизации
Рассмотрим решение задачи одномерной минимизации с помощью средств пакета Mathcad [15].

Задача: найти минимум гладкой унимодальной функции
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Задания для практического занятия:
1. Найти приближенное наибольшее (наименьшее) значение функции 
[image: image1128.wmf])

(

x

f

 на промежутке 
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 (заданные значения 
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 )заданным в таб.1.1 методом (Д – метод деления пополам, З– метод золотого сечения, Ф – метод Фибоначчи);

2. Решить данную задачу с помощью пакета Mathcad и сравнить результаты с заданием 1.
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Контрольные вопросы

1. Что понимается под задачей А?

2. Что понимается под задачей Б?

3. Какое число следует брать в методе деления отрезка пополам?

4. Какой из методов дает лучшую гарантированную точность?

5. Всегда ли методы последовательного поиска дают лучшую гарантированную точность по сравнению с методами пассивного поиска?

6. Для каких классов функций следует использовать методы пассивного поиска? Метод деления отрезка пополам? Метод золотого сечения? Метод Фибоначчи? Метод ломанных? Метод касательных?

1. Исследование объекта


и содержательная постановка задачи





2. Построение математической модели





3. Выбор численного метода и разработка 


вычислительного алгоритма





4. Разработка программы на компьютере или выбор пакета прикладных программ





5. Проведение вычислений и анализ 


результатов





Методы решения вычислительных задач
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