	[image: image119.png]

	МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН

Государственное бюджетное профессиональное образовательное учреждение

Уфимский колледж радиоэлектроники, телекоммуникаций и безопасности

	
	УТВЕРЖДАЮ

Зам. директора

_____________ Л.Р. Туктарова

«29» августа 2017 г.

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ

ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ

ЛАБОРАТОРНЫХ РАБОТ

МЕЖДИСЦИПЛИНАРНЫЙ КУРС «ТЕХНОЛОГИЯ РАЗРАБОТКИ И
ЗАЩИТЫ БАЗ ДАННЫХ»

специальность 09.02.03 «Программирование в компьютерных системах»
ДЛЯ СТУДЕНТОВ ОЧНОЙ И ЗАОЧНОЙ ФОРМ ОБУЧЕНИЯ
	СОГЛАСОВАНО
Зав. кафедрой
_____________ М.Е. Бронштейн

	РАЗРАБОТАЛ

Преподаватель

_____________ Н.Н.Старовойтова

Уфа 2017 г.

СОДЕРЖАНИЕ

	
	 Стр.

	Предисловие
IV семестр
	3

	Лабораторная работа № 1 «Построение схем баз данных (различного уровня сложности)»
	5

	Лабораторная работа № 2-3 «Установка и нормализация отношений в базе данных (различные нормальные формы)»
	9

	Лабораторная работа № 4 «Создание объектов баз данных (таблиц)» Лабораторная работа
№ 5-6 «Разработка приложений баз данных»
	13
20

	Лабораторная работа № 7 «Работа с объектами баз данных (с полями таблицы)»
	24

	Лабораторная работа № 8 «Мани​пулирование данными (хранение, добавление, ре​дактирование, удаление данных)»
	27

	Лабораторная работа № 9 «Создание, перестройка и удаление индекса»
	32

	Лабораторная работа № 10-11 «Сортировка, поиск и фильтрация данных»
	34

	Лабораторная работа № 12 «Определение условий ссылочной целостности»
	39

	Лабораторная работа № 13-14 «Создание объектов баз данных (отчётов)»
	42

	Лабораторная работа № 15-16 «Построение концептуальной модели базы данных»
	46

	Лабораторная работа № 17-18 «Создание логической модели данных с помощью утилиты автоматизированного проектирования базы данных»
	50

	Лабораторная работа № 19-20 «Создание физической модели данных с помощью утилиты автоматизированного проектирования базы данных»
	62

	
	

	V семестр
	

	Лабораторная работа № 21 «Разработка серверной части базы данных в инструментальной оболочке»
	69

	Лабораторная работа № 22 «Визуальное проектирование структуры базы данных»
	73

	Лабораторная работа № 23 «Разработка клиентской части базы данных в инструментальной оболочке»
	77

	Лабораторная работа № 24-25 «По​строение запросов к базе данных на языке SQL (различных типов)»
	82

	Лабораторная работа № 26-27 «Выполнение сортировки, поиска, фильтрации данных: в базах данных и выборках»
	87

	Лабораторная работа № 28 «Создание и использование хранимых процедур.»
	91

	Лабораторная работа № 29«Создание генераторов и триггеров в базах данных. Каскадные воздействия»
	97

	Лабораторная работа № 30 «Формирование и печать отчетов»
	100

	Лабораторная работа № 31 «Создание сервера приложений с помощью системы программирования»
	106

	Лабораторная работа № 32 «Создание клиентской программы»
	109

	Лабораторная работа № 33 «Установление привилегий доступа»
	111

	Лабораторная работа № 34 «Копирование и восстановление данных»
	113

	Лабораторная работа № 35 «Копирование клиентской части»
	118

	Лабораторная работа № 36-37 «Резервное копирование и восстановление БД Oracle»
	121

	Лабораторная работа № 38-39 «Защита баз данных на примере MS ACCESS»
	126

	Лабораторная работа № 40-41«Аппаратные решения для выявления и предотвращения утечек конфиденциальной информации в базах данных»
	132

	Лабораторная работа № 42-43 «Представления, хранимые процедуры, функции, триггеры»
	135

ПРЕДИСЛОВИЕ

Методические указания для студентов по выполнению лабораторных работ адресованы студентам очной и заочной форм обучения.

Методические указания созданы в помощь для работы на занятиях, подготовки к лабораторным работам, правильного составления отчетов.

Приступая к выполнению лабораторной работы, необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы.

Отчет о лабораторной работе необходимо выполнить и сдать в срок, установленный преподавателем.

Наличие положительной оценки по лабораторным работам необходимо для получения зачета по МДК и/или допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за лабораторную необходимо найти время для ее выполнения или пересдачи.

Правила выполнения лабораторных работ

1. Студент должен прийти на лабораторное занятие подготовленным к выполнению лабораторной работы.

2. После проведения лабораторной работы студент должен представить отчет о проделанной работе.

3. Отчет о проделанной работе следует выполнять в журнале лабораторных работ на листах формата А4 с одной стороны листа.

Оценку по лабораторной работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.

Зачет по выполнению лабораторных работ студент получает при условии выполнения всех предусмотренных программой лабораторных работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к лабораторным работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий.

Обеспеченность занятия (средства обучения):
1. Учебно-методическая литература:

- Кумскова И.А. Базы данных. – ООО Издательство «КноРус», 2016

- В.П.Агальцов. Базы данных. В 2-х кн. Книга 1. Локальные базы дан-

ных: учебник. – М.: ИД «ФОРУМ»: ИНФРА-М, 2017

- В.П.Агальцов. Базы данных. В 2-х кн. Книга 2. Распределенные и

 удаленные базы данных: учебник. – М.: ИД «ФОРУМ»: ИНФРА-М, 2017.

2. Технические средства обучения:

· персональный компьютер.

3. Программное обеспечение: Borland Delphi с утилитой InstallShield Express., InterBase, ERWin Data Modeler i7
4. Отчет по выполнению лабораторных работ.

Порядок выполнения отчета по лабораторной работе
1. Ознакомиться с теоретическим материалом по практической работе.

2. Записать краткий конспект теоретической части.

3. Выполнить предложенное задание согласно варианту.

4. Продемонстрировать результаты выполнения предложенных заданий преподавателю.

5. Записать код программы (ход работы) в отчет.

6. Ответить на контрольные вопросы.

7. Записать выводы о проделанной работе.

Лабораторная работа 1
Построение схем баз данных (различного уровня сложности)
Цель работы: научиться строить схемы баз данных
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· формировать и настраивать схему базы данных;
знать:

· основные положения теории баз данных, хранилищ данных, баз знаний;

Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Словарь терминов:

объект – нечто существующее и различимое, обладающее набором свойств;

параметр – конкретное значение свойства объекта;

сущность – отображение объекта в памяти человека или компьютера;

атрибут – конкретное значение свойства сущности;

ключевой элемент (ключ) – атрибут по значению которого можно определить значения других неключевых атрибутов; с помощью ключей устанавливаются связи между таблицами;
связь – функциональная зависимость между сущностями;

предметная модель – часть реального мира, сведения о которой будут помещены в базу данных (объекты реального мира).
Проектирование баз данных состоит из трех фаз: концептуальной, логической и физической.

 Первая фаза предусматривает создание концептуальной модели данных, не зависящей
от каких-либо физических характеристик. Концептуальная (инфологическая) модель – совокупность концептуальных требований выдвинутых работниками структурных подразделений фирмы (свойств объекта). Результатом этого этапа является высокоуровневое представление (в виде системы таблиц БД) информационных требований пользователей на основе различных подходов.

Для графического отображения инфологической (концептуальной) разработан специальный язык ER-диаграмм (Entity-Relationship, т.е. сущность-связь).
Приняты следующие обозначения:

– сущность отображается прямоугольником;

– ассоциация (связь, содержащая атрибуты) отображается ромбом;

– связи отображаются ребрами (линиями) с указанием (или без) типа связи;

– атрибуты отображаются овалами.

Между двумя сущностями можно установить связи:
1) связь «один-к-одному» – каждому экземпляру одной сущности соответствует один экземпляр второй сущности;

2) связь «один-ко-многим» – каждому экземпляру одной сущности соответствует несколько экземпляров второй сущности;

3) связь «многие-к-одному» – зеркальное отображение связи «один-ко-многим». Этот тип связи имеет больше теоретическое значение, нежели практическое;
4) связь «многие-ко-многим» – нескольким экземплярам одной сущности соответствует несколько экземпляров второй сущности (или отсутствует экземпляр второй сущности).

Типы сущностей:

1) стержневая – независимая самодостаточная сущность, которая внутри себя содержит необходимое количество атрибутов, но может также подключать к себе характеристическую сущность (или сущности) и ассоциативную сущность;
2) ассоциативная сущность интерпретируется как две сущности, между которыми установлена связь «один-ко-многим» или связь «один-ко-многим» с добавленными атрибутами двух сущностей, некоторые из которых являются ключами (т.е. ассоциация);

3) характеристическая – сущность, которая уточняет своими атрибутами главную стержневую (или ассоциативную) сущность;

4) обозначающая – универсальная характеристическая сущность, может существовать автономно (не зависеть от стержневой сущности) и представлять собой некоторый справочник.

