	[image: image1.jpg]

	МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН

Государственное бюджетное профессиональное образовательное учреждение

Уфимский колледж радиоэлектроники, телекоммуникаций и безопасности

	
	УТВЕРЖДАЮ

Зам. директора

_____________ Л.Р. Туктарова

«29» августа 2017 г.

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ

ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ

ПРАКТИЧЕСКИХ РАБОТ

ДИСЦИПЛИНА «Архитектура компьютерных систем»

специальность 09.02.03 «Программирование в компьютерных системах»
ДЛЯ СТУДЕНТОВ ОЧНОЙ И ЗАОЧНОЙ ФОРМ ОБУЧЕНИЯ
	СОГЛАСОВАНО
Зав. кафедрой
_____________ Г.Г. Хакимова

	РАЗРАБОТАЛ:

Преподаватель

_____________ И.В. Литвинова

	
	

Уфа 2017 г.
СОДЕРЖАНИЕ

	
	Стр.

	Предисловие
	3

	Практическая работа № 1 «Изучение принципов работы с системами счисления»
	6

	Практическая работа № 2 «Изучение принципов кодирования чисел»
	11

	Практическая работа № 3 «Изучение принципов построения и работы логических узлов ЭВМ»
	15

	Практическая работа № 4 «Изучение внутренних интерфейсных шин ПК»
	18

	Практическая работа № 5 «Изучение внешних интерфейсных шин ПК»
	22

	Практическая работа № 6 «Изучение системы команд Ассемблера. Команды пересылки данных и арифметические команды»
	25

	Практическая работа № 7 «Изучение системы команд Ассемблера. Команды обработки строк данных и команды организации циклов»
	31

	Практическая работа № 8 «Изучение системы команд Ассемблера. Команды безусловных и условных переходов»
	36

	Практическая работа № 9 «Изучение системы команд Ассемблера. Логические команды и команды сдвига»
	41

	Практическая работа № 10 «Изучение системы команд Ассемблера. Подпрограммы и прерывания»
	46

	Практическая работа № 11 «Изучение типов современных процессоров»
	51

Предисловие

 Методические указания для студентов по выполнению практических работ адресованы студентам очной, заочной и заочной с элементами дистанционных технологий формы обучения.

Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам, правильного составления отчетов.

Приступая к выполнению практической работы необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы.

Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем.

Наличие положительной оценки по практическим работам необходимо для получения зачета по дисциплине «Архитектура компьютерных систем» и допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую работу необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических работ

1. Студент должен прийти на практическое занятие подготовленным к выполнению практической работы.

2. После проведения практической работы студент должен представить отчет о проделанной работе.

3. Отчет о проделанной работе следует выполнять в журнале практических работ на листах формата А4 с одной стороны листа.

Оценку по практической работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.

Зачет по выполнению практических работ студент получает при условии выполнения всех предусмотренных программой практических работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий.

Обеспеченность занятия
1.Учебно-методическая литература:
1. Архитектура ЭВМ и вычислительные системы : учебник / В.В. Степина. — М.: КУРС: ИНФРА-М, 2017. — 384 с. — (Среднее профессиональное образование).

2. Основы архитектуры, устройство и функционирование вычислительных систем: Учебник / В.В. Степина. — М.: КУРС: ИНФРА-М, 2017. — 288 с. — (Среднее профессиональное образование)

3. Партыка Т.Л. Вычислительная техника : учеб. пособие / Т.Л. Партыка, И.И. Попов. — 3-е изд., перераб. и доп. — М. : ФОРУМ : ИНФРА-М, 2017. — 445 с. : ил. — (Среднее профессиональное образование).

2. Справочная литература:

1. Новожилов, О. П. Архитектура ЭВМ и систем [Текст]: учеб. пособие. - М.: Юрайт, 2012.- 527 с.

2. Колдаев, В. Д. Архитектура ЭВМ [Текст]: учеб. пособие для ссузов / В. Д. Колдаев, С. А. Лупин. - М.: Инфра-М, 2014.- 384 с.: ил.- (Профессиональное образование).

Интернет ресурсы:

1. Википедия – Свободная энциклопедия [Электронный ресурс] – режим доступа: http://ru.wikipedia.org (2001-2017)
2. Нетбуки. Планшеты. Сенсорные телефоны. Мобильные компьютеры. Гаджеты. Обзоры устройств. Технологии [Электронный ресурс] – режим доступа: http://hi-tech.mail.ru (1999-2017)

3. Оперативные новости, обзоры и тестирования компьютеров, видеокарт, процессоров, материнских плат, памяти и принтеров, цифровых фотоаппаратов и видеокамер, смартфонов и планшетов, мониторов и проекторов [Электронный ресурс] – режим доступа: http://www.ixbt.com (1997-2017)
4. Электронно-библиотечная система. [Электронный ресурс] – режим доступа: http://znanium.com/ (2002-2017)

3.Технические средства обучения:

 1) персональный компьютер
 2) проектор

 3) интерактивная доска

4.Программное обеспечение: Microsoft Office 2007, Turbo Debugger, TASM, MASM
Порядок выполнения отчета по практической работе

1. Ознакомиться с теоретическим материалом по практической работе.

2. Записать краткий конспект теоретической части.

3. Выполнить предложенное задание согласно варианту.
4. Продемонстрировать результаты выполнения предложенных заданий преподавателю.
5. Записать выводы о проделанной работе.

6. Ответить на контрольные вопросы.

Практическое занятие № 1
«Изучение принципов работы с системами счисления»

Цель работы: изучить методы перевода чисел из одной системы счисления в другую, изучить принципы выполнения арифметических операций в различных системах счисления.
Студент должен

уметь:

переводить числа из одной системы счисления в другую, выполнять действия с числами в разных системах счисления;

знать:

понятие системы счисления, виды и свойства систем счисления, способы перевода чисел из одной системы счисления в другую.
Краткие теоретические и учебно-методические материалы по теме практической работы

Системы счисления

Система счисления – символический метод записи чисел, представление чисел с помощью письменных знаков. Системы счисления подразделяются на позиционные, непозиционные и смешанные.

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен.

Каждая позиционная система счисления определяется некоторым целым числом
[image: image2.wmf]1

>

b

 (т. н. основание системы счисления) таким, что b единиц в каждом разряде объединяется в одну единицу следующего по старшинству разряда.

Целое число x в показательной системе счисления представляется в виде конечной линейной комбинации степеней числа b:

	
[image: image3.wmf]å

-

=

=

1

0

n

k

k

k

b

a

x

,
	(1.1)

где
[image: image4.wmf]k

a

 – это целые числа, называемые цифрами, удовлетворяющие неравенству
[image: image5.wmf]b

a

k

<

£

0

;

[image: image6.wmf]b

– основание системы счисления;

[image: image7.wmf]n

 – число разрядов.

Каждая степень bk в такой записи называется разрядом, старшинство разрядов и соответствующих им цифр определяется значением показателя k.

Перевод произвольной позиционной системы счисления в десятичную

Если число в b-ричной системе счисления равно
[image: image8.wmf]n

a

a

a

a

...

3

2

1

, то для перевода в десятичную систему вычисляется сумма:

	
[image: image9.wmf]0

1

1

2

2

1

1

1

...

b

a

b

a

b

a

b

a

b

a

n

n

n

n

n

i

i

n

i

+

+

+

+

=

-

-

-

=

-

å

,
	(1.2)

где
[image: image10.wmf]b

 – основание системы счисления, из которой осуществляется перевод.

Перевод из десятичной в произвольную позиционную систему счисления

Для перевода необходимо делить число с остатком на основание системы счисления до тех пор, пока частное больше основания.

Перевод из двоичной в восьмеричную и шестнадцатеричную системы счисления

Для этого типа операций существует упрощенный алгоритм.

Для восьмеричной – разбиваем число на триплеты, начиная с младшего разряда, преобразуем триплеты по таблице 1.1.

Таблица 1.1 – Перевод числа из двоичной в восьмеричную систему счисления

	Число в двоичной системе счисления
	Число в восьмеричной системе счисления

	000
	0

	001
	1

	010
	2

	011
	3

	100
	4

	101
	5

	110
	6

	111
	7

Для шестнадцатеричной – разбиваем на квартеты, начиная с младшего разряда, преобразуем по таблице 1.2.

Таблица 1.2 – Перевод числа из двоичной в шестнадцатеричную систему счисления

	Число в двоичной системе счисления
	Число в шестнадцатеричной системе счисления

	1
	2

	0000
	0

	0001
	1

	0010
	2

	0011
	3

	0100
	4

	0101
	5

	0110
	6

	Окончание таблицы 1.2

	1
	2

	0111
	7

	1000
	8

	1001
	9

	1010
	A

	1011
	B

	1100
	C

	1101
	D

	1110
	E

	1111
	F

Перевод дробных чисел из произвольной системы счисления в десятичную

Если число в b-ричной системе счисления записано в виде
[image: image11.wmf]n

a

a

a

a

...

,

0

3

2

1

, то для перевода в десятичную систему вычисляется сумма:

	
[image: image12.wmf]n

n

b

a

b

a

b

a

-

-

-

+

+

+

...

2

2

1

1

.
	(1.3)

Перевод дробных чисел из десятичной системы счисления в произвольную

Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в нуль и начать умножение получившегося числа на основание той системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в нуль, предварительно запомнив значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

В общем случае очень редко удаётся завершить перевод дробной части числа из десятичной системы в другие системы счисления, а потому, в подавляющем большинстве случаев, перевод можно осуществить с какой либо долей погрешности. Чем больше знаков после запятой – тем точнее приближение результата перевода к истине.

Операции с числами в произвольных системах счисления

Сложение и вычитание

Как в десятичной, так и в любой другой системе при сложении складываются сначала единицы, затем переходят к следующему разряду и т.д. до тех пор, пока не доходят до самого старшего из имеющихся разрядов. При этом необходимо помнить, что всякий раз, когда при сложении в предыдущем разряде получается сумма больше, чем основание системы счисления, или равная ему, надо сделать перенос в следующий разряд.

Вычитание выполняется аналогичным образом. При заеме из старшего разряда, величина заема равна основанию системы счисления.

Умножение

Для умножения чисел в различных системах счисления удобно пользоваться таблицами умножения. В каждой клетке такой таблицы стоит произведение чисел, представляющих собой номера строки и столбца, на пересечении которых стоит клетка.

Таблица 1.3 – Таблица умножения для двоичных чисел

	
	0
	1

	0
	0
	0

	1
	0
	1

Таблица 1.4 – Таблица умножения шестнадцатеричных чисел

	
	0
	1
	 2
	 3
	 4
	 5
	 6
	 7
	 8
	 9
	 A
	 B
	 C
	 D
	 E
	 F

	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	A
	B
	C
	D
	E
	F

	2
	0
	2
	4
	6
	8
	A
	C
	E
	10
	12
	14
	16
	18
	1A
	1C
	1E

	3
	0
	3
	6
	9
	C
	F
	12
	15
	18
	1B
	1E
	21
	24
	27
	2A
	2D

	4
	0
	4
	8
	C
	10
	14
	18
	1C
	20
	24
	28
	2C
	30
	34
	38
	3C

	5
	0
	5
	A
	F
	14
	19
	1E
	23
	28
	2D
	32
	37
	3C
	41
	46
	4B

	6
	0
	6
	C
	12
	18
	1E
	24
	2A
	30
	36
	3C
	42
	48
	4E
	54
	5A

	7
	0
	7
	E
	15
	1C
	23
	2A
	31
	38
	3F
	46
	4D
	54
	5B
	62
	69

	8
	0
	8
	10
	18
	20
	28
	30
	38
	40
	48
	50
	58
	60
	68
	70
	78

	9
	0
	9
	12
	1B
	24
	2D
	36
	3F
	48
	51
	5A
	63
	6C
	75
	7E
	87

	A
	0
	A
	14
	1E
	28
	32
	3C
	46
	50
	5A
	64
	6E
	78
	82
	8C
	96

	B
	0
	B
	16
	21
	2C
	37
	42
	4D
	58
	63
	6E
	79
	84
	8F
	9A
	100

	C
	0
	C
	18
	24
	30
	3C
	48
	54
	60
	6C
	78
	84
	90
	9C
	108
	114

	D
	0
	D
	1A
	27
	34
	41
	4E
	5B
	68
	75
	82
	8F
	9C
	109
	116
	123

	E
	0
	E
	1C
	2A
	38
	46
	54
	62
	70
	7E
	8C
	9A
	108
	116
	124
	132

	F
	0
	F
	1E
	2D
	3C
	4B
	5A
	69
	78
	87
	96
	100
	114
	123
	132
	141

Пользуясь такими таблицами, легко перемножить «столбиком» числа, содержащие любое количество разрядов.

Задания для практической работы
1 Перевести заданные числа из десятичной системы в двоичную, восьмеричную и шестнадцатеричную.

2 Перевести заданные числа из двоичной системы в восьмеричную, десятичную и шестнадцатеричную.

3 Перевести заданные числа из шестнадцатеричной системы в двоичную и десятичную.

4 Выполнить заданные действия сложения, вычитания и умножения с числами.
Контрольные вопросы

1 Что такое система счисления? Что она позволяет?

2 Что такое позиционная система счисления?

3 Что называется цифрами и основанием системы счисления?

4 Как упрощенно осуществляется перевод из двоичной системы счисления в шестнадцатеричную?
Практическое занятие № 2
«Изучение принципов кодирования чисел»

Цель работы: изучить способы кодирования чисел в ЭВМ, изучить принципы выполнения арифметических операций с помощью кодов.
Студент должен

уметь:

переводить числа в прямой, обратный, дополнительный и двоично-десятичный коды;

выполнять арифметические действия с числами, записанными в виде кодов;

знать:

виды и применение кодов чисел, их особенности.

Краткие теоретические и учебно-методические материалы по теме практической работы

В ЭВМ числа представляются в виде кодов. Различают четыре кода: прямой, обратный, дополнительный и двоично-десятичный.

Прямой код

При записи числа в прямом коде старший разряд является знаковым разрядом. Если его значение равно 0 – то число положительное, если 1 – то отрицательное. В остальных разрядах (которые называются цифровыми разрядами) записывается двоичное представление модуля числа.

Таблица 2.1 –Пример записи чисел в прямом коде

	Десятичное представление
	Двоичное представление
	Прямой 8-разрядный код

	5
	101
	00000101

	-5
	-101
	10000101

Знаковый разряд в прямом коде не имеет разрядного веса. При выполнении арифметических операций это приводит к необходимости отдельной обработки знакового разряда в прямом коде. Поэтому прямой код главным образом используется для записи положительных чисел.

Обратный код

Обратный n-разрядный двоичный код положительного целого числа состоит из одноразрядного кода знака (двоичной цифры 0), за которым следует n−1-разрядное двоичное представление модуля числа (обратный код положительного числа совпадает с прямым кодом).

Обратный n-разрядный двоичный код отрицательного целого числа состоит из одноразрядного кода знака (двоичной цифры 1), за которым следует n−1-разрядное двоичное число, представляющее собой инвертированное n−1-разрядное представление модуля числа.

Таблица 2.2 – Пример записи чисел в обратном коде

	Десятичное представление
	Двоичное представление
	Обратный 8-разрядный код

	5
	101
	00000101

	-5
	-101
	11111010

Обратный код позволяет вычесть одно число из другого, используя только операцию сложения над натуральными числами.

Перенос, возникающий из знакового разряда, при использовании обратного кода должен прибавляться в младший разряд суммы.

Пример: необходимо выполнить действие 5-4=1. Это соответствует действию 5+(-4). Обратный код числа 5 равен 00000101, обратные код числа -4 равен 11111011.

[image: image13.wmf]00000001

1

00000000

00000000

1

11111011

00000101

=

+

ß

+

Дополнительный код

При записи числа в дополнительном коде старший разряд является знаковым. Если его значение равно 0, то в остальных разрядах записано положительное двоичное число, совпадающее с прямым кодом. Если же знаковый разряд равен 1, то в остальных разрядах записано отрицательное двоичное число, преобразованное в дополнительный код.

Преобразование числа из прямого кода в дополнительный осуществляется по следующему алгоритму.

1. Если число, записанное в прямом коде, положительное, то к нему дописывается старший (знаковый) разряд, равный 0, и на этом преобразование заканчивается;

2. Если число, записанное в прямом коде, отрицательное, то все разряды числа инвертируются, а к результату прибавляется 1. К получившемуся числу дописывается старший (знаковый) разряд, равный 1.

Таблица 2.3 – Пример записи чисел в дополнительном коде

	Десятичное представление
	Двоичное представление
	Дополнительный 8-разрядный код

	5
	101
	00000101

	-5
	-101
	11111011

Дополнительный код позволяет заменить операцию вычитания операцией сложения, чем упрощает архитектуру ЭВМ.

При сложении чисел перенос, возникающий из знакового разряда, не учитывается.

Двоично-десятичный код

Двоично-десятичный код – форма записи целых чисел, когда каждый десятичный разряд числа записывается в виде его четырёхбитного двоичного кода.

Таблица 2.4 – Пример записи числа в двоичном представлении и двоично-десятичном коде

	Десятичное представление
	Двоичное представление
	Двоично-десятичный код

	321
	101000001
	0011 0010 0001

В двоично-десятичном коде существуют запрещённые комбинации битов: 1010, 1011, 1100, 1101, 1110, 1111.

Запрещённые комбинации возникают обычно в результате операций сложения, так как в двоично-десятичном коде используются только 10 возможных комбинаций 4-х битового поля вместо 16. Поэтому, при сложении и вычитании чисел формата двоично-десятичного кода действуют следующие правила:

- при сложении двоично-десятичных чисел каждый раз, когда происходит перенос бита в старший полубайт, необходимо к полубайту, от которого произошёл перенос, добавить корректирующее значение 0110.

- при сложении двоично-десятичных чисел каждый раз, когда встречается недопустимая для полубайта комбинация, необходимо к каждой недопустимой комбинации добавить корректирующее значение 0110 с разрешением переноса в старшие полубайты.

- при вычитании двоично-десятичных чисел, для каждого полубайта, получившего заём из старшего полубайта, необходимо провести коррекцию, отняв значение 0110.

Пример: переведем числа 25 и 26 в двоично-десятичный код и выполним операцию сложения.

25 в двоично-десятичном коде равно 00100101. 26 в двоично-десятичном коде равно 00100110.

[image: image14.wmf]01001011

00100110

00100101

В последнем полубайте получилась запрещенная комбинация битов, поэтому добавляем к нему 0110.

[image: image15.wmf]01010001

00000110

01001011

Переведем полученное число из двоично-десятичного кода в десятичный, получим значение 51. 51=25+26 (верно).

Задания для практической работы
1 Перевести А и В (таблица 2.5) из десятичной системы в 8-разрядные прямой, обратный и дополнительный коды.
2 Перевести числа С и D (таблица 2.5) из десятичной системы двоично-десятичный код.
3 Выполнить сложение чисел А и В в прямом, обратном и дополнительном коде. Проверить правильность выполнения переводом ответа в десятичное представление.
4 Выполнить сложение чисел С и D в двоично-десятичном коде. Проверить правильность выполнения переводом ответа в десятичное представление.
Таблица 2.5 – Таблица вариантов

	Вариант
	A
	B
	C
	D

	1
	113
	-15
	159
	123

	2
	89
	-53
	753
	228

	3
	57
	-41
	852
	349

	4
	35
	-27
	456
	226

	5
	110
	-99
	951
	111

	6
	48
	-36
	357
	425

	7
	27
	-18
	268
	651

	8
	69
	-55
	249
	552

	9
	75
	-32
	123
	459

	10
	53
	-11
	789
	103

	11
	95
	-81
	486
	421

	12
	86
	-76
	426
	566

	13
	79
	-56
	666
	314

	14
	111
	-100
	963
	333

	15
	93
	-66
	741
	159

Контрольные вопросы

1 Для представления каких чисел чаще всего используется прямой код? Назовите недостатки прямого кода
2 Как осуществить перевод чисел в обратный код?
3 Как выполняется операция вычитания в обратном коде?
4 Как осуществить перевод отрицательного числа в дополнительный код?
5 Каковы достоинства и недостатки дополнительного кода?
6 Что собой представляет двоично-десятичный код числа?
7 По какой причине в двоично-десятичном коде существуют запрещенные комбинации битов?

Практическое занятие № 3
«Изучение принципов построения и работы логических узлов ЭВМ»

Цель работы: изучить основные логические операции и логические элементы, изучить принципы построения схем простых логических узлов.
Студент должен

уметь:

составлять схему и таблицу истинности логического узла согласно заданной формуле;

знать:

основные логические операции и логические элементы, их условные обозначения и таблицы истинности.

Краткие теоретические и учебно-методические материалы по теме практической работы

Логическими элементами называются функциональные устройства, с помощью которых реализуются элементарные логические функции. Они используются для построения сложных преобразователей цифровых сигналов.

К основным логическим элементам относятся элементы «не», «или», «и» «исключающее или».

Элемент «не» – инвертор – реализует функцию логического отрицания. Сигнал на выходе этого элемента равен «1», когда на входе «0».

[image: image16.wmf]a

Y

1

Рисунок 3.1 – Условно-графическое изображение элемента «не»

	
[image: image17.wmf]a

Y

=

.
	(3.1)

Таблица 3.1 – Таблица истинности элемента «не»

	a
	Y

	0
	1

	1
	0

Элемент «или» – реализует функцию логического сложения (дизъюнкции). Сигнал на выходе этого элемента равен «0» тогда и только тогда, когда на обоих входах «0».

[image: image18.wmf]a

b

Y

1

Рисунок 3.2 – Условно-графическое изображение элемента «или»

	
[image: image19.wmf]b

a

Y

+

=

.
	(3.2)

Таблица 3.2 – Таблица истинности элемента «или»

	a
	b
	Y

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	1

Элемент «и» – реализует операцию логического умножения (конъюнкции). Сигнал на выходе этого элемента равен «1» тогда и только тогда, когда на обоих входах «1».

[image: image20.wmf]a

b

Y

&

Рисунок 3.3 – Условно-графическое изображение элемента «и»

	
[image: image21.wmf]b

a

Y

×

=

.
	(3.3)

Таблица 3.3 – Таблица истинности элемента «и»

	a
	b
	Y

	0
	0
	0

	0
	1
	0

	1
	0
	0

	1
	1
	1

Элемент «исключающее или» – «сложение по модулю 2» – сигнал на выходе этого элемента равен «0» тогда и только тогда, когда на обоих входах одинаковые сигналы.

[image: image22.wmf]a

b

Y

=

1

Рисунок 3.4 – Условно-графическое изображение элемента «исключающее или»

Таблица 3.4 – Таблица истинности элемента «исключающее или»

	a
	b
	Y

	0
	0
	0

	0
	1
	1

	1
	0
	1

	1
	1
	0

Задания для практической работы
1 Построить схему заданной функции Y для четырех входных переменных.
2 Написать таблицу истинности для построенной схемы.
Таблица 3.5 – Таблица вариантов

	Вариант
	Функция Y

	1
	
[image: image23.wmf](

)

(

)

(

)

(

)

D

B

C

A

D

C

B

A

+

×

+

+

+

×

+

	2
	
[image: image24.wmf](

)

(

)

(

)

D

A

C

D

B

C

A

×

+

×

+

×

+

	3
	
[image: image25.wmf](

)

(

)

C

D

B

A

B

C

D

A

+

×

+

×

×

+

×

	4
	
[image: image26.wmf](

)

(

)

B

D

A

D

C

B

A

+

+

×

+

+

+

	5
	
[image: image27.wmf](

)

(

)

(

)

(

)

D

A

B

D

C

A

D

B

+

×

×

+

+

×

+

	6
	
[image: image28.wmf](

)

B

D

C

D

B

C

A

×

÷

ø

ö

ç

è

æ

+

×

×

+

×

	7
	
[image: image29.wmf](

)

(

)

(

)

(

)

B

C

A

D

A

B

A

C

D

C

B

A

+

+

+

×

+

+

×

+

×

+

	8
	
[image: image30.wmf](

)

(

)

C

B

D

C

B

A

B

C

D

A

+

×

×

+

×

+

×

+

×

	9
	
[image: image31.wmf]A

C

B

A

D

B

C

+

×

÷

ø

ö

ç

è

æ

+

+

+

+

	10
	
[image: image32.wmf](

)

(

)

A

C

B

D

C

B

A

×

+

+

×

+

×

Контрольные вопросы

1 Что называется логическим элементом?
2 Какую логическую функцию выполняет элемент «не»? Нарисуйте его обозначение и таблицу истинности.
3 Какую логическую функцию выполняет элемент «или»? Нарисуйте его обозначение и таблицу истинности.
4 Какую логическую функцию выполняет элемент «и»? Нарисуйте его обозначение и таблицу истинности.
5 Какую логическую функцию выполняет элемент «исключающее или»? Нарисуйте его обозначение и таблицу истинности.

Практическое занятие № 4
«Изучение внутренних интерфейсных шин ПК»

Цель работы: изучить виды, характеристики и назначение внутренних шин ПК.
Студент должен

уметь:

определять вид интерфейса ПК по внешнему виду разъема;

знать:

виды, характеристики и назначение внутренних интерфейсных шин ПК.

Краткие теоретические и учебно-методические материалы по теме практической работы

Шины персонального компьютера делятся на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. К внутренним шинам ПК относятся следующие шины:
1 ISA (Industry Standard Architecture)

8-ми или 16-ти разрядная шина ввода/вывода. Служит для подключения плат расширения стандарта ISA. Конструктивно выполняется в виде 62-х или 98-контактного разъёма на материнской плате.

Интерфейс ISA был основным на устаревших системах AT. В новых корпусах ATX, выпускаемых с 1997 года, этот интерфейс часто отсутствует, а с начала века не интегрируется вовсе.

2 EISA (Extended Industry Standard Architecture)

Была анонсирована в конце 1988 группой производителей IBM-совместимых компьютеров в ответ на введение фирмой IBM закрытой шины MCA в компьютерах серии PS/2. Хотя шина EISA менее совершенна, чем MCA, она была принята многими производителями, так как шина MCA являлась закрытой и все права на неё принадлежали IBM. EISA не получила распространения в персональных компьютерах. Однако, она использовалась в серверах, так как была приспособлена для задач, требующих большой пропускной способности шины.

3 VESA local bus (VL-Bus или VLB)

Тип локальной шины, разработанный в 1992 г. ассоциацией VESA.

Шина VLB, по существу, является расширением внутренней шины МП для связи с видеоадаптером и реже с контроллером HDD.

Слот VLB был расширением шины ISA. Поэтому карты для шины ISA могли вставляться в слот VLB и работать.
4 PCI (Peripheral component interconnect – взаимосвязь периферийных компонентов)
В 1992 году появляется первая версия шины PCI, Intel объявляет, что стандарт шины будет открытым. Благодаря этому, любой заинтересованный разработчик получает возможность создавать устройства для шины PCI без необходимости приобретения лицензии.
Используется до настоящего времени для подключения различных карт расширения.
5 AGP (Accelerated Graphics Port, ускоренный графический порт)

Разработанная в 1997 году компанией Intel, специализированная 32-битная системная шина для видеокарты.

На данный момент материнские платы со слотами AGP практически не выпускаются; стандарт AGP был повсеместно вытеснен на рынке более быстрым PCI Express.

6 HyperTransport (HT), ранее известная как Lightning Data Transport (LDT)

Это двунаправленная последовательно/параллельная компьютерная шина, с высокой пропускной способностью и малыми задержками. Разработана в 2001 г.

Шина HyperTransport нашла широкое применение, в основном, в качестве замены шины процессора. Другое применение HyperTransport – в многопроцессорных компьютерах. HyperTransport так же может быть использована в маршрутизаторах и коммутаторах.
7 PCI Express (PCIe или PCI-E)

Компьютерная шина, использующая программную модель шины PCI и высокопроизводительный физический протокол, основанный на последовательной передаче данных.

Официально первая базовая спецификация PCI Express появилась в июле 2002 года.

Используется для подключения видеокарт и других карт расширения, постепенно заменяя шину PCI.
Задания для практической работы
1 Определить по внешнему виду разъема (рисунки 4.1, 4.2, 4.3, 4.4, 4.5, 4.6) вид интерфейса и заполнить таблицу 4.1.
[image: image33.png]LA

A ARG

Рисунок 4.1

[image: image34.png]

Рисунок 4.2

[image: image35.png]

Рисунок 4.3

[image: image36.png]&

ARAUALRVARR LA B R RRBRRRRE

Рисунок 4.4

[image: image37.png]

Рисунок 4.5

[image: image38.png]

Рисунок 4.6

Таблица 4.1 – Внутренние интерфейсные шины ПК
	Разъем
	Наименование
	Назначение
	Разрядность
	Пропускная способность

	Рисунок 4.1
	
	
	
	

	Рисунок 4.2
	
	
	
	

	Рисунок 4.3
	
	
	
	

	Рисунок 4.4
	
	
	
	

	Рисунок 4.5
	
	
	
	

	Рисунок 4.6
	
	
	
	

Контрольные вопросы

1 Чем отличаются шины ISA и EISA?
2 В чем достоинства и недостатки шины VLB?
3 В чем преимущества шины AGP перед шиной PCI?
4 Перечислите ключевые особенности шины HyperTransport.
5 Чем отличаются шины PCI и PCI Express? Какой метод передачи сигналов использует шина PCI Express?

Практическое занятие № 5
«Изучение внешних интерфейсных шин ПК»

Цель работы: изучить виды, характеристики и назначение внешних шин ПК.
Студент должен

уметь:

определять вид интерфейса ПК по внешнему виду разъема;

знать:

виды, характеристики и назначение внешних интерфейсных шин ПК.

Краткие теоретические и учебно-методические материалы по теме практической работы

Шины персонального компьютера делятся на внутренние (local bus) и внешние (external bus). Первые разработаны для подключения внутренних устройств, таких как видеоадаптеры и звуковые платы, а вторые предназначались для подключения внешних устройств, например, сканеров. К внешним шинам ПК относятся следующие шины:
1 SCSI (Small Computer System Interface)

Интерфейс, разработанный для объединения на одной шине различных по своему назначению устройств, таких как жёсткие диски, накопители на магнитооптических дисках, приводы CD, DVD, стримеры, сканеры, принтеры и т. д.

После стандартизации в 1986 году SCSI начал широко применяться в компьютерах Apple Macintosh, Sun Microsystems. В компьютерах, совместимых с IBM PC, SCSI не пользуется такой популярностью в связи со своей сложностью и сравнительно высокой стоимостью.

SCSI широко применяется на серверах, высокопроизводительных рабочих станциях; RAID-массивы на серверах часто строятся на жёстких дисках со SCSI-интерфейсом.

Система команд SCSI на уровне программного обеспечения употребляется в единых стеках поддержки устройств хранения данных в ряде операционных систем, таких, как Microsoft Windows.

2 ATA (Advanced Technology Attachment, присоединение по передовой технологии)

Параллельный интерфейс подключения накопителей (жёстких дисков и оптических приводов) к компьютеру. В 90-е годы XX века был стандартом на платформе IBM PC; в настоящее время вытесняется своим последователем – SATA. Первоначальная версия стандарта была разработана в 1986 году фирмой Western Digital и по маркетинговым соображениям получила название IDE (Integrated Drive Electronics, электроника, встроенная в привод). Оно подчеркивало важное нововведение: контроллер привода располагается в нём самом, а не в виде отдельной платы расширения, как в предшествующих стандартах.

3 SATA (Serial ATA)

Последовательный интерфейс обмена данными с накопителями информации. SATA является развитием параллельного интерфейса ATA (IDE).

Главным преимуществом SATA перед ATA является использование последовательной шины вместо параллельной. Несмотря на то, что последовательный способ обмена принципиально медленнее параллельного, в данном случае это компенсируется возможностью работы на более высоких частотах за счёт большей помехоустойчивости кабеля. Это достигается меньшим числом проводников и объединением информационных проводников в две витые пары, экранированные заземлёнными проводниками.

4 Serial Attached SCSI (SAS)

Компьютерный интерфейс, разработанный для обмена данными с такими устройствами, как жёсткие диски, накопители на оптическом диске и т. д. SAS использует последовательный интерфейс для работы с непосредственно подключаемыми накопителями. Разработан для замены параллельного интерфейса SCSI и позволяет достичь более высокой пропускной способности, чем SCSI; в то же время SAS совместим с интерфейсом SATA.
Задания для практической работы
1 Определить по внешнему виду разъема (рисунки 5.1, 5.2, 5.3, 5.4) вид интерфейса и заполнить таблицу 5.1.

[image: image39.png]

Рисунок 5.1

[image: image40.png]“
w5

R
-

Рисунок 5.2

[image: image41.png]

Рисунок 5.3

[image: image42.png]

Рисунок 5.4

Таблица 5.1 – Внешние интерфейсные шины ПК
	Разъем
	Рисунок 5.1
	Рисунок 5.2
	Рисунок 5.3
	Рисунок 5.4

	Наименование
	
	
	
	

	Назначение
	
	
	
	

	Пропускная способность
	
	
	
	

	Количество проводов в кабеле
	
	
	
	

	Максимальная длина кабеля
	
	
	
	

Контрольные вопросы

1 Почему интерфейс SCSI не получил широкого применения в персональных компьютерах?
2 Чем отличаются 40 и 80-проводные шлейфы для интерфейса АТА?
3 В чем отличие интерфейсов АТА и SАТА?
4 Что собой представляет разъем Power eSATA?
Практическое занятие № 6
«Изучение системы команд Ассемблера. Команды пересылки данных и арифметические команды»

Цель работы: изучить использование регистров процессора, изучить команды пересылки и арифметические команды в языке Ассемблер.
Студент должен

уметь:

применять регистры процессора при выполнении задач;

составлять программы на языке Ассемблера для решения задачи на выполнение арифметических действий;

знать:

виды и назначение регистров процессора;

работу команд пересылки данных и арифметических команд в языке Ассемблера.

Краткие теоретические и учебно-методические материалы по теме практической работы

Процессор способен выполнять команды, находящиеся в памяти в виде двоичных кодов. В процессорах iх86 длина команды может составлять от 1 до 12 байт. Первый байт команды содержит код операции, а также некоторую дополнительную информацию (например, о длине обрабатываемых данных). Данные, подлежащие обработке, называются операндами. Каждый операнд может представлять собой байт или слово и находиться в регистре общего назначения или в памяти. Кроме того, существуют команды, использующие в качестве операндов последовательности байтов или слов (строки).

Разрабатывать программу, записывая все команды непосредственно в двоичной кодировке, очень трудно. С другой стороны, языки программирования высокого уровня, такие, как Паскаль или Си, намного облегчают написание программ, но они не дают доступа ко всем ресурсам компьютера; размер получаемого кода оказывается значительным. «Золотой серединой» здесь оказывается язык Ассемблер. В этом языке каждой команде процессора соответствует мнемонический код (или мнемокод), т.е. код, удобный для запоминания. Кроме кодов команд, Ассемблер содержит директивы, т.е. служебные инструкции, определяющие формат программы, данных и т.п. Существуют как самостоятельные Ассемблер-системы, так и встроенные в языки высокого уровня (например, в системе Borland Pascal).

Использование регистров процессора

Регистр – специально отведенная память для временного хранения каких-то данных. Микропроцессоры i8086 имеют 14 регистров.

Таблица 6.1 – Регистры данных (регистры общего назначения, РОН)

	AX
	BX
	CX
	DX

	AH
	AL
	BH
	BL
	CH
	CL
	DH
	DL

	Аккумулятор
	База
	Счетчик
	Регистр данных

РОН могут использоваться программистом по своему усмотрению (за исключением некоторых случаев). В них можно хранить любые данные: числа, адреса и пр. В верхнем ряду таблицы 6.1 находятся шестнадцатиразрядные регистры, которые могут хранить числа от 0 до 65535 или от 0h до FFFFh в шестнадцатеричной системе счисления. В следующей строке расположен ряд восьмиразрядных регистров. В них можно загружать максимальное число 255 (FFh). Они представляют собой старшую (High) и младшую (Low) половинки шестнадцатиразрядных регистров.

Таблица 6.2 – Регистры-указатели

	SI
	DI
	BP
	SP

	Индекс источника
	Индекс приемника
	Регистры для работы со стеком

Регистры SI и DI используются в строковых операциях.
Таблица 6.3 – Сегментные регистры

	CS
	DS
	ES
	SS

	Регистр кода
	Регистр данных
	Дополнительный регистр
	Регистр стека

Сегментные регистры необходимы для обращения к тому или иному сегменту памяти.

Команды пересылки данных и загрузки

Таблица 6.4 – Команды пересылки данных, загрузки адресов

	Название
	Общий вид команды
	Действие

	Пересылка данных
	MOV op1, op2
	op1 ← op2

	Обмен (перестановка) данных
	XCHG op1, op2
	op1 ↔ op2

	Загрузка исполнительного адреса
	LEA op1, op2
	op1 ← (адрес op2)

Команда MOV (to move – передвигать, перемещать) осуществляет пересылку байта или слова из источника (это второй операнд, «op2») в место назначения (первый операнд, он же операнд-получатель, «op1»). В качестве источника и получателя могут служить РОН, индексный или сегментный регистр, ячейка памяти. Источником могут также являться данные (константа), непосредственно указанные в команде.

Пример

MOV AX, 5050 – записать число 5050 в регистр АХ.

MOV AX, BX – переместить число из регистра ВХ в регистр АХ.

Команда XCHG (to exchange – переставлять) осуществляет обмен байтами или словами между своими операндами (РОН, индексные регистры, память). Сегментные регистры не могут использоваться при обмене.

В этих командах, как и многих других двухоперандных командах рассматриваемых МП, недопустимы сочетания операндов типа «память-память», что представляет определённые неудобства при программировании.

Команда LEA (Load Executable Address) носит название «загрузить исполнительный адрес». По этой команде извлекается не сам операнд, а его исполнительный адрес. Действие команды состоит в передаче вычисленного 16-разрядного адреса (внутрисегментного смещения) операнда в 16-разрядный регистр.

Арифметические команды

В классической системе команд 8086-совместимых процессоров существуют все четыре арифметические действия – сложение, вычитание, умножение, деление над 8- и 16-разрядными данными, представляющими целые числа.

Таблица 6.5 – Арифметические команды

	Название
	Общий вид команды
	Действие

	Сложение
	ADD op1, op2
	op1 ← op1+op2

	Инкремент (увеличение на 1)
	INC op
	op ← op+1

	Вычитание
	SUB op1, op2
	op1 ← op1-op2

	Декремент (уменьшение на 1)
	DEC op
	op ← op-1

	Умножение
	MUL op
	см. ниже

	Деление
	DIV op
	см. ниже

Команда ADD (addition) выполняет сложение операнда-источника («op2») с операндом места назначения («op1»). Операндами могут быть регистры и ячейки памяти, причём в качестве источника может быть указано число (константа).

Команда SUB (subtraction) выполняет вычитание операнда-источника из операнда-получателя (op1-op2), записывая результат на место первого операнда. Опять же могут быть использованы регистры, память; вычитаемое может быть константой.

Операции «память-память» в этих командах недопустимы, то есть нельзя указывать ссылку на ячейку памяти одновременно и в первом и во втором операнде. Если это необходимо согласно алгоритму решения задачи, следует использовать операцию «регистр-память», а затем переслать (командой MOV) результат из указанного регистра в другую ячейку памяти.

Команда инкремента INC увеличивает свой единственный операнд на единицу, команда декремента DEC – уменьшает. Эти команды удобно применять, например, в цикле при необходимости наращивания или уменьшения какого-либо счётчика, адреса и т.п.

Команда MUL (multiplication), осуществляющая умножение, более сложна в использовании. Она имеет лишь один операнд – первый множитель. Где указывается второй и где окажется результат зависит от того, будет ли работать команда со словом или с байтом.

Пусть в качестве единственного операнда указан регистр или ячейка размером в байт (например, MUL CL). Тогда второй множитель (тоже байт) берётся обязательно из регистра AL, а результат (16-разрядный, т.е. длиной в слово) окажется в регистре AX:

AX ← AL*op.

Если же операнд «op» взят 16-разрядным (например, MUL CX), то команда выполнит следующее действие:

DXAX ← AX*op,

то есть второй множитель, также 16-разрядный, будет автоматически взят из регистра AX, а результат размером в двойное слово, т.е. 32-разрядный, окажется в регистровой паре, состоящей из DX и AX.

Команда деления DIV работает следующим образом. Как и в команде MUL, здесь указывается единственный операнд, который является делителем. Этот делитель опять же может быть словом или байтом. Если «op» – байт, то команда выполняется как

((AH-остаток) и (AL-частное)) ← AX/op,

то есть делимое берётся из 16-разрядного регистра AX, 8-разрядное частное оказывается записанным в AL, остаток такой же размерности – в AH.

Если же «op» – 16-разрядное слово, то МП выполнит команду как

((DX-остаток) и (AX-частное)) ← DXAX/op,

то есть 32-разрядное делимое будет взято из регистровой пары DXAX, частное окажется в AX, остаток – в DX (оба – 16-разрядные).

Примеры разработки программ

Задание: записать во все РОН целое число 5050.

Данное нам число – это константа. Для записи констант в какие-либо регистры в нашем распоряжении есть команда MOV (таблица 6.4). Число 5050 превосходит максимальное значение для байта (255), но меньше максимального значения для машинного слова (65535). Следовательно, будем использовать 16-разрядные регистры. Программа будет выглядеть так:

MOV AX, 5050

MOV BX, AX

MOV CX, AX

MOV DX, AX

Задание: вычислить выражение (25*7+137*5-60) и результат оставить в регистре AX.

Из рассмотрения данного выражения следует, что нам понадобятся команды ADD (сложить), MUL (умножить), SUB (вычесть), приведённые в таблице 6.5, а также MOV (переслать). Получим сначала произведение 25*7 и сохраним его; затем получим произведение 137*5 и сложим оба частичных результата; вычтем 60 из того, что получилось. Приходим к программе:

MOV AL, 25 ; записать в AL число 25

MOV DL, 7 ; записать в DL число 7

MUL DL ; теперь AX = 25*7

MOV BX, AX ; копировать из АХ в ВХ, теперь BX = 25*7

MOV AL, 137

MOV DL, 5

MUL DL ; AX = 137*5

ADD AX, BX ; AX = 25*7 + 137* 5

SUB AX, 60 ; AX уменьшен на 60

Задания для практической работы
1 Составить таблицу «Регистры процессора» с указанием названия регистра и его назначения.
2 Составить таблицу «Команды Ассемблера» с указанием названия команды, ее мнемокода и выполняемого действия.
3 Разработать программу на языке Ассемблер для вычисления арифметического выражения (таблица 6.6) и сохранения результата в указанном регистре.

Таблица 6.6 – Таблица вариантов

	Вариант
	Выражение
	Регистр-приемник

	1
	(53+8)*2+(150-60)/3
	DX

	2
	(1260-450)/2+310*3
	SI

	3
	(176/2+23*3)-(125-50)/3
	BX

	4
	(786+35)*3+(125-50)/5
	DI

	5
	(5684/4+357/3+245/5)*3
	CX

	6
	(25*7-31*2+11*3)/2
	BL. В регистр BH записать 0

	7
	150/3+78/2+365/5
	CL. В регистр CH записать 0

	8
	(35/7)*(78/2)-190
	BH. В регистр BL записать 0

	9
	(81/9)*(65/5)-110
	CH. В регистр CL записать 0

	10
	150/5-35/7+210/3
	DL. В регистр DH записать 0

Контрольные вопросы

1 Что называется операндом и мнемокодом?
2 Что такое регистры процессора? Для чего используются регистры общего назначения?
3 Чем отличаются команды ADD и INC?
4 Какое сочетание операндов недопустимо для большинства двухоперандных команд Ассемблера?
Практическое занятие № 7
«Изучение системы команд Ассемблера. Команды обработки строк данных и команды организации циклов»

Цель работы: изучить команды обработки строк данных и организации циклов.
Студент должен

уметь:

составлять программы на языке Ассемблера для выполнения задач на обработку строк данных;

знать:

работу команд обработки строк данных и организации циклов.

Краткие теоретические и учебно-методические материалы по теме практической работы

Команды обработки строк данных

Строка – это последовательность байтов или слов, размещаемых в смежных ячейках памяти.

Таблица 7.1 – Команды обработки строк

	Название
	Мнемокод

	Пересылка строки
	MOVS, MOVSB

	Загрузка символа из строки
	LODS, LODSB

	Запись символа в строку
	STOS, STOSB

	Сканирование строки
	SCAS, SCASB

	Сравнение строки
	CMPS, CMPSB

Если обрабатываемая строка состоит из 16-разрядных машинных слов, то применяется мнемокоды команд без буквы “B” на конце (например, LODS); если строка состоит из байтов, то – мнемокоды команд с буквой “B” (например, LODSB). Операнды команд после из мнемокодов, как правило, не указываются; везде используется неявная адресация.

Команда MOVS, MOVSB (move strings) – это пересылка элемента строки из одной области памяти в другую (в отличие от MOV, которая не может выполнять пересылки «память-память»). Строка-источник адресуется регистрами DS:SI (то есть находится в сегменте памяти, на который указывает DS, и имеет смещение, находящееся в SI), строка-получатель – регистрами ES:DI. Таким образом, строка-получатель размещается в дополнительном сегменте данных, если только значения DS и ES не равны.

Содержимое индексных регистров SI и DI во время работы строковых команд не остаётся неизменным – оно также изменяется автоматически в соответствии с правилом SI←SI+delta, DI←DI+delta. Здесь delta=1 для байтовых строк и delta=2 для строк, состоящих из 16-разрядных машинных слов.
В ряде случаев возникает необходимость в пересылке строки в обратном порядке, начиная не с первого, а с последнего элемента. Содержимое индексных регистров при этом должно не увеличиваться, а уменьшаться. Направление изменения содержимого задаётся с помощью флага DF в регистре FLAGS микропроцессора: при DF=0 используется «плюс», при DF=1 – «минус». Сам же флаг DF управляется специальными командами: CLD (сбросить флаг, это значение по умолчанию) и STD (установить флаг).

Команда LODS, LODSB (load from string). Команда осуществляет загрузку элемента строки (слова или байта) в регистр AX или AL соответственно. Строка адресуется с помощью регистров DS:SI.

Команда STOS, STOSB (store to string). С помощью этой команды производится заполнение строки словом (байтом) из регистра АХ или AL соответственно. Заполняемая строка адресуется с помощью регистров ES:DI.

Команда SCAS, SCASB (scan string). Эта команда используется для так называемого «сканирования» одной строки в поисках нужного элемента (слова или байта). В процессе работы команды осуществляется сравнение элемента строки, расположенного по адресу ES:DI, со значением в регистре AX (или AL) путём вычитания; результат вычитания не фиксируется, но устанавливаются соответствующие флаги. Как и при выполнении прочих строковых команд, производится автоинкрементирование (либо автодекрементирование) регистра DI.

Команда CMPS, CMPSB (compare strings). Команда осуществляет поэлементное сравнение элементов двух строк (слов или байтов), одна из которых, как и прежде, расположена в памяти по адресу в регистрах DS:SI, вторая – по адресу в ES:DI. При выполнении этой команды производится вычитание элемента строки с адресом в SI из элемента строки с адресом в DI; результат вычитания никуда не записывается, но зато устанавливаются соответствующие флаги.

ZF – флаг нуля. Устанавливается в 1, если результат предыдущей команды – ноль.

Команды организации циклов

При работе на Ассемблере можно организовать циклы, используя команды условных переходов. Однако, кроме этого, 8086-совместимые МП предоставляют в распоряжение программиста специальные команды циклов LOOP, LOOPNZ, LOOPZ. Все эти команды используют метку, расположенную выше по программе. Часть программы между меткой и какой-либо из рассматриваемых команд и есть тело цикла. Перед входом в цикл следует записать в регистр CX число повторений цикла. Каждый раз при очередном повторении тела цикла процессор будет автоматически вычитать единицу их СХ. Цикл закончится, если:

- СХ будет равен 0 (для команды LOOP);

- СХ будет равен 0 или флаг ZF будет равен 1 (для команды LOOPNZ);

- СХ будет равен 0 или флаг ZF будет равен 0 (для команды LOOPZ).

Для организации циклов при работе со строковыми командами имеются специальные команды-префиксы REP (repeat), REPE, REPNE. Они записываются перед основной командой (например, REP MOVSB) и обеспечивают её выполнение не один, а несколько раз, организуя по сути дела аппаратный (очень быстрый) цикл. Число повторений предварительно записывается в CX и на каждом шаге содержимое CX автоматически уменьшается на 1.

Префикс REP («повторять, пока не обнулится счётчик») анализирует только одно условие окончания повторений, а именно CX = 0.

Префикс REPE («повторять, пока равно») анализирует следующее составное условие окончания повторений: (CX = 0) ИЛИ (ZF = 0).

Префикс REPNE («повторять, пока не равно») в качестве условия окончания повторений использует следующее: (CX = 0) ИЛИ (ZF = 1).

Примеры программ

Пример 1: вычислить сумму 1+2+…+19+20 и записать результат в регистр SI.

Удобно программировать вычисление этой суммы в обратном порядке, т.е. начиная с 20 – тогда можно воспользоваться регистром с убывающим содержимым. В данном случае нам подходит цикл LOOP со счетчиком в CX – ведь его содержимое как раз уменьшается на каждой итерации цикла.

 MOV AX, 0 ; будем накапливать сумму в АХ

 MOV CX, 20 ; подготовим счётчик цикла

MET: ; этой меткой обозначено начало цикла

 ADD AX, CX ; прибавляем очередное слагаемое

 LOOP MET ; переход на начало цикла, если СХ не равно нулю

 MOV SI, AX ; выдадим результат.

Пример 2: Дан массив из трех байтов. Получить другой массив, в котором каждый элемент первого массива увеличен на 5.

Рассматривая массив как строку байтов, разместим исходные данные в сегменте данных (DS) с адреса 0000h, а результат – в дополнительном сегменте (ES) также с адреса 0000h.

 MOV SI, 0 ; начальное значение для LODS (источник данных)

 MOV DI, 0 ; начальное значение для STOS (приемник)

 MOV CX, 3 ; в нашем примере – три исходных элемента

MET:

 LODSB ; загрузим очередной байт массива в AL
 ADD AL, 5 ; обработаем его, как указано в задаче

 STOSB ; запишем обработанный байт в массив результата

 LOOP MET
Задания для практической работы
1 Составить таблицу «Команды обработки строк» с указанием названия команды, ее мнемокода, адресов источника и приемника.
2 Составить таблицу «Команды организации циклов» с указанием названия команды, ее мнемокода и выполняемого действия.
3 Разработать программу на языке Ассемблер для выполнения задачи в соответствии с вариантом.

Таблица 7.2 – Таблица вариантов

	Вариант
	Задача

	1
	Дана последовательность 15 символов (строка), размещённая по адресу DS:0000h. Переписать эту строку (сделать копию) в другое место оперативной памяти, по адресу ES:0050h.

	2
	Дана последовательность из 10 чисел (байтов), размещённых в сегменте данных, начиная с адреса DS:0010h. Вычислить их сумму и записать результат по адресу ES:0020h.

	3
	Дана последовательность из 5 чисел (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Вычислить сумму квадратов этих чисел и записать результат по адресу ES:0010h.

	4
	Дана последовательность из 6 символов (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Записать строку в обратном порядке по адресу ES:0050h

	5
	Дана последовательность из 10 символов (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Скопировать первые 5 символов в область по адресу ES:0050h, а вторые 5 символов – по адресу ES:0500h

	6
	Дана последовательность из 8 символов (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Поменять местами первые 4 и последние 4 символов и поместить их в область памяти по адресу ES:0000h

	7
	Дана последовательность из 9 символов (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Скопировать строку по адресу ES:0000h, поменяв местами первый и последний символы.

	8
	Дана последовательность из 8 чисел (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Вычислить сумму первых 4 и сумму последних 4 чисел. Разность первой и второй суммы поместить в регистр DX.

	Окончание таблицы 7.2

	9
	Дана последовательность из 7 чисел (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Вычислить сумму произведений чисел на их номер в строке и записать результат по адресу ES:0020h.

	10
	Дана последовательность из 10 чисел (байтов), размещённых в сегменте данных, начиная с адреса DS:0000h. Вычислить сумму с третьего по девятое число и записать результат по адресу ES:0020h.

Контрольные вопросы

1 В каком случае в мнемокоде команд обработки строк ставится буква В?
2 Как изменить направление изменения содержимого индексных регистров?
3 Опишите работу команды LOOP.
4 Как работает префикс REP? Можно ли его использовать не со строковыми командами?
Практическое занятие № 8
«Изучение системы команд Ассемблера. Команды безусловных и условных переходов»

Цель работы: изучить состав регистра флагов, изучить способы организации ветвящихся циклов с помощью команд условных и безусловных переходов.
Студент должен

уметь:

составлять программы на языке Ассемблера для выполнения задач на организацию ветвящихся циклов;

знать:

состав регистра флагов;

работу команд условных и безусловных переходов и команд сравнения.

Краткие теоретические и учебно-методические материалы по теме практической работы

Регистр флагов фиксирует в своих разрядах текущее состояние процессора, результат выполнения операции, текущие режимы управления. Бит устанавливается в 1 при определенных условиях или установка его в 1 изменяет поведение процессора.

CF – флаг переноса. Устанавливается в 1, если результат предыдущей операции не уместился в приемнике и произошел перенос из старшего бита или если требуется заем (при вычитании), иначе устанавливается в 0. Например, после сложения байта FFh и 1, если регистр, в который надо поместить результат, – байт, в него будет записано 00h и флаг CF = 1.

PF – флаг четности. Устанавливается в 1, если младший байт результата предыдущей команды содержит четное число бит, равных 1; устанавливается в 0, если число единичных бит нечетное. Это не то же самое, что делимость на два. Число делится на два без остатка, если его самый младший бит равен нулю, и не делится, если он равен 1.
AF – флаг полупереноса или вспомогательного переноса. Устанавливается в 1, если в результате предыдущей операции произошел перенос (или заем) из третьего бита в четвертый.

ZF – флаг нуля. Устанавливается в 1, если результат предыдущей команды – ноль.

SF – флаг знака. Этот флаг всегда равен старшему биту результата.

TF – флаг ловушки. Этот флаг был предусмотрен для работы отладчиков, не использующих защищенный режим. Установка его в 1 приводит к тому, что после выполнения каждой команды программы управление временно передается отладчику.

IF – флаг прерываний. Установка этого флага в 1 приводит к тому, что процессор перестает обрабатывать прерывания от внешних устройств. Обычно его устанавливают на короткое время для выполнения критических участков кода.

DF – флаг направления. Этот флаг контролирует поведение команд обработки строк – когда он сброшен в 0, строки обрабатываются в сторону увеличения адресов, а когда DF=1 – наоборот.

OF – флаг переполнения. Этот флаг устанавливается в 1, если результат предыдущей арифметической операции над числами со знаком выходит за допустимые для них пределы. Например, если при сложении двух положительных чисел получается число со старшим битом, равным единице (то есть отрицательное) и наоборот.

Команды переходов

Команда безусловного перехода JMP address (jump – прыжок) позволяет передать управление на адрес address (осуществить переход на метку) независимо от значений каких-либо флагов. Метка может находиться на любом расстоянии (в байтах) от точки расположения команды JMP и даже в другом сегменте памяти.

Команды условных переходов осуществляют передачу управления в зависимости от результатов предыдущих операций. Наличие разных наборов команд для чисел со знаком и без знака объясняется тем, что одним и тем же соотношениям чисел со знаком и чисел без знака соответствуют различные сочетания флагов.

Всякая команда условного перехода (обозначим её в общем виде Jcc address) выполняется следующим образом: проверяется регистр флагов; если состояние флагов отвечает определённым условиям, то осуществляется переход на адрес address (на указанную в команде метку). В противном случае выполняется следующая по порядку команда.

В использованном выше обозначении под «cc» подразумевается Condition Code – «код условия». В реальных мнемокодах команд (таблица 6.1) при сравнении чисел со знаком используются буквы G (Greater – больше) и L (Less – меньше), без знака – A (Above – выше) и B (Below – ниже). Условие равенства обозначается буквой E (Equal), невыполнение какого-либо условия – буквой N (Not).

Команды условных переходов могут передавать управление лишь на -128…+127 байт от точки своего расположения. При необходимости более дальних переходов приходится организовывать их сочетания с командой JMP.

Таблица 8.1 – Команды условных и безусловных переходов

	Мнемокод
	Условие
	Значение флагов

	1
	2
	3

	Для данных со знаком

	JL
	Меньше
	SF xor OF=1

	JNL
	Не меньше
	SF xor OF=0

	Окончание таблицы 8.1

	1
	2
	3

	JG
	Больше
	(SF xor OF) or ZF=0

	JNG
	Не больше
	(SF xor OF) or ZF=1

	Для данных без знака

	JB
	Меньше (ниже)
	CF=1

	JNB
	Не меньше (не ниже)
	CF=0

	JA
	Больше (выше)
	CF or ZF=0

	JNA
	Не больше (не выше)
	CF or ZF=1

	Прочие

	JE или JZ
	Равно или нуль
	ZF=1

	JNE или JNZ
	Не равно или не нуль
	ZF=0

	JS
	По минусу
	SF=1

	JNS
	По плюсу
	SF=0

	JO
	По переполнению
	OF=1

	JNO
	По отсутствию переполнения
	OF=0

	JMP
	Безусловный переход
	Не зависит от флагов

	JCXZ
	Переход по нулю в регистре СХ
	

Примечания:

- термины «выше» и «ниже» применимы для сравнения беззнаковых величин (адресов), термины «больше» и «меньше» используются при учете знака числа;

- слова xor и or обозначают соответствующие логические операции (xor – исключающее или, or – или).

Команды сравнения

Команда CMP (to compare – сравнивать) служит для сравнения двух операндов путём вычитания первого операнда из второго (op2-op1). В отличие от обычного вычитания, полученная разность нигде не сохраняется (значения операндов остаются неизменными); результатом команды являются только значения флагов в регистре флагов. Как правило, сразу за командой CMP в программе ставится какая-нибудь из команд условных переходов, анализирующая эти флаги.

Команда SCAS, SCASB (scan string) используется для так называемого «сканирования» одной строки в поисках нужного элемента (слова или байта). В процессе работы команды осуществляется сравнение элемента строки, расположенного по адресу в ES:DI, со значением в регистре AX (или AL) путём вычитания; результат вычитания не фиксируется, но устанавливаются соответствующие флаги. Как и при выполнении прочих строковых команд, производится автоинкрементирование (либо автодекрементирование) регистра DI.

Команда CMPS, CMPSB (compare strings) осуществляет поэлементное сравнение элементов двух строк (слов или байтов), одна из которых расположена в памяти по адресу в регистрах DS:SI, вторая – по адресу в ES:DI. При выполнении этой команды производится вычитание элемента строки с адресом в SI из элемента строки с адресом в DI; как и в обычной команде CMP, результат вычитания никуда не записывается, но зато устанавливаются соответствующие флаги (наиболее важным в данной ситуации является флаг ZF).

Пример программы

Дан массив из десяти слов, содержащих целые числа. Требуется найти максимальное значение в массиве, расположенном по адресу DS:0000h.

 MOV SI, 0000h ; зададим начальный адрес

 LODS ; первый элемент массива загружается в AX
 MOV BX, AX ; копируем это значение в ВХ, считая его
 максимальным

 MOV CX, 9 ; установим счётчик повторений цикла (одно
 число мы обработали)

BEG:

 CMP AX, BX ; сравниваем текущее значение с максимальным

 JL NO ; если он меньше, переходим на метку NO
 MOV BX, AX ; если больше или равен, копируем его в ВХ

NO:

 LODS ; загружаем следующий элемент массива в АХ

 LOOP BEG ; переход на начало цикла, пока СХ не равно 0.

Задания для практической работы
1 Составить таблицу «Регистр флагов» с указанием флага и его назначения.
2 Составить таблицу «Команды переходов» с указанием названия команды, ее мнемокода и значений флагов.
3 Разработать программу на языке Ассемблер для выполнения задачи в соответствии с вариантом.
Таблица 8.2 – Таблица вариантов

	Вариант
	Задача

	1
	Дан массив из 10 байтов. Найти количество отрицательных чисел. Ответ записать в регистр DX.

	2
	Дан массив из 5 слов. Найти сумму всех отрицательных чисел. Ответ записать в регистр DX.

	Окончание таблицы 8.2

	3
	Дан массив из 8 байт. Сформировать другой массив по адресу ES:0010h, заменив все отрицательные числа нулями.

	4
	Дан массив из 10 байт. Найти разность максимального и минимального значения. Ответ записать в регистр DX.

	5
	Дан массив из 9 слов. Найти среднее арифметическое ненулевых элементов. Ответ записать в регистр DX.

	6
	Дан массив из 6 слов. Найти количество четных элементов. Ответ записать в регистр DX.

	7
	Дан массив из 10 байт. Сформировать другой массив по адресу ES:0050h, в который нечетные элементы из первого массива переписать без изменений, а четные – увеличить на 1.

	8
	Дан массив из 15 байт. Определить количество чисел, больших 6. Ответ записать в регистр DX.

	9
	Дан массив из 10 байт. Подсчитать количество элементов, кратных 3. Ответ записать в регистр DX.

	10
	Дан массив из 20 байт. Найти среднее арифметическое квадратов четных чисел. Ответ записать в регистр DX.

Примечание: массив байтов размещается, начиная с адреса DS:0000h.

Контрольные вопросы

1 Что такое регистр флагов? Для чего он используется?
2 Опишите работу команды JMP.
3 Для чего используются команды условных переходов?
4 Как работают команды сравнения? Какие команды к ним относятся?
Практическое занятие № 9
«Изучение системы команд Ассемблера. Логические команды и команды сдвига»

Цель работы: изучить логические команды и команды сдвига данных.
Студент должен

уметь:

составлять программы на языке Ассемблера для выполнения задач на модификацию байтов и поиск нужных сочетаний битов;

знать:

работу логических команд и команд сдвига данных.

Краткие теоретические и учебно-методические материалы по теме практической работы

Логические команды служат для сброса или установки отдельных бит или байт в слове. Они включают операторы «не», «или», «и», «исключающее или» и операцию тестирования.

Таблица 9.1 – Логические команды

	Название
	Мнемокод
	Действие

	«Не»
	NOT op
	op←NOT(op)

	Логическое «или»
	OR op1,op2
	op1←(op1)U(op2)

	Логическое «и»
	AND op1,op2
	op1←(op1)&(op2)

	«Исключающее или»
	XOR op1,op2
	op1←(op1)XOR(op2)

	Проверка битов
	TEST op1,op2
	FLAGS←(op1)&(op2)

Инструкция NOT op инвертирует все биты байта или слова.

Команда OR op1,op2 выполняет поразрядное логическое «или» двух операндов и помещает результат на место первого операнда. Бит результата устанавливается в 1, если хотя бы один из двух соответствующих битов операндов равен 1, и устанавливается в 0 если нет.

Команда AND op1,op2 выполняет поразрядное логическое «и» двух операндов и помещает результат на место первого операнда. Бит результата устанавливается в 1, если установлены в 1 оба соответствующих ему бита операндов, и устанавливаются в 0 противном случае.

Команда XOR op1,op2 выполняет поразрядную операцию «исключающее или» двух операндов и помещает результат на место первого операнд. Бит результата устанавливается в 1, если соответствующие ему биты операндов имеют противоположные значения, и устанавливается в 0 в противном случае.

Инструкция TEST выполняет логическое «и» двух операндов (байтов или слов), модифицирует флаги SF, ZF и PF, но результат не возвращает, т.е. операнды не изменяются.

Команды сдвига данных

Таблица 9.2 – Команды сдвига данных

	Название
	Мнемокод
	Действие

	Сдвиг операнда влево
	SHL dst,CL
	[image: image43.png]a0

	Сдвиг операнда вправо
	SHR dst,CL
	[image: image44.png]st

	Циклический сдвиг влево
	ROL dst,CL
	[image: image45.png]

	Циклический сдвиг вправо
	ROR dst,CL
	[image: image46.png]

	Циклический сдвиг влево через CF
	RCL dst,CL
	[image: image47.png]s

	Циклический сдвиг вправо через CF
	RCR dst,CL
	[image: image48.png]an

Команда SHL dst,CL выполняет сдвиг битов влево на число разрядов, хранящееся в регистре CL. Освобождающиеся при сдвиге разряды заполняются нулями. При этом последний сдвигаемый бит сохраняется в флаге CF. Например, SHL 11111111b,3. После выполнения команды получим 11111000.

Команда SHR dst,CL работает аналогично, но сдвиг выполняется вправо. Например, SHR 11111111b,3. После выполнения команды получим 00011111.

Команда ROR dst,CL выполняет циклический сдвиг вправо на число разрядов, хранящееся в регистре CL. При этом младший сдвигаемый бит копируется в флаг CF.

[image: image49.png]Jlo caira

Casur spaso

Tocse camura

Рисунок 9.1 – Изображение циклического сдвига вправо

Команда ROL dst,CL выполняет циклический сдвиг влево на число разрядов, хранящееся в регистре CL. При этом старший сдвигаемый бит копируется в флаг CF.

Команда RCL dst,CL выполняет циклический сдвиг влево через CF. Все разряды операнда циклически сдвигаются влево. Содержимое старшего разряда загружается в СF, а прежнее содержимое СF загружается в младший разряд результата.

Команда RCR dst,CL выполняет циклический сдвиг вправо через CF. Все разряды операнда циклически сдвигаются вправо. Содержимое младшего разряда загружается в СF, а прежнее содержимое СF загружается в старший разряд результата.

Примеры программ
Задача 1. Установить 3 и 0 биты в регистре AL, остальные не изменять.

 OR AL, 00001001b

Задача 2. Сбросить 4 и 6 битвы в регистре AL, остальные биты не изменять.

 AND AL, 10101111b

Задача 3. Инвертировать 2 и 4 биты в регистре AL, остальные биты не изменять.

 XOR AL, 00010100b

Задача 4. Перейти на метку LAB, если установлен 4 бит регистра AL, в противном случае продолжить выполнение программы.

 TEST AL, 00010000b

 JNZ LAB

LAB:

Задача 5. Посчитать число единиц в регистре AL, рассматривая байт, как набор бит.

 MOV CX, 8 ; число сдвигов

 XOR BL, BL ; обнуление BL

LL: SHL AL, 1 ; сдвиг влево на один разряд

 JNC NO ; переход, если нет переноса

 INC BL ; иначе увеличить BL

NO: LOOP LL ; возврат, если СХ не равно 0

Задания для практической работы
1 Составить таблицы «Логические команды» и «Команды сдвига данных» с указанием названия команды, ее мнемокода и выполняемого действия.
2 Определить содержимое регистра AL при выполнении команд (таблица 9.3).
3 Разработать программу на языке Ассемблер для выполнения задачи в соответствии с вариантом (таблица 9.4).
Таблица 9.3 – Таблица вариантов для задачи 2

	Вариант
	Задача

	1
	MOV AL,11111111b

OR AL,00100100b
	MOV AL, 10100111b

XOR AL, 10010101b

	2
	MOV AL,11111111b

OR AL, 11000011b
	MOV AL, 10011111b

AND AL, 11010110b

	3
	MOV AL,11111111b

AND AL, 10100001b
	MOV AL, 11001001b

XOR AL, 10011101b

	4
	MOV AL,11111111b

OR AL, 11100010b
	MOV AL, 10110100b

XOR AL, 10011101b

	5
	MOV AL,11111111b

OR AL, 10001110b
	MOV AL, 10101011b

AND AL, 11011101b

	6
	MOV AL,11111111b

AND AL, 11011110b
	MOV AL, 00100111b

XOR AL, 10011101b

	7
	MOV AL,11111111b

OR AL, 00101011b
	MOV AL, 11001111b

XOR AL, 11011010b

	8
	MOV AL,11111111b

OR AL, 10111110b
	MOV AL, 01000010b

AND AL, 01101000b

	9
	MOV AL,11111111b

AND AL, 10101100b
	MOV AL, 11110101b

XOR AL, 10011101b

	10
	MOV AL,11111111b

OR AL, 11100111b
	MOV AL, 10010101b

XOR AL, 11000010b

Таблица 9.4 – Таблица вариантов для задачи 3

	Вариант
	Задача

	1
	Дан массив из 10 байт. Посчитать количество байт, в которых сброшены 6 и 4 биты.

	2
	Дан массив из 8 байт. Рассматривая его, как массив из 64 бит, посчитать количество единиц.

	3
	Дан массив из 10 байт. Посчитать количество байт с числом единиц в байте равным трем.

	4
	Дан массив из 6 байт. Рассматривая его, как массив из 48 бит, посчитать в нем количество нулей.

	5
	Дан массив из 8 байт. Посчитать количество байт, в которых число нулей и единиц одинаковое.

	6
	Дан массив из 13 байт. Посчитать количество байт, содержащих только нули или единицы.

	7
	Дан массив из 6 байт. Посчитать количество байт, число нулей в которых не больше трех.

	8
	Дан массив из 7 байт. Посчитать количество байт, в которых разряды 7 и 0 установлены в единицу.

	Окончание таблицы 9.4

	9
	Дан массив из 20 байт. Посчитать количество байт, содержимое которых равно 10101010b.

	10
	Дан массив из 11 байт. Посчитать количество байт, в которых старшим разрядом является ноль, а младшим разрядом – единица.

Примечание: массив байтов размещается, начиная с адреса DS:0000h. Ответ должен быть записан в регистр DX.

Контрольные вопросы

1 Для чего служат логические команды?
2 Какие команды относятся к логическим и как они работают?
3 Как работают команды SHL dst,CL и SHR dst,CL?
4 Чем отличаются команды ROL dst,CL и RСL dst,CL?
Практическое занятие № 10
«Изучение системы команд Ассемблера. Подпрограммы и прерывания»

Цель работы: изучить принцип вызова и работу с подпрограммами, изучить принцип работы с прерываниями.
Студент должен

уметь:

составлять программы на языке Ассемблера для выполнения задач на использование подпрограмм и прерываний;

знать:

работу команд вызова подпрограмм и прерываний;
порядок организации вызова подпрограммы и прерывания.
Краткие теоретические и учебно-методические материалы по теме практической работы

Для организации работы с подпрограммами используются команды CALL и RET. Команда CALL address предназначена для организации обращения к подпрограмме расположенной по адресу address (с автоматическим сохранением адреса возврата в стеке). Команда RET применяется для возврата из подпрограммы в основную программу, при этом адрес возврата берётся с вершины стека.

Для передачи входных параметров в подпрограмму и выходных в программу существует несколько способов. Чаще всего передача параметров осуществляется через регистры или через стек. При передаче через регистры перед вызовом подпрограммы параметры заносятся в регистры процессора, а после возврата вызывающая программа забирает из регистров значения результатов. При передаче через стек, параметры перед вызовом подпрограммы заносятся в стек.

Подпрограмма во время выполнения использует регистры процессора. Значения, которые в них хранились, могут ещё понадобиться основной программе. Поэтому каждая подпрограмма обязана сохранить значения регистров перед началом их использования, а после завершения работы перед возвратом восстановить их прежние значения. Для сохранения регистров используется стек.

Команда PUSH служит для занесения содержимого 16-разрядного источника (машинного слова) в стек. Источником могут быть РОН, индексный регистр, сегментный регистр, ячейка памяти. Выполнению команды предшествует автоматически выполняемое действие (SP)←(SP)-2.

Команда POP извлекает 16-разрядный операнд из стека и пересылает его в место назначения, указанное в команде – РОН, индексный регистр, сегментный регистр, ячейку памяти. После извлечения операнда из стека МП автоматически формирует новый адрес вершины стека, выполняя действие (SP)←(SP)+2.

Каждая подпрограмма должна содержать равное количество команд PUSH и POP. При этом возврат значений в регистры осуществляется обратно записи:

PUSH DX
PUSH BX

…

POP BX

POP DX.

Для обработки особых состояний ЦП необходимо прервать выполнение текущей программы и перейти к выполнению подпрограммы обслуживания прерывания. После её завершения ЦП возвращается к прерванной программе и продолжает её выполнение.

За каждым прерыванием закрепляется его номер. В начальных адресах оперативной памяти располагается особая структура данных – таблица векторов прерываний (ТВП). Каждый вектор – это полный адрес начала подпрограммы обработки соответствующего прерывания, состоящий из адреса сегмента и смещения, занимающий 4 байта.

Получив команду вызова прерывания (например, INT 10h), ЦП сохраняет в стеке полный (CS, IP) адрес очередной команды в прерванной программе, затем там же сохраняет регистр FLAGS, сбрасывает флаги IF и TF, после чего обращается к ТВП и, основываясь на номере прерывания, извлекает из ТВП адрес подпрограммы обработки. Далее ЦП выполняет эту подпрограмму (и тем самым обслуживает прерывание), пока ему не встретится команда IRET (возврат из прерывания). По этой команде ЦП восстанавливает из стека сохранённый ранее адрес (а также и регистр FLAGS) и возвращается к продолжению прерванной программы.

Разница между обычным вызовом подпрограммы (командой CALL) и вызовом подпрограммы через механизм прерываний (командой INT) состоит в следующем. При пользовании командой CALL программист обязан знать адрес начала подпрограммы, в то время как при вызове прерывания знать этот адрес совершенно не нужно – нужен лишь номер соответствующего прерывания. Это удобно при вызове различных сервисов операционных систем (ОС). Ряд ОС, в том числе и MS-DOS-подсистема ОС Windows, содержат в себе большое количество стандартных подпрограмм обслуживания клавиатуры, мыши, дисплея, дисковых устройств, COM- и LPT-портов и т.д.

Команды RET (возврат из подпрограммы) и IRET выполняют различные действия и не являются взаимозаменяемыми.

Команда вызова программного прерывания имеет вид

INT <номер прерывания>,

где <номер прерывания> – число, обычно в шестнадцатеричное, в диапазоне 00h – 0FFh, определяющее адрес вызываемой резидентной программы.

Наибольшее число различных системных функций в MS-DOS сосредоточено в резидентной программе с номером прерывания 21h – диспетчер функций MS-DOS. В зависимости от значения, содержащегося при вызове прерывания в регистре АН, MS-DOS выполняет одну из нескольких десятков функций MS-DOS.

Для вызова функции прерывания DOS 21h необходимо проделать следующие действия:

- выбрать функцию, выполняющую требуемые действия;

- занести номер функции в регистр АН;

- подготовить другие регистры (если это необходимо);

- написать команду INT 21h;

- прочесть результаты или состояние из регистров, указанных в описании функции.

Таблица 10.1 – Описание функций прерывания 21h
	Номер функции
	Описание
	Параметры вызова
	Возвращаемое значение

	01h
	Ввод с клавиатуры одного символа и отображение его на экране
	АН = 01h
	AL = код ASCII введенного символа

	02h
	Отображение символа на стандартный вывод (дисплей)
	АН = 02h

DL = отображаемый символ
	нет

	05h
	Отображение символа на принтер Функция не возвращает ошибки состояния принтера.
	АН = 05h

DL = символ для принтера
	нет

	07h и 08h
	Выполняет ввод с клавиатуры одного символа. Введенный символ не отображается на экране
	АН =07h или

АН =08h
	AL = код ASCIL введенного символа

	09h
	Выполняет отображение строки на стандартный вывод. $ – признак конца строки (не отображается).
	АН = 09Н

DS:DX = адрес отображаемой строки
	нет

	ОАh
	Выполняет ввод с клавиатуры в буфер строки символов. Символы при этом отображаются на экране. Символы вводятся один за другим, до тех пор, пока не будет введен код ODh (код клавиши Enter), завершающий строку. При вводе пользователь может редактировать строку
	АН = 0Ah

DS:DX = адрес буфера ввода
	строка символов по указанному адресу

	0Bh
	Выполняет опрос состояния буфера клавиатуры. Устанавливает значение AL в зависимости от наличия символов в буфере клавиатуры. Часто используются в задачах, действующих при нажатии определенных клавиш.
	АН = 0Bh
	AL = 00h, если нет символа в буфере клавиатуры;

AL = FFh, если есть символ в буфере клавиатуры.

Задания для практической работы
1 Составить таблицу «Команды организации подпрограмм и прерываний» с указанием названия команды, ее мнемокода и выполняемого действия.
2 Составить таблицу «Функции прерывания 21h» с указанием номера функции, выполняемого действия, параметров вызова и возвращаемых значений.

3 Разработать программу для сложения содержимого регистров BX, CX и DX. Содержимое регистров определяется в подпрограмме по формуле (таблица 10.2). Содержимое регистра AL для каждого из регистров BX, CX и DX – разное.
4 Разработать программу на языке Ассемблер для выполнения задачи (таблица 10.3).
Таблица 10.2 – Таблица вариантов для задачи 3
	Вариант
	Формула для определения содержимого регистров
	Значения AL для регистров

	
	
	BX
	CX
	DX

	1
	(AL/2+AL*3)-50
	48
	22
	36

	2
	AL*(AL+2)-190
	23
	45
	98

	3
	(AL/4+AL/5)*3
	200
	80
	120

	4
	150/AL-AL/5+210/AL
	15
	5
	30

	5
	(150+AL)/2+365+AL
	156
	238
	46

	6
	(AL/9)*(AL/5)-10
	45
	135
	90

	7
	(1260-AL)/2+AL*3
	128
	254
	222

	8
	(AL+35)*3+(125-AL)/5
	55
	60
	75

	9
	(AL*7-AL*2+AL*3)/2
	16
	78
	92

	10
	(53+AL)*2+(150-AL)/3
	36
	82
	18

Таблица 9.2 – Таблица вариантов

	Вариант
	Задача

	1
	Ввести символ с клавиатуры с выводом на экран. К получившемуся числу прибавить 01101100b и вывести получившийся символ на экран.

	2
	Вывести на экран строку, содержащуюся по адресу DS:0120h.

	3
	Вывести на экран символ из ячейки по адресу DS:1234h.

	4
	Ввести символ с клавиатуры без вывода на экран. В получившемся числе произвести циклический сдвиг влево на один бит и вывести получившийся символ на экран.

	5
	Загрузить с клавиатуры строку по адресу DS:0450h.

	6
	Вывести на принтер символ из ячейки по адресу DS:0FFFh.

	7
	Проверить, есть ли в буфере клавиатуры символ. Если символ отсутствует, то загрузить в AL число 06h, затем вывести символ на экран.

	8
	Загрузить с клавиатуры символ в ячейку по адресу DS:012Ah без вывода на экран.

	9
	Ввести с клавиатуры символ с выводом на экран, вывести этот символ на принтер.

	10
	Загрузить с клавиатуры символ в ячейку по адресу DS:01FFh с выводом на экран.

Контрольные вопросы

1 Как осуществить вызов подпрограммы и возврат из нее?
2 Как сохранить значения регистров при входе в подпрограмму?
3 Как осуществить вызов прерывания?
4 Как осуществляется обработка команды вызова прерывания?
5 Чем отличаются команды CALL и INT?

Практическое занятие № 11
«Изучение типов современных процессоров»

Цель работы: изучить виды и характеристики современных процессоров, изучить ключевые характеристики, необходимые для выбора процессора.
Студент должен

уметь:

находить необходимую информацию о процессоре, делать оценку применяемости процессора для решения конкретных задач;

знать:

типы современных процессоров, их ключевые характеристики, необходимые для выбора процессора.

Краткие теоретические и учебно-методические материалы по теме практической работы

На сегодняшний день на рынке представлен выбор огромного количества процессоров, хоть и актуальных производителей всего два – Intel и AMD, но из-за присутствующих в продаже многочисленных линеек процессоров легко потеряться в выборе.

Ключевые характеристики, из которых необходимо исходить при выборе – это производительность и соотношение цена-качество. Сравнивать современные процессоры, анализируя только частоту или количества кэша некорректно.

Процессоры Intel

Актуальная продукция Intel, представленная на рынке, ныне представляет собой две архитектуры: Core 2 Duo и его дальнейшее развитие Nehalem. Базовыми отличиями архитектуры Nehalem от Core 2 Duo являются:

1 Полноценная реализация четырёх (и более)-ядерности, причем все ядра располагаются на одном кристалле. Типичный Core 2 Duo представляет собой два соединенных на одной подложке кристалла, в силу чего взаимодействие между ними реализовано посредством Северного моста;

2 Поддержка памяти DDR3 SDRAM, более того, системы на базе сокета 1366 могут работать в трёхканальном режиме. Вариантам на сокете 1156 доступен лишь двухканальный. Разница в производительности составляет 5-7%;

3 Интеграция контроллера памяти (DDR3) под распределительную крышку процессора;

4 Появление общего для всех ядер кэша третьего уровня;

5 Использование технологии Hyper-Threading. Для части линеек процессоров Nehalem вновь доступна логическая эмуляция ядер на базе физических. В процессорах с использованием этой технологии каждый физический процессор может хранить состояние сразу двух потоков, что для операционной системы выглядит как наличие двух логических процессоров. Физически у каждого из логических процессоров есть свой набор регистров и контроллер прерываний, а остальные элементы процессора являются общими;

6 Turbo Boost. Динамически – ступенчатое увеличение частоты на величину кратной 133 в зависимости от нагрузки. Работает без какого-либо дополнительного программного обеспечения;

7 Изменение во многом самой внутренней структуры процессора (предсказание переходов, обработка циклов, исполнения инструкций), появление новых шин передачи данных (QPI), Power Control Unit, управляющий энергопотреблением.
Процессоры AMD

Изменения структуры процессоров у данной компании происходили плавно без агрессивных скачков, потому нагляднее рассматривать продукцию AMD с точки зрения совместимых сокетов. Наиболее актуальными на сегодняшний день являются AM2, AM2+ и AM3. Передовым, безусловно, считается AM3. Выделим главные нюансы процессоров под сокет AM3:

1 Наличие обратной совместимости. Все процессоры на сокете AM3 можно использовать на большинстве материнских плат с сокетом AM2+.

2 Поддержка контролером памяти возможности работы как с новой DDR3 SDRAM, так и со старой DDR2 SDRAM.

3 Для шестиядерных процессоров доступна функция Turbo CORE. В случае простоя трёх ядер частота остальных повышается, также увеличивается и вольтаж, причём всех ядер. Кроме того, доступна тонкая настройка режимов технологии посредством утилиты ADM OverDrive.

Соотношение цена-качество у процессоров AMD лучше, чем у Intel.

Задания для практической работы
Найти в сети Интернет необходимую информацию по любым двум видам процессоров Intel и двум процессорам AMD. Составить сравнительную таблицу этих процессоров на примере таблицы 11.1. Сделать вывод о соотношении цена-функциональность для рассмотренных процессоров.
Таблица 11.1 – Сравнение процессоров
	Характеристика
	Процессоры Intel
	Процессоры AMD

	
	« »
	« »
	« »
	« »

	Разрядность
	
	
	
	

	Количество ядер
	
	
	
	

	Частота
	
	
	
	

	Объем кэш
	
	
	
	

	Тип сокета
	
	
	
	

	Производительность
	
	
	
	

	Дополнительные возможности
	
	
	
	

	Возможная область применения
	
	
	
	

	Цена
	
	
	
	

Контрольные вопросы

1 В чем отличия архитектуры Nehalem от Core 2 Duo?
2 В чем преимущества процессоров AMD под сокет AM3?
3 В чем преимущества процессоров AMD по сравнению с Intel?
PAGE
4

_1317501743.unknown

_1321902184.unknown

_1321902836.unknown

_1321906853.unknown

_1321907344.unknown

_1349677851.unknown

_1321906983.unknown

_1321906744.unknown

_1321902502.unknown

_1321902600.unknown

_1321902285.unknown

_1317664503.unknown

_1317665430.unknown

_1321901980.unknown

_1321902172.unknown

_1321900726.unknown

_1317665395.unknown

_1317663930.unknown

_1317664395.unknown

_1237324274.unknown

_1317501648.unknown

_1317501664.unknown

_1317501722.unknown

_1237324796.bin

_1317501577.unknown

_1237324806.bin

_1237324784.bin

_1138052457.unknown

_1237324253.bin

_1138052323.unknown