Виды ключей:

1) первичный ключ – атрибут или группа атрибут, которые однозначно определяют каждый экземпляр сущности; первичный ключ всегда должен быть уникальным;
2) внешний ключ – атрибут или группа атрибутов, соответствующих по составу и типу входящих в него полей первичному (или альтернативному) ключу, принадлежащих стержневой или ассоциативной сущности (т.е. размещенных в дочерней таблице) и предназначенных для организации связи с характеристической сущностью (родительской таблицей по первичному или альтернативному ключу).
Пример. Построение схемы базы данных для предметной области «МАГАЗИН»
 Рассмотрим предметную модель, которая содержит следующие сущности и их атрибуты:

- товар (наименование товара, цена за единицу, срок хранения);

- поставщик (наименование поставщика);

ассоциация – накладная (номер накладной, дата поставки, количество).

 Концептуальную модель предметной области «МАГАЗИН» (ER-диаграмму) можно представить в следующем виде:

 [image: image2.png]Koy
MOCTAaBIIHKA

IMocraBmmk

Kooy
TIOCTaBIMKA

C]:)OK\
AHCHMS | Tosap

Tun
YNaKOBKH

IMocraBmux

Bun
YIaKOBKH

Koy Buna
YNaKOBKH

Haumenosanne
BUZIA

4

Hanmenosanne
TUIIOB

XapaKTepHCTHKH
THIa

pa
[— CTep>KHEBAsl CYIIHOCTB;
<> — acCcOUMaTHBHAS CYIIHOCTS;
£\ — XapaKTEpUCTUYECKAs CYIHOCTS;
L7 — 0603Hayaomast CyuHOCTb.

Emxocts
YNaKOBKH

 Рисунок.1 Концептуальная (инфологическая) модель

Для данного примера выделим следующие сущности.

Сущность «Товар»
	Наименование атрибута
	Тип атрибута
	Назначение атрибута

	Порядковый номер товара
	Целочисленный
	Первичный ключ

	Наименование товара
	Символьный
	Информационное

	Цена за единицу
	Числовой
	Информационное

	Срок хранения
	Символьный
	Информационное

	Ключ типа упаковки
	Целочисленный
	Внешний ключ

	Ключ вида упаковки
	Целочисленный
	Внешний ключ

Сущность «Поставщик»
	Наименование атрибута
	Тип атрибута
	Назначение атрибута

	Порядковый номер поставщика
	Целочисленный
	Первичный ключ

	Наименование поставщика
	Символьный
	Информационное

Сущность «Накладная»
	Наименование атрибута
	Тип атрибута
	Назначение атрибута

	Порядковый номер записи
	Целочисленный
	Первичный ключ

	Номер накладной
	Символьный
	Информационное

	Дата поставки
	Дата
	Информационное

	Количество
	Числовой
	Информационное

	Порядковый номер товара
	Целочисленный
	Внешний ключ

	Порядковый номер поставщика
	Целочисленный
	Внешний ключ

Сущность «Тип упаковки»
	Наименование атрибута
	Тип атрибута
	Назначение атрибута

	Порядковый номер типа упаковки
	Целочисленный
	Первичный ключ

	Наименование типа упаковки
	Символьный
	Информационное

Сущность «Вид упаковки»
	Наименование атрибута
	Тип атрибута
	Назначение атрибута

	Порядковый номер вида упаковки
	Целочисленный
	Первичный ключ

	Наименование вида упаковки
	Символьный
	Информационное

	Емкость упаковки
	Числовой
	Информационное

Установив связи между этими сущностями (рис.2) получаем схему базы данных «Магазин»
 [image: image3.png]Tosap [TopsAKOBBI/ HOMEp 3anHCH

1 MocTaBmmk
ITopsnkoBblii HOMEp TOBapa TMopaKoBbIii HOMEp TOBapa o
HanmMeHoBanHe TOBapa [1opsAKOBBIH HOMEp NOCTABLUMKA [opsakoBEIii HOMEp NOCTaBLINKA
Liena 3a eauHuLy Konunyectso HanmeHoBakHHe NOCTaBIUMKA
Cpok XpaHeHus Howmep Haknansoi
Kooy THNA YNaKOBKH [lara noctasky
Ku1toy BHAa yNaKOBKH =

Bua ynakoBkH
THN yNakoBKH 1

INopsaKoBbIii HOMEp BHAA YNAKOBKH

TTopAAKOBbIH HOMEp THINA YMTAKOBKH HauMeHOBaHHe BHa YAKOBKH

HanMmeHoBaHHe THNA YTIAKOBKH EMKOCTb yNakoBKH

 Рисунок.2. Схема базы данных «Магазин»
Задание.
Создайте схему базы данных для предметной модели «Университет»

Предметная модель содержит следующие сущности и их атрибуты:

- Студент (ФИО, дата рождения, зачетная книжка, группа);

- Группа (номер группы, специальность, факультет, курс);

- Специальность (наименование специальности, стоимость обучения);
- Факультет (наименование факультета, декан).

1) Для установления связей между сущностями определите для каждого из них ключи.

2) Опишите каждую сущность (наименование, тип и назначение атрибута).
3) Изобразите схему базы данных «Университет» с указанием типа связей (первичный ключ отделить от остальных атрибутов подчеркиванием).
Контрольные вопросы.
1. Что такое связь? Назовите характеристики связи.
2. Что такое ER-диаграмма?
3. Для чего нужны ключи?

4. Перечислите виды ключей и дайте им определение.

5. Какое назначение внешнего ключа и какой сущности он принадлежит?
Лабораторная работа 2-3

Установка и нормализация отношений в базе данных (различные нормальные формы)
Цель работы: научиться приводить базы данных к соответствующей нормальной форме
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных;

знать:

· основные положения теории баз данных, хранилищ данных, баз знаний;

Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Процесс нормализации — это разбиение таблицы на две или более с целью ликвидации дублирования данных и потенциальной их противоречивости.

Первая нормальная форма (1НФ-снижение размерности) требует, чтобы каждое поле таблицы БД:

· было неделимым;

· не содержало повторяющихся групп.

Неделимость поля означает, что значение поля не должно делиться на более мелкие значения. Например, если в поле "Подразделение" содержится название факультета и название кафедры, требование неделимости не соблюдается и необходимо из данного поля выделить или название факультета, или кафедры в отдельное поле.

Повторяющимися являются поля, содержащие одинаковые по смыслу значения. Например, если требуется получить статистику сдачи экзаменов по предметам, можно создать поля для хранения данных об оценке по каждому предмету. Однако в этом случае мы имеем дело с повторяющимися группами.
Вторая нормальная форма (2НФ – выделение ключевых полей) требует, чтобы все поля таблицы зависели от первичного ключа, то есть, чтобы первичный ключ однозначно определял запись и не был избыточен. Те поля, которые зависят только от части первичного ключа, должны быть выделены в составе отдельных таблиц.
Третья нормальная форма (ЗНФ – выделение вторичных связанных полей) требует, чтобы значение любого поля таблицы, не входящего в первичный ключ, не зависело от значения другого поля, не входящего в первичный ключ.
Теория нормализации основывается на наличии той или иной зависимости между столбцами таблицы. Основными являются два вида таких зависимостей — функциональные и многозначные.

Функциональная зависимость . Если значение одного поля определяется значением другого поля, то между полями существует функциональная зависимость. Причем значение первого поля в любой момент времени принимает единственное значение из списка значений.

Многозначная зависимость. Если одно неключевое поле многозначно зависит от другого поля ключевого или неключевого, то между этими полями существует многозначная зависимость. Другими словами, если для одного поля можно указать четкое множество значений другого поля, то между этими полями существует многозначная зависимость.
В реляционной модели объекты представлены в виде таблиц (двумерных массивов). Таблицей могут отображаться не только объекты, но и связи. Каждая таблица в реляционной теории называется отношением.
В простейшем случае база данных состоит из одной таблицы, в которой хранятся все данные. Такая таблица называется универсальной. Процедура выделения новых таблиц (отношений) называется декомпозицией, а каждая выделенная таблица – проекцией. Если соединение всех выделенных проекций приводит к первоначальной универсальной таблице, то такая декомпозиция называется полной.
Пример. Дана не нормализованная (универсальная) таблица «Студент». Необходимо привести её к третьей нормальной форме.

	ФИО
	Данные

	Иванов И.И.
	ПП-119 АСУ Муж. 19.01.1990

	Петров П.П.
	Э-119 Электронщики Муж. 1991

	Васильева К.И.
	Прикладная Информатика 1990 Жен ПК-129

	Сидоров И.П.
	Электронщики 20.05.1991 Муж. Э-119

1. Таблица, приведенная к 1NF :
	 ФИО
	Пол
	Дата рождения
	Группа
	Специальность

	Иванов И.И.
	Муж.
	19.01.1990
	ПП-119
	АСУ

	Петров П.П.
	Муж.
	20.03.1991
	Э-119
	Электронщики

	Васильева К.И.
	Жен.
	17.04.1990
	ПК-129
	Прикладная Информатика

	Сидоров И.П.
	Муж.
	20.05.1991
	Э-119
	Электронщики

2. Пример приведения отношения ко второй нормальной форме

Данные, находящиеся в столбцах «Группа» и «Специальность» могут повторяться в процессе заполнения много раз, что вызовет избыточность данных в таблице. Следовательно данную таблицу можно разделить на 3 сущности, имеющие отношения между собой.

 В результате приведения к 2NF получаются три отношения:

 Таблица с данными о студенте

	 ФИО
	Пол
	Дата рождения

	Иванов И.И.
	Муж.
	19.01.1990

	ПетровП.П.
	Муж.
	20.03.1991

	Васильева К.И.
	Жен.
	17.04.1990

	Сидоров И.П.
	Муж.
	20.05.1991

 Список групп Список специальностей
	Группа
	
	Специальность

	 ПП-119
	
	АСУ

	 Э-119
	
	Электронщики

	ПК-129
	
	Прикладная информатика

3. Пример приведения отношения ко третьей нормальной форме

Чтобы привести базу к третьей нормальной форме, надо:
1) Определить, в каких полях каких таблиц имеется взаимозависимость. Как только что говорилось, поля, которые зависят больше друг от друга (студент от группы, а группа от специальности) , чем от ряда в целом.

2) Создайте соответствующие таблицы. Если есть проблемный столбец в шаге 1, создавайте раздельные таблицы для него.

3) Создайте или выделите первичные ключи. Каждая таблица должна иметь первичный ключ. Для примера с клиентами это будут ID_Student, ID_gruppa, ID_Specialnost.

4) Создайте необходимые внешние ключи, которые образуют любое из отношений. В нашем примере нужно добавить ID_gruppa в таблицу студентов и ID_Specialnost в таблицу групп.

В результате приведения к 3NF получаются три отношения:
 Таблица с данными о студенте
	ID_

Student
	Фамилия
Имя
Отчество
	Пол
	Дата рождения
	ID_

Gruppa

	1
	Иванов И.И.
	Муж.
	19.01.1990
	1

	2
	ПетровП.П.
	Муж.
	20.03.1991
	2

	3
	Васильева К.И.
	Жен.
	17.04.1990
	3

	4
	Сидоров И.П.
	Муж.
	20.05.1991
	2

 Список групп
	ID_

Gruppa
	Группа
	ID_

Specialnost

	1
	ПП-119
	1

	2
	Э-119
	2

	3
	ПК-129
	3

	4
	Э-129
	2

 Список специальностей
	ID_
Specialnost
	Специальность

	1
	АСУ

	2
	Электронщики

	3
	Прикладная информатика

Задание.

 Приведите к третьей нормальной форме следующую ненормализованную таблицу (в жирной рамке ключ таблицы):

	Таб.№
	ФИО
	Подразделение
	Командировка

	
	
	
	№№
	Дата

начала
	Дата

окончания
	Организация
	Город

	231
	Иванов И.И.
	1-й отдел
	7234
	01.10.99
	20.10.99
	ПО

 «Кристалл»
	Черноморск

	
	
	
	7245
	15.11.99
	21.11.99
	НПО «Заря»
	Гряжск

	233
	Петров П.П.
	3-й отдел
	7347
	11.12.99
	15.12.99
	ЗАО «Степь»
	Урюпинск

Контрольные вопросы.

1. Что такое нормализация отношения?
2. В чем заключается процесс нормализации?

3. Сколько существует нормальных форм таблиц?

4. Перечислите условия первой нормальной формы.

5. Перечислите условия второй нормальной формы.

6. Перечислите условия третьей нормальной формы.

7. В чем заключается декомпозиция?

8. Какая декомпозиция является полной?
Лабораторная работа 4

Создание объектов баз данных (таблиц)
Цель работы: научиться создавать файл базы данных, псевдоним для базы данных, создавать таблицы и вводить данные.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

.

Реляционная база данных состоит из взаимосвязанных таблиц. Каждая таблица содержит информацию об объектах одного типа.

Таблица БД пред​ставляет собой обычную двумерную таблицу с характеристи​ками (атрибутами) какого-то множества объектов и имеющая имя - идентификатор, по которому на неё можно сослаться.

Тип поля характеризует тип хранящихся в поле данных. Это могут быть строки, числа, булевы значения, большие тексты (на​пример характеристики сотрудников), изображения (фотографии) и т.п.

Каждая строка таблицы соответствует одному из объектов. Она называется записью и содержит значения всех полей, харак​теризующих данный объект
При построении таблиц БД важно обеспечить непротиворе​чивость информации. Это делается введением ключевых полей, обеспечивающих уникальность каждой записи. Ключе​вым может быть одно или несколько полей.
Database Desktop - это утилита, которая поставляется вместе с Delphi для интерактивной работы с таблицами различных форматов локальных баз данных - Paradox и dBase, а также SQL-серверных баз данных InterBase, Oracle, Informix.
Для работы с таблицами БД при проектировании приложений удобно использовать программу Database Desktop (DBD), входящей в комплект поставки Delphi.
 Утилита DBD решает целый ряд задач, связанных с таблицами файл-серверных БД. С ее помощью можно создать или изменить структуру таблицы, создать ее первичные ключи и индексы, создавать и изменять записи, просматривать их, выполнять визуальные и SQL - запросы, операции с псевдонимами и т. д.

Процесс создания новой таблицы выполняется командой Пуск ׀ Программы ׀ Borland Delphi 5 ׀ Data-base Desktop (если вы работаете в среде Delphi, для запуска используйте главное меню: Tools ׀ Database Desktop).

 В меню выбирают File ׀ Working Directory и устанавливают в появившемся окне (рис.1) ссылку на каталог, в котором будет создана таблица (рис.1)
 [image: image4.png]Set Working Directory

orking Directoy:

Browse.

Aiisses:

e —
carcel | Heb

 Рис. 1 Установка рабочего каталога
 Для создания таблицы выбирают File ׀ New ׀ Table. DBD создаст окно Create Table, в котором можно выбрать тип таблицы. Тип таблицы определяет многие ее свойства.

В появившемся диалоге Create Table выбирается тип табли​цы (из известных стандартных – например, Paradox, Access, dBase, InterBase, Oracle и т.д.).
 [image: image5.png]Create Table.

Table ype:

 Рис. 2 Выбор типа таблицы
Тип Paradox 7 можно считать наилучшим для файл-серверных таблиц: согласитесь с умалчиваемым предложением Paradox 7, нажав кнопку ОК. На экране появится окно (рис.3), предназначенное для создания / редактирования структуры таблицы.

 [image: image6.png]\Create Paradox 7 Table: (Untitled)

Fied oster:
| Field Name |Type| Size |Key|

| I | [

[Enter a field name up to 25 characters long

Borrow. Saveds

Table propertes:

Valdiy Checks

[]|

I” 1. Required Field

 Рис. 3 Окно создания структуры таблицы

 По умолчанию сразу после открытия окна в правой его части в списке Table properties выбран пунктValidity Chekcs , что позволяет контролировать содержимое полей. С помощью флажка Required Fields можно потребовать обязательного заполнения поля при вводе новой записи. Также можно контролировать минимальное и максимальное значение числового поля в строках Minimum Value и Maximum Value . В строке Default Value можно указать значение поля по умолчанию – при вводе новой записи значение в это поле поместит BDE .С помощью строки Picture можно задать шаблон для автоматического форматирования значения поля. Например, если задан шаблон (###)###-#### и в поле введена строка 9054005647, она будет автоматически преобразована к виду (905)400-5647.

Кнопки предназначены для:

Borrow … – осуществляет копирование структуры таблицы из другой таблицы

Save as … – сохраняет изменения в структуре таблицы

Cancel – выход без сохранения

Help – вызов справки

Чтобы определить структуру таблицы в этом окне необходимо заполнить следующие графы:

· Field Name - Имя поля .
· Type - Тип поля. Вызывает список допустимых типов, щелчком правой кнопки мыши или клавишей пробел.

· Size - Размер. Определяет размер поля. Не все типы полей имеют размер. Большинство типов имеют стандартный размер, который не может быть изменен. Размер в основном меняется у строковых типов (Alpha), бинарных (Binary) и др.

· Key - Ключ . Двойной щелчок мышью определяет ключевое поле. Ключевыми могут быть только первые поля, то есть второе поле сможет быть ключевым только вместе с первым.

В окне определения структуры таблицы выполняются следующие действия:

· описания полей

· задание ключа

· задание индексов

· определение ограничений на значения полей;

· определение условий (ограничений) ссылочной целостности;

· задание паролей;

· задание языкового драйвера;

· задание таблицы для выбора значений.

В этом списке обязательным является только первое действие, т.е. каждая таблица должна иметь хотя бы одно поле. Остальные действия выполняются при необходимости
 Для наполнения таблицы данными следует открыть таблицу:

Запускается DBD с помощью Пуск ׀ Программы ׀ Borland Delphi 5 ׀ Database Desktop,
выберите File ׀ Open Table, в открывшемся окне устанавливается путь к рабочей папке и открывается созданный файл; в открытой таблице в главном меню выбирается Table ׀ Edit Data и таблица наполняется исходными данными. Для просмотра таблицы используется команда Table ׀ View Data или клавиша F9.
Все рассматриваемые действия по управлению структурой таблицы можно выполнить также программно.

Псевдоним указывает местонахождение файлов БД и представляет собой специальное имя для обозначения каталога. Использование псевдонимов существенно облегчает перенос файлов БД в другие каталоги и на другие компьютеры. При этом не требуется изменять приложение, которое осуществляет доступ к таблицам БД. Если в приложение местонахождения таблицы указано с помощью псевдонима, то после перемещения БД для обеспечения работоспособности приложения достаточно изменить путь, на который указывает псевдоним. Если же в приложение путь к БД указан в явном виде, то есть без псевдонима, то после перемещения БД нужно перемещать само приложение – вносить изменения в исходный код и заново его транслировать.

Типы полей формата Paradox
	A lpha
	строка длиной 1-255 байт, содержащая любые печатаемые символы

	N umber
	числовое поле длиной 8 байт, значение которого может быть положительным и отрицательным. Диапазон чисел - от 10-308 до 10308 с 15 значащими цифрами

	$ (Money)
	числовое поле, значение которого может быть положительным и отрицательным. По умолчанию, является форматированным для отображения десятичной точки и денежного знака

	S hort
	числовое поле длиной 2 байта, которое может содержать только целые числа в диапазоне от -32768 до 32767

	Long I nteger
	числовое поле длиной 4 байта, которое может содержать целые числа в диапазоне от -2147483648 до 2147483648

	# (BCD)
	числовое поле, содержащее данные в формате BCD (Binary Coded Decimal). Скорость вычислений немного меньше, чем в других числовых форматах, однако точность - гораздо выше. Может иметь 0-32 цифр после десятичной точки

	D ate
	поле даты длиной 4 байта, которое может содержать дату от 1 января 9999 г. до нашей эры - до 31 декабря 9999 г. нашей эры. Корректно обрабатывает високосные года и имеет встроенный механизм проверки правильности даты

	T ime
	поле времени длиной 4 байта, содержит время в миллисекундах от полуночи и ограничено 24 часами

	@ (Timestamp)
	обобщенное поле даты длиной 8 байт - содержит и дату и время

	M emo
	поле для хранения символов, суммарная длина которых более 255 байт. Может иметь любую длину. При этом размер, указываемый при создании таблицы, означает количество символов, сохраняемых в таблице (1-240) - остальные символы сохраняются в отдельном файле с расширением .MB

	F ormatted Memo
	поле, аналогичное Memo, с добавлением возможности задавать шрифт текста. Также может иметь любую длину. При этом размер, указываемый при создании таблицы, означает количество символов, сохраняемых в таблице (0-240) - остальные символы сохраняются в отдельном файле с расширением .MB. Однако, Delphi в стандартной поставке не обладает возможностью работать с полями типа Formatted Memo

	G raphic
	поле, содержащее графическую информацию. Может иметь любую длину. Смысл размера - такой же, как и в Formatted Memo. Database Desktop “умеет” создавать поля типа Graphic, однако наполнять их можно только в приложении

	O LE
	поле, содержащее OLE-данные (Object Linking and Embedding) - образы, звук, видео, документы - которые для своей обработки вызывают создавшее их приложение. Может иметь любую длину. Смысл размера - такой же, как и в Formatted Memo. Database Desktop “умеет” создавать поля типа OLE, однако наполнять их можно только в приложении. Delphi “напрямую” не умеет работать с OLE-полями, но это легко обходится путем использования потоков

	L ogical
	поле длиной 1 байт, которое может содержать только два значения - T (true, истина) илиF (false, ложь). Допускаются строчные и прописные буквы

	+(Autoincrement)
	поле длиной 4 байта, содержащее нередактируемое (read-only) значение типа long integer . Значение этого поля автоматически увеличивается (начиная с 1) с шагом 1 - это очень удобно для создания уникального идентификатора записи (физический номер записи не может служить ее идентификатором, поскольку в Парадоксе таковой отсутствует. В InterBase также отсутствуют физические номера записей, но отсутствует и поле Autoincrement. Его с успехом заменяет встроенная функция Gen_id , которую удобней всего применять в триггерах)

	B inary
	поле, содержащее любую двоичную информацию. Может иметь любую длину. При этом размер, указываемый при создании таблицы, означает количество символов, сохраняемых в таблице (0-240) - остальные символы сохраняются в отдельном файле с расширением .MB. Это полнейший аналог поля BLOb в InterBase

	By tes
	строка цифр длиной 1-255 байт, содержащая любые данные

Задание 1.
Создать каталог STUDENT на диске С
Задание 2.
Создать таблицу с данными о студентах.

В таблице указать следующие данные: ФИО, дата рождения, на основании какого приказа студент принят в университет, номер зачетки, специальность, курс, стипендия. Во всех текстовых полях, необходимо указать размер.
1) Запустить Database Desktop
 2) В появившемся окне выбрать: File ► New ► Table .
[image: image7.jpg]

3) В появившемся диалоге Create Table выбрать тип Paradox . После этого появится окно создания таблицы, в котором можно определить поля таблицы и их тип:
[image: image8.jpg]e | —
1

-

e
T —
T —

e

|
o | _sowge | _cwes | _we

4) Создать структуру таблицы
[image: image9.png]Restructure Paradox 7 Table: Student.db,

Field oster: Table propetes:
Field Name |Type| Size |Key| Validity Checks

[z

I™ 1. Required Field

Sldn
SFio
SData
50sn
Shom
SSpec
SkKurs

Ed
15,
12
SStip | |

4 Defaul value:

Fied size is o alowed for this field type.

™ Pack Table

Save

5) Созданную таблицу сохранить под названием Student.db и закрыть окно создания таблиц.

Задание 3.
Создать псевдоним
Регистрация псевдонима:
1) Воспользуйтесь приложением SQLExplorer, запускаемым командой Database ► Explorer. В левой части окна приводится список всех зарегистрированных в системе BDE баз данных, в правой – свойства текущей базы, выбранной в списке.

2) Создание псевдоним для базы данных. Для этого выполните команду Object ► New и в диалоговом окне выбора драйвера укажите значение Standart .

[image: image10.jpg]

3) После щелчка на кнопке ОК в списке появится новый элемент, помеченный зеленым треугольником.

[image: image11.jpg][Oefinf STANDARDT
Datsbses | Dty | Deteon |
W Peodrant 2| [Tooe STANDAFD
2 scHooL OEFAULT ORIVER PARADOX
eNaBLE BCD FaLSE

PATH

4) По умолчанию формируется имя базы данных Standard 1 , измените его на Student .

5) Убедитесь, что в свойствах Default Driver (Драйвер по умолчанию) стоит значение Paradox. В свойстве Path укажите каталог, в котором хранится таблица.

6) Зарегистрированную в системе BDE базу сохраните, выбрав для этого Apply в контекстном меню объекта Student.

7) На вопрос о необходимости сохранения изменений нажать Yes . Теперь таблица доступна из среды BDE под именем Student.

 8) Закройте Sql Explorer
Задание 4.
Ввести данные в созданную таблицу Student.db (5записей)

 [image: image12.png]& Database Desktop.
Ble Edt Vew Toble Record Took Window telp

B 2 Wle| <[>|m]n =

Table : WorkDinStudent. db
Student| Sldn | SFio | SData | S0sn Shom SSpec
1 1| Bonasipes Anton 23051983 | no np.Ne2344 23488 Matemaruka
2| Awramxues 01.03.1982 | no np.Ne2336 24513 Matemaruka
3 Bonasipes Apcran 15111982 | no np.Ne23144 23415 duauea
4| Crpensuos durpuit 03.12.1981 | no np.Ne23424 26472| Duauea
5 Pacnymun 24.05.1983 | no np.Ne23447 19345 Marewmanca

 Контрольные вопросы.

1. Дайте определение таблицы.
2. Что такое запись?
3. С помощью какого инструмента создаются таблицы? Как его запустить?

4. Какие параметры содержит описание поля?

5. Какая команда открывает таблицу?

6. Какие функции выполняет DBD?

7. Какая команда используется для заполнения таблицы данными?
8. Дайте определение понятию псевдоним.
Лабораторная работа 5-6
Разработка приложений баз данных
Цель работы: научиться создавать приложение базы данных.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

- создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;
знать:
- основы разработки приложений баз данных.
Краткие теоретические и учебно-методические материалы по теме лабораторной
 работы
Разработка приложения в Delphi включает два взаимосвязанных этап:

· создание пользовательского интерфейса приложения
· определение функциональности приложения.

Пользовательский интерфейс приложения определяет внешний вид формы при выполнении приложения и то, каким образом пользователь управляет приложением. Интерфейс конструируется путем размещения в форме компонентов, называемых интерфейсными компонентами или элементами управления. Создается пользовательский интерфейс приложения с помощью окна Формы.

Функциональность приложения определяется процедурами, которые выполняются при возникновении определенных событий, например, происходящих при действиях пользователя с элементами управления формы.

В процессе разработки приложения в форму помещаются компоненты, для них устанавливаются необходимые свойства и создаются обработчики событий.

В состав приложения Delphi для работы с базами данных входят три типа компонентов:

· источник данных;

· визуальные компоненты;

· наборы данных.

В приложениях для работы с базами данных источник данных представлен компонентом DataSource, который размещен на странице Data Access Палитры компонентов.

Визуальные компоненты расположены на странице Data Controls Палитры компонентов Компоненты служат для отображения и редактирования сразу нескольких записей. Примером такого компонента является сетка DBGrid, выводящая записи набора данных в табличном виде.

Таблицы БД располагаются на диске и являются физическими объектами. Для операций с данными, содержащимися в таблицах, используются наборы данных. Компоненты, представляющие наборы данных, являются невизуальными.
В Delphi для доступа к данным в качестве наборов данных используются свои компоненты, в том числе Table (для BDE).

Основные компоненты доступа и управления к базам данных:

Компоненты доступа к базам данных :

TTable [image: image13.jpg]

 - обеспечивает взаимодействие с таблицей БД, т.е. компонент TTable указывает, откуда брать данные и какие поля будут составлять набор данных. Компонент TTable имеет следующие основные свойства:

· DatabaseName – база данных

· TableName - имя таблицы

· Active – активация таблицы (значение True активирует ее)

Свойство DatabaseName определяет базу данных, в которой находится таблица. Это свойство может содержать:

* псевдоним (псевдоним)

* путь для локальных БД

* путь и имя файла базы данных для Local InterBase
* локальный псевдоним, определенный через компонент TDatabase .

Свойство TableName определяет имя таблицы базы данных.

TDataSource [image: image14.jpg]

 - определяет связь между базой данных и компонентами управления данными, то есть компонент TDataSource является промежуточным звеном между компонентом Table 1 , соединенным с реальной БД и визуальными компонентами DBGrid 1 и DBNavigator 1 , с помощью которых пользователь взаимодействует с таблицей.

В большинстве случаев, все, что нужно сделать с DataSource - это указать в свойстве DataSetсоответствующий TTable . Затем, у визуального компонента вроде DBGrid или DBNavigator в свойствеDataSource указывается TDataSource , который используется в настоящее время.

Компоненты управления данными с палитры Data Contorls :

TDBGrid [image: image15.jpg]

 - отображает содержимое таблицы БД в виде сетки, в котором столбцы соответствуют полям, а строки записям таблицы.

Компонент имеет следующие свойства:

· Data Source – содержит ссылку на компонент типа TDataSource , служащий источником данных;

Для соединения компонента Table с таблицей заполняются четыре свойства:

- DatabaseName – указать алиас базы данных;

- TableName – указать имя таблицы;

- Active – установить значение True;

- Table – по желанию можно заменить стандартное имя компонента на другое – осмысленное.

Для соединения компонента DataSource с компонентом Table в его свойстве DataSet надо указать имя нужного компонента Table.
Для соединения компонента DBGrid с компонентом DataSource надо в свойстве DataSource компонента DBGrid указать имя нужного компонента DataSource.
Редактор полей
Для управления отображением данных таблицы используют специальный редактор полей - EditorField .

[image: image16.jpg]

Для вызова Editor Field следует:

· Дважды щелкнуть по Table 1 .
· Для открывшегося окна вызвать контекстное меню и выбрать пункт Add All Field , если необходимо добавить все поля таблицы.

· Add Field для выбора отдельного поля.

Редактор полей имеет следующие свойства:

· DisplayLabel – задает имя полю;
· DisplayWidth – определяет количество символов, которое будет выводится в поле;

Задание 1.

Создайте приложение для базы данных Student.db
1) Создать пользовательский интерфейс приложения
 - запустить Delphi;

 - в свойстве Caption изменить имя формы на Студенты
- поместить на форму визуальные компоненты DBGrid, DBNavigator;

- поместить невизуальные компоненты DataSource, Table на специальный лист Data Module;
- установить необходимые связи между компонентами;
- поместить на форму кнопку Button – для выполнения действий
2) Предъявить записи таблицы базы данных.

Если вы правильно выполнили все пункты, то форма Студенты примет вид:
 [image: image17.png]Crynenrun

SFio

SData

S0sn

1 Bonaupes Armon
2 Amrapes

3 Bonepes Apcran
4 Crpensuos Mwrpuit
5 Pacnyun

23051983
01031982
15111982
03121981
24051983

[=l=[[e

o234
o233

o mpN23144
o mpN23424
o mpN23447

Buttan

Задание 2.

Определите свойства для полей таблицы Student . db

[image: image18.jpg]

.

1) Выбрать в окне редактора полей таблицы поле SFio и в свойстве DisplayLabel инспектора объектов изменить SFio на ФИО . Выбрать свойство DisplayWidth и заменить размер на 35.

2) Так же поменять свойства других полей таблицы.

3) Для полей логического типа в свойстве DisplayValues можно написать варианты для значенийTrue и False . В поле SSpec в этом свойстве написать «Математика;Физика » (без пробела, разделяя «;»). Получиться как показано на рисунке.

4) Если возникнет необходимость можно скрыть любое поле, выбрав его и в свойстве Visibleинспектора объектов установив значение false.
После выполненных действий сетка DBGrid 1 будет выглядеть так:
[image: image19.png]Crynenrun

Hara poxaenv|Ocrosare [Howep saverc] Coewssnerocre[Kupe Crumerave]
23051983 morpNe2add 23456 Marewaruxa | 2 Her
01031982 morpe236 24613 Matewaruka | 3 Her
15111982 nompe23tes 23415 Puowa 40s
03121981 nompa2342¢ 26472 Puowa 1 Her
20051983 o mpe234e7 19345 Matewaraa | 2 fla

[e[[=l==]el

Контрольные вопросы.
1. Опишите создание пользовательского интерфейса.
2. Какие компоненты служат для управления данными?
3. Какой компонент определяет связь между базой данных и компонентами управления данными?
4. Какие компоненты относятся к визуальным?
Лабораторная работа 7

Работа с объектами баз данных (с полями таблицы)
Цель работы: научиться модифицировать пользовательский интерфейс приложения

 базы данных.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

- создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;
знать:
- основы разработки приложений баз данных.
Краткие теоретические и учебно-методические материалы по теме лабораторной
 работы
Компонент TField позволяет обращаться к полям базы данных. Как такового компонента TField на палитре инструментов нет, он входит составной частью в компонент Table (Query или StoredProc). С помощью компонента TField можно управлять полями: отображать их или нет в визуальных компонентах (например, DBGrid), считывать значение поля, записывать в поле значение, создавать вычисляемые поля и т. д.
Для управления доступом к полям таблицы предусмотрены два способа.
Полный доступ. В этом случае компонент TField не создается, его настройки используются по умолчанию. Пользователь имеет полный доступ ко всем полям и их значениям как через интерфейс, так и программным способом.
Выборочный доступ. При выборочном доступе к полям таблицы необходимо запустить редактор полей Field Editor с помощью следующей процедуры:
 - установить курсор на компонент Table и правой кнопкой мыши вызвать контекстное меню;
 - из контекстного меню выбрать команду Field Editor;
 - установить курсор мыши на свободное поле редактора Field Editor и правой кнопкой еще раз вызвать контекстное меню;
 - из контекстного меню выбрать команду Add all Fields — все поля.
[image: image1.jpg]

[image: image20.png]Position »
Tab Order...

Creation Order...
Revert to Irherited
Add to Repository...
View as Text

Text DFM

TableS DataSource5

DataSource8

9 DataSourced

Рис.1. Вызов редактора полей Рис.2. Добавление всех полей
[image: image78.png]

 1. Обращения к полям и их значениям

Сушествует четыре способа для обращения к полям и их значениям.
1. По имени поля.
Если для поля построен компонент TField, то имеется возможность обратиться к полю через его имя. По умолчанию имя компонента TField сложное и состоит из двух частей имени таблицы и именем поля, разделенных префиксом (точкой).
2. Через метод FieldByName.
В этом случае используется метод FieldByName компонента Ык>.
Форматметода:
function FieldByName (const FieldName: string): TField;
Рис. 3. Работа с компонентом TField
2. Преобразование значений полей

Для доступа к значениям поля используется свойство Values, которое может принимать различные типы.
Свойство Values удобно использовать для преобразования типа значения. В Delphi предусмотрены следующие свойства приведения типов значений:
- propertyAsBoolean : Boolean;
- property AsCurrency: Currency;
- property AsDateTime: DateTime;
- property AsFloat: Double;
- property Aslnteger: Integer;
- property AsString: String;
- propertyAsVariant: Variant;

3. Создание виртуальных полей
Как было показано выше, для каждого физического поля можно создать компонент TField. С помощью редактора полей Field Editor к уже существующим компонентам TField и принадлежащим физическим полям можно добавить виртуальные поля, создав для них спои компоненты TField. Разрешено создание трёх видов виртуальных полей— вычисляемые поля (Calculated), поля подстановки (Lookup) и пустые поля (Data).

[image: image79.png]

3.1. Создание вычисляемых полей

Вычисляемые поля могут быть двух типов — строковые и числовые. Значения вычисляемых полей вычисляются по формуле. При работе с символьными полями под формулой будем иметь в виду процедуру конкатенации (сцепления строк).
Создание вычисляемого поля выполняется в два этапа — описание поля и создание формулы для вычисления значения поля.

 Рис.4. Создание вычисляемого поля

3.2. Создание полей подстановки
Виртуальное поле подстановки создается в компоненте Table, который содержит набор данных дочерней таблицы. Виртуальное поле подстановки также создается с помощью редактора полей Field Editor и целиком описывается в диалоговой панели «NewTable. В радиогруппе «Field type» выбирается кнопка lokup» и аналогично заполняются поля ввода «Name», «Туре» и Далее надо заполнить четыре поля ввода, которые расположены в нижней части диалоговой панели.
Пример 1. Создать вычисляемое поле подстановки.
В данном примере для дочерней таблицы «Author» в соответствующем компоненте Table был вызван редактор полей Field Editor и выбрана команда «New Field». Имя дочерней таблицы «Author» и диалоговой панели «New Field» не указывается. В верхней части диалоговой панели «New Field» описано создаваемое виртуальное поле подстановки «Fam» строкового типа размером 25.
[image: image80.png]

В нижней части диалоговой панели «New Field» по первичному ключу «Key Jam» (поле ввода «Key Fields») дочерней таблицы «Author» установлена связь с родительской таблицей «Fam» (поле ввода «Dataset») по первичному ключу «KeyJam» (поле ввода «Lookup Keys»). По установленной связи между таблицами в дочернюю таблицу «Author» в поле подстановки «Fam» (поле ввода «Name») из родительской таблицы «Fam» передается значение поля «Fam» (поле ввода «Result Fields»).
Компонент Table может иметь любое количество виртуальных полей подстановки, которые получают значения из физических или виртуальных полей родительской таблицы (или таблиц).
 Рис. 5. Создание поля подстановки

3.3 Создание пустых полей
Если в диалоговой панели «New Field» установить переключатель «Field type» в положение «Data», то будет создано пустое поле. При создании пустого поля определяется его тип и размер. Впоследствии в созданное пустое поле можно будет заносить любую информацию (в соответствии с определенным типом). То есть с помощью этой процедуры создается пустой столбец в компоненте Table, который может отображаться в компоненте DBGrid. Для заполнения созданного пустого поля типа Data используют обработчик события OnGetText компонента TField или обработчик события OnDrawColumnCell сетки. На практике процедура создания пустых полей используется редко. Пустые столбцы можно создавать непосредственно в компоненте DBGrid и потом заполнять их по своему усмотрению.
Контольное задание.

Создать числовое вычисляемое поле для таблицы Студенты
Контрольные вопросы.
1. Назовите назначение компонента TField.
2. Укажите способы доступа к значению поля.
3. Перечислите виды виртуальных полей.
Лабораторная работа 8

Манипулирование данными
(хранение, добавление, редактирование, удаление данных)

Цель работы: научиться модифицировать пользовательский интерфейс приложения

 базы данных.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

- создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;
знать:
- основы разработки приложений баз данных.
Краткие теоретические и учебно-методические материалы по теме лабораторной
 работы
Добавление данных:
Компоненты для организации доступа к таблицам БД позволяют выполнять всевозможные операции с наборами данных: добавлять или удалять записи, перемещаться по ним. При этом следует иметь в виду, что в любой момент времени доступна для выполнения конкретных действий только одна запись, называемая текущей. В этой лабораторной работе рассматриваются наиболее часто используемые методы компоненты Table .

Основные методы для организации доступа компоненты Table :

· Append – добавить новую запись в конец таблицы.

· Delete – удалить текущую строку.

· Edit – перейти в режим редактирования. После этого можно изменять значения полей.

· Insert – вставить новую строку в таблицу.

· Post – принять все изменения.

· Refresh – обновить информацию о данных.

· UpdateRecord – обновить текущую запись.
Редактирование данных:
Компоненты, отражающие информацию, делятся на две категории – те, которые не связаны с таблицами БД, и компоненты, связанные с таблицами и обменивающиеся с ними информацией. В первую категорию входят обычные компоненты Delphi. Компоненты второй категории расположены на странице Data Controls . Почти каждая из них имеет аналог среди обычных компонент; основные отличия заключаются в том, что они могут работать с данными, хранящимися в БД. К этой группе относится компонента DBEdit , которая используется для ввода текстовой однострочной информации.

Чтобы компонент DBEdit видел данные из поля таблицы, следует указать в свойствах:

· DataSource – источник данных;

· DataField – поле для редактирования.

Этот компонент с заданными уже свойствами может появиться автоматически при перетаскивании имени поля из окна редактора полей .

Задание 1.
Модифицируйте пользовательский интерфейс приложения
1. Откройте созданное приложение.

2. Разместите на форме три компоненты SpeedButton из палитры Additional . Одна из кнопок будет добавлять запись, другая – изменять данные в записи, третья – удалять. Назовите их соответственно.

[image: image21.jpg]

Задание 2.
Организуйте добавление данных
2) Создать новую форму, которая будет вызываться нажатием кнопки «Добавить» .
На форме расположены 4 компоненты Edit , компонент DateTimePicker с закладки Win 32 , компонент CheckBox и компонент RadioGroup.
[image: image22.png][lp6annienye 3anmcy

o Edrl

Derapoxaen | - | 28052014

Ocroeanis

Hovep saserin

Crewsnerocrs

oK
€ Maremarica
© Puama

R

Edte

I Cruneran

2) Текст процедуры для события OnClick кнопки «Добавить» на форме Студенты :

procedure TForm1.SpeedButton1Click(Sender: TObject);
begin
Form 2. ShowModal ; //открывает форму «Добавление записи»
end;
3) Текст процедуры для события OnClick кнопки «ОК» на форме Добавление записи :

procedure TForm2.Button1Click(Sender: TObject);
begin
Form1.Table1.Insert;
Form1.Table1.FieldByName('SFio').Text:=Edit1.Text;
Form1.Table1.FieldByName('SOsn').Text:=Edit2.Text;
Form1.Table1.FieldByName('SNom').Text:=Edit3.Text;
Form1.Table1.FieldByName('SKurs').Text:=Edit4.Text;
Form1.Table1.FieldByName('SData').AsDateTime:=DateTimePicker1.Date;
if CheckBox1.Checked then
Form1.Table1.FieldByName('SStip').Text:='да'
else
Form1.Table1.FieldByName('SStip').Text:='нет';
//при нажатии на флажок полю SStip (Стипендия) передается
//значение True , в противном случае вводится передается
// значение False
case RadioGroup1.ItemIndex of
0: Form1.Table1.FieldByName('SSpec').Text:='Математика';
1: Form1.Table1.FieldByName('SSpec').Text:='Физика';
end;
if form1.Table1.Modified
then form1.Table1.Post;
close ;
Комметарий: в строке Form 1. Table 1. Insert вызывается метод, который допускает вставку новой строки в таблицу, которая находится на форме «Студенты ». Без вызова этого метода дальнейшая работа по вставке записи в таблицу невозможна. Запись Form 1. Table 1. FieldByName (' SFio '). Text :=Edit 1. Text означает, что текст, который находится в Edit 1 по нажатии кнопки будет перенесен в таблицу на форме «Студенты » в новую запись в текстовое поле ФИО . Остальные записи в процедуре работают аналогичным образом. Запись if form 1. Table 1. Modified then form 1. Table 1. Post сохраняет изменения в таблице. Close – закрывает форму «Добавление записи ».

4) По нажатии кнопки Cancel осуществляется выход. То же и на форме «Редактирование записи».

Задание 3.
Организуйте редактирование данных.
1) Создать новую форму: Редактирование записи .
[image: image23.png]

[image: image24.jpg]T T L

2) В случае перетаскивания поля логического типа, на форме автоматически устанавливается компонента DBCheckBox , что не всегда удобно.

· Установите на форму компоненту DBRadioGroup с закладки Data Control .

· В свойстве DataSource укажите DataSource1 .

· В свойстве DataField укажите SSpec .

3) Текст процедуры для события OnClick при нажатии клавиши «Изменить» на форму Студенты :

begin
Form3.ShowModal // вызов Form3
end;
4) Текст процедуры для события OnClick при нажатии клавиши «Сохранить» на формуРедактирование :

begin
if form1.Table1.Modified
then form1.Table1.Post; // все изменения в таблице сохраняются
close ;
end;
5) Пользователь имеет возможность редактировать записи в таблице напрямую. Чтобы это предотвратить используется свойство компоненты DBGrid dgEditing . Нужно выделить DBGrid 1 и в свойстве Options ► dgEditing инспектора объектов поставить false .
Задание 4.

Организуйте удаление данных
Текст процедуры для события OnClick при нажатии клавиши «Удалить» на форме Студенты :

procedure TForm1.SpeedButton3Click(Sender: TObject);
begin
Table1.Delete //удаляет текущую запись в таблице
end;
Контрольные вопросы.

1. Какая запись называется текущей?
2. Какими методами для организации доступа обладает компонент Table ?
3. Объясните назначение компоненты DBEdit .
4. Какая команда позволяет сохранить изменения в таблице?

5. Что означает запись Form1.Table1.FieldByName('SNom').Text:=Edit3.Text; ?
6. Как избежать редактирования записи в таблице напрямую?
Лабораторная работа 9
Создание, перестройка и удаление индекса

Цель работы: научиться создавать индексы.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Индекс (или указатель) — это порядковый номер записи. При вводе исходных данных записям присваиваются порядковые номера по мере их ввода.

Индексы можно строить как по значениям одного поля – простой индекс, так и по значениям нескольких полей – сложный индекс.

Первичный индекс – это индекс, соответствующий ключевому полю. Первичный индекс всегда один. В то же время допускается неограниченное число индексов для других полей.

Вторичный индекс – это индекс, созданный для неключевого поля.

Индексы отличаются от первичных ключей тем, что не требуют непременной уникальности значений входящих в их состав полей. Индексы устанавливаются по полям, которые часто используются при поиске и сортировке данных: индексы помогут системе значительно быстрее найти нужные данные или отсортировать их в нужной последовательности.

 В Delphi предусмотрено два способа построения индексов:

 1) с помощью утилиты Database Desktop. В этом случае индексы строятся один раз во время проектирования приложения базы данных и при эксплуатации базы данных нельзя добавлять новые индексы;

 2) с помощью команд. В этом случае программист предоставляет пользователю возможность в любой момент времени создавать и удалять индекс.

 Каждый индекс принадлежит конкретной таблице. Таблица может иметь любое количество индексов. Имена индексов уникальные, т. е. у одной таблицы не может быть двух индексов с одинаковыми именами. В разных таблицах имена индексов могут повторяться.

Задания для лабораторной работы:
Задание 1.
Определите вторичные индексы для созданной таблицы Student.db
1) Открыть таблицу Student.db (File ► Open ► Table)
2) Из меню Table выбрать пункт Restructure . Откроется окно редактирования полей таблицы.

3) В выпадающем списке Table properties выбрать Secondary Indexes и нажать кнопку Define . В окне Define Secondary Index определяются вторичные индексы:

[image: image25.jpg]

С помощью флажков группы Index options можно определить следующие особенности индекса:

· Unique – индекс будет содержать уникальные значения;

· Maintained – индексные поля сортируются по возрастанию значений;

· Case sensitive – индекс чувствителен к регистру букв в текстовых полях;

· Descending – индексные поля сортируются по убыванию значения.

4) Выбрать « SFio » из списка Fields и нажать кнопку с изображенной стрелкой вправо. В спискеIndexed fields (индексированные поля) появится « SFio ». То же самое проделать с полями « SSpec » и« SKurs ».
5) Закрыть окно“Define Secondary Index”
6) В появившемся окне ввести имя индекса IDFio и нажать "OK" .
[image: image81.jpg]

Контрольные вопросы.

1. Дайте определение индексу.

2. Какой индекс называется простым? Сложным?

3. Чем индекс отличается от ключевого поля?

4. Какие существуют способы построения индексов?

5. Какая команда используется при создании индекса с помощью утилиты?
Лабораторная работа 10-11
Сортировка, поиск и фильтрация данных.
Цель работы: ознакомиться с сортировкой записей в базе данных;
 поиск полей с помощью методов Locate и Lookup
.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Сортировка
Порядок расположения записей в таблице БД может быть неопределенным. По умолчанию записи не отсортированы или сортируются, например, для таблиц Paradox по ключевым полям, а для таблиц dBase в порядке их поступления в файл таблицы.

С отсортированными записями набора данных работать более удобно. Сортировка заключается в упорядочивании записей по определенному полю в порядке возрастания или убывания содержащихся в нем записей.

Сортировка набора данных TTable выполняется автоматически по текущему индексу. При смене индекса происходит переупорядочивание записей. Таким образом, возможна по полям, для которых создан индекс. Для сортировки по нескольким полям нужно создать индекс, включающий эти поля.

Задать индекс, по которому выполняется сортировка записей, можно с помощью свойств:

· IndexName – указывается имя индекса, установленное при его создании;

· IndexFieldName – указываются имена полей, образующий соответствующий индекс.
Поиск
Метод Locate ищет первую запись, удовлетворяющую критерию поиска, и если такая запись найдена, делает ее текущей. В этом случае в качестве результата возвращается значение True . Если запись не найдена, возвращается значение False и курсор не меняет своего положения.
Формат метода:
function Locate (const KeyFields: String ; const KeyValues: Variant;

Options: TLocateOptions): Boolean;
Список полей, по которым ведется поиск, задается в параметре KeyFields , поля разделяются точкой с запятой. Параметр KeyValues типа Variant указывает значение полей для поиска. Если поиск ведется по одному полю, то параметр содержит одно значение, соответствующие типу поля, заданного для поиска.

Параметр Options позволяет задать значение, которое обычно используется при поиске строк. Этот параметр принадлежит к множественному типу TLocateOptions и принимает комбинации следующих значений:

· LoCaseInsensitive –регистр букв не учитывается;

· LoPartialKey – допускается частичное совпадение.
На форму добавить компоненту Edit .

[image: image26.jpg]e e

e e e e e
P T M e
ot St S 7
e i T &

= Copngcenans.
T e
T

Текст процедуры для события OnChange компоненты Edit на форме Студенты :

begin
table1.Locate('SFio',Edit1.Text,[loPartialKey]);
end;
Поиск записи по фамилии организован. Регистр букв не учитывается.
Метод Lookup находит запись, удовлетворяющую условию поиска, но не делает ее текущей, а возвращает значения некоторых ее полей. Независимо от результата поиска записи указатель текущей записи в НД не изменяется. В отличие от метода Locate , метод Lookup осуществляет поиск только на точное соответствие критерию поиска значения поля поиска записи.
Формат метода:

function Lookup (const KeyFields: String; const KeyValues: Variant;

const ResultFields: String): Variant;

В параметре ResultFields перечисляются поля, значения которых требуется получить в случае успешного поиска. Тип результата – Variant или вариантный массив.

Фильтрация
Фильтрацию можно отнести к одному из методов поиска. Потому что фильтрация – выбор из набора данных только тех записей, которые удовлетворяют конкретным условиям.
Существуют различные методы фильтрации набора данных: ApplyRange, CancelRange, EditRangeStsrt, EditRangeEnd и Filtered.

Метод Filtered осуществляет фильтрацию набора данных по значениям любого поля, метод ApplyRange выполняет фильтрацию НД по полю (или полям) текущего индекса, т.е. в отсортированном наборе данных.
Метод Filtered имеет два свойства – Filtered типа Boolean и Filter типа String.
Используя метод Filtered, можно указать отображение только записей, в которых поле «Фамилия » содержит значение «Иванов ». Применение фильтра к набору данных определяется свойством Filtered логического типа. Значение True определяет применение в качестве фильтра выражения, указанного в свойстве Filter :

Поле [Оператор сравнения] ‘Значение’
Например, если отобразить все записи, в которых поле «Фамилия » равно значению «Сидоров», то нужно указать:

Table1.Filter:=’Фамилия=’’Сидоров’’’;
Задание 1.
Выполнить сортировку по полю Фамилия
1) Открыть приложение.

2) Добавить на форму компоненты ComboBox и Button .

[image: image27.jpg]e
i || e [[l

(s onsman| v Tiospssemliressnolie: [omomse j
e 12267 Mo Sar

o

3) В свойстве Items компоненты ComboBox записать параметры сортировки: Фамилия, Специальность, Курс, Дата рождения, Номер зачетки.

Условия сортировки задаются вторичными индексами. То есть сортировка по фамилии происходит по вторичному ключу IDFio так как в него первым входит поле SFio . Для того, чтобы сортировка проходила по выбранным параметрам необходимо вхождение соответствующих полей в разные вторичные ключи.

4) Текст процедуры для события OnClick при нажатии кнопки «Сортировка» на форме Студенты :

begin
Case ComboBox1.ItemIndex of
0: Table1.IndexFieldNames:='SFio'; // при выборе строки « Фамилия »
//сортировка идет по вторичному индексу IDFio
1: Table1.IndexFieldNames:='SSpec';
2: Table1.IndexFieldNames:='SKurs';
3: Table1.IndexFieldNames:='SData';
4: Table1.IndexFieldNames:='SNom';
end;
end;
Замечание: во вторичный индекс IDFio входят поля: SFio , SKurs , SSpec . То есть при совпадении фамилии сортировка идет уже по курсу и т.д.

Пример:
[image: image28.png]

[image: image29.jpg][adoouesse [Homep swemdCresamsoonFipc|Crnmal <]
s il b
ool
e | =
2 e
il
X e
s [l [|

Задание 2.
Выполните поиск записи по полю Фамилия.

1) Добавить на главную форму новую кнопку «Поиск».

2) Открыть новую форму и ввести компоненты как показано на рисунке. Эта форма вызывается нажатием кнопки поиска на главной форме.

[image: image30.jpg]

3) Поиск будет происходить по фамилии введенной в компоненте Edit1 после нажатия кнопки на форме «Поиск методом Lookup».

procedure TForm5.Button1Click(Sender: TObject);
var LookupResult: Variant;
begin
LookupResult:=Form1.Table1.Lookup('SFio', Edit1.Text, 'SData; SOsn; SNom; SSpec; SKurs'); // ищемполя ' Дата рождения '
//’ Основание ’, ’ Номер зачетки ’, ’ Специальность ’, ’ Курс ’
if VarIsArray (LookupResult) then
begin
Edit2.Text:=LookupResult[0]; // записывает значения
Edit3.Text:=LookupResult[1]; // в искомых полях в
Edit4.Text:=LookupResult[2]; // соответствующие
Edit5.Text:=LookupResult[3]; // компоненты
if Edit5.Text='False' then
Edit5.Text:=' Физика ' // поиск полей логического типа
else Edit5.Text:='Математика';
Edit6.Text:=LookupResult[4];
end ;
end ;
Задание 3.
Выполните фильтрацию по числовому полю Номер зачетки и текстовому полю Фамилия
1) Добавить на форму компоненту TEdit .

2) Текст процедуры для события OnChange :

begin
Table1.Filtered:=true; // включение фильтрации
Table1.Filter:='SNom = ‘+Edit2.Text;
// задает критерий фильтрации
end;
[image: image31.jpg]- [evo. [Rera posserse] Ocroeamwe [Hovsep saeresCreu +
[Boraspee Apcrom Homonseans ROAE oz 12457 Mare

o

Copmgoesam
[Gorboiod =] Copmpoeans|
Pueero T2

3) Этот способ фильтрации пригоден только для числовых полей.

4) При применении фильтра можно указать свойства:

a. foCaseInsensitive – нечувствительность к регистру букв;

b. foNoPartialCompare – поиск на точное соответствие.

5) Для фильтрации текстовых полей, например по полю «Фамилия» необходимо изменить текст процедуры.

procedure TForm1.Edit2Change(Sender: TObject);
begin
Table1.Filtered:=true;
Table1.Filter:='SFio='+#39+Edit2.Text+'*'+#39;
end;
6) В этом случае фильтрация проходит по текстовому полю. Знак «#39» означает знак апострофа, так как ввод фамилии при использовании фильтра происходит в апострофах. А символ «*» означает любые символы, то есть при вводе только одной буквы на экране появятся все фамилии начинающиеся на букву.
[image: image32.jpg][0 fors powaers] Dcrearnre. [Horse savervadCred 4]

B e e S

feseemimers e jmen o

letcs 3
s

Dosseirs | Msmenwan [ComboBaxt Coprupasar

(S o il

Контрольные вопросы.
1. Дайте определение понятию сортировка.

2. Есть ли разница при сортировке по умолчанию для таблиц Paradox и для таблиц dBase ? Если да, то в чем заключается эта разница.

3. Как выполняется сортировка набора данных TTable?
4. Какие методы поиска вы знаете?

5. Сколько параметров имеет метод Locate? Перечислите их, указав их назначение.

6. В чем заключается недостаток метода Locate?
7. В чем заключается отличие от метода Locate от метода Lookup?

8. Дайте определение понятию фильтр.

9. Перечислите методы фильтрации.

10. Какие методы фильтрации работают только по полям текущего индекса?

Лабораторная работа 12
Определение условий ссылочной целостности
Цель работы: Ознакомиться с установкой связи между таблицами
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· формировать и настраивать схему базы данных;

знать:

· основные положения теории баз данных, хранилищ данных, баз знаний
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Для связывания таблиц необходимо определить условия ссылочной целостности, то есть установить между таблицами жесткие связи. Наиболее популярны связи «один-к-одному» и «один-ко-многим».
Понятие ссылочной целостности определяет допустимые операции над связанными между собой таблицами. Главное требование ссылочной целостности заключается в том, чтобы записи дочерней таблицы имели ссылки на записи родительской таблицы. Связь между двумя таблицами устанавливается по ключевым полям. Внешний ключ из дочерней таблицы соединятся с первичным ключом родительской таблицы. Для обеспечения установления связи между таблицами необходимо, чтобы первичный ключ родительской таблицы и внешний ключ дочерней таблицы имели одинаковое имя, а также состав (количество), тип и размер полей, входящих в оба ключа.
При необходимости можно изменить характеристики ранее созданной связи.
Задание 1
Создайте таблицу успеваемости студентов Успеваемость.
В нее должны войти поля: учебный год, сессия (зима или лето), предмет, ФИО преподавателя, дата аттестации по предмету, дата сдачи, оценка.
1) Эта таблица будет дочерней для таблицы Студенты.
 В таблице Успеваемость надо ввести дополнительно числовое поле и определить его вторичным ключом.

2) Разместите таблицу успеваемости на форме Студенты .

3) В свойстве компоненты Table 2 Master Source написать Data Source 1. Это означает, что вторая таблица станет дочерней для первой.

 4) Двойным щелчком по свойству Master Fields вызвать окно FieldLinkDesigner (Дизайнер поля связи):

[image: image33.jpg]

5) Выбрать в списке Available Index (Доступные индексы) из окна Field Link Designer индекс IDGod (это вторичный индекс второй таблицы).

6) В левом списке Detail Field выделить IdU , а в правом списке Master Field (Основа) выделить Ind .

7) Нажать на кнопку Add (Добавить) и закрыть окно.
[image: image34.jpg]looadFulds

8) Таким образом между таблицами установилась связь. Она называется связь один ко многим .

9) К дочерней таблице добавить кнопки для ввода и редактирования данных также как и для таблицы Студенты.
 [image: image35.jpg]Ly B
e = e
]

e
T e e e e j
'

o e T

Dt Praerenms | Saanen

Контрольные вопросы.
1. Дайте определение ссылочной целостности.
2. Назовите условия, после выполнения которых можно установить связь между таблицами.
3. Назовите инструмент, с помощью которого устанавливают связи между таблицами?
Лабораторная работа 13-14

Создание объектов баз данных (отчетов)

Цель работы: Ознакомиться с возможностью создания отчета.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.

Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Создание отчетов:
Отчет — это печатный документ, содержащий записи БД. В Delphi для создания отчетов служит генератор отчетов QuickReport , содержащий обширный набор компонентов. Компоненты, предназначенные для создания отчетов, находятся на закладке QReport палитры компонентов.

Главным элементом отчета является компонент-отчет QuickRep , представляющий собой основу, на которой размещаются другие компоненты. Компонент QuickRep обычно размещается на отдельной форме, предназначенной для создания отчета.

Свойства компоненты QuickRep :

· Bands – здесь указываются компоненты размещаемые в QuickRep .

· DataSet – здесь указывается набор данных из которой отчет будет брать данные.

· Frame – здесь указывается параметры рамки.

· Options – здесь доступны три параметра. Если FirstPageHeader равно true , то заголовок печатается только на первой странице отчета. Если LastPageFooter равен true , то нижний колонтитул печатается только на последней странице отчета. Если установить свойство Compression в true , то отчет будет сохраняться в сжатом виде.

· ReportTitle – здесь находится заголовок печатаемого документа.

· SnapToGrid – нужно ли выравнивать компоненты по установленной сетке.

· Zoom – масштаб отображения данных.

Настройку параметров отчета можно выполнить с помощью окна Report Settings , вызываемый двойным щелчком мыши по компоненте QuckRep . Предпочтительно пользоваться именно этим окном, так как здесь всегда можно просмотреть будущий результат.

 [image: image36.jpg]P
BRI~ v [0 Lo 575 [=]
TR i [05 chmwe [0

o OB

S o

b
o s [0 X uw

Pagefime

Clo Cl co B O] Fomewsn

on o

e

I Paetesds
2
e—
% Db

S

FAEEER!

|

Lot
Pt [
CSomey [
1% Pt o st
% Pt o

oo [0 ot

1. Открыть приложение «Студенты ».

2. Добавить на главную форму кнопку «Создание отчета ».

3. Создать новую форму «Отчет », которая будет вызываться нажатием на кнопку «Создание отчета ».

4. На форму установить компоненту QuickRep с закладки QReport . Выделить этот компонент и в объектном инспекторе включить параметры HasTitle и HasDetail свойства Bands .

 [image: image37.jpg]

1. Расположим компоненты в секциях QuickRep1 , которые будут отображать нужную информацию отчета. На закладке QReport палитры компонентов доступны следующие компоненты, которые можно расположить в этих разделах:

· QRLabel – надпись. Этот компонент похож на стандартный компонент TLabel и просто отображает нужные данные.

· QRDBText – данные. Этот компонент тоже похож на TLabel , только он предназначен для отображения значения какого либо поля из базы данных.

· QRSysData – системная информация. Это опять копия TLabel только с возможностью отображать системную информацию – дату, время, номер страницы, номер строки в таблицы, общее количество страниц и т.д.

· QRImage – картинка. Компонент схожий с TImage .

2. Увеличить область заголовка Title . В верхний угол поместите один компонент QRSysData . Выделить его и в свойстве Data выбрать значение qrsDateTime . Теперь этот компонент будет отображать в правом, верхнем углу дату распечатки документа.

3. В центре области Tittle установить компонент QRLabel , увеличь шрифт в свойстве Font и написать в свойстве Caption текст «Студенты ».

4. Расположить в области Tittle компоненты QRLabel и дать им заголовки: ФИО, Дата рождения, Номер зачетки, Специальность, Курс.

5. Перейти к области Detail . Под заголовками поставить пять компонентов QRDBText . Установить в свойстве DataSet компонентов QRDBText набор данных - Form 1. Table 1 , а в свойствеDataField для QRDBText 1 указать SFio . У всех остальных компонентов QRDBText указать соответствующие имена полей.

[image: image38.jpg]CmydeHmbl

B o o

i

i

Перейти в главный модуль и по нажатию кнопки “Печать” написать следующий код.

procedure TForm1.SpeedButton5Click(Sender: TObject);
begin
Form4.QuickRep1.Preview; // вызывается метод Preview
// компонента QuickRep . Этот метод показывает окно
// предварительного просмотра созданного документа.
е nd ;
Запустить программу, выделить какую-нибудь строку и нажать кнопку печати. Откроется окно предварительного просмотра.
[image: image39.jpg]CmydeHmebl

- s covamon ompsaiem Crunsan o

1. Выделить компонент QuickRep1 и в свойстве DataSet указать таблицу Form 1.Table1 .

2. Если сделать это, то компонент QuickRep1 автоматически будет перебирать все записи из этой таблицы и использовать их в компонентах, которые стоят в блоке DetailBand1 .

3. После этого в отчете появятся все записи таблицы:

[image: image40.jpg]

1. Установить на форму отчета компонент – QRSubDetail с закладки QReport . Этот компонент предназначен для перебора данных относящихся к подчиненным таблицам.

2. Установить следующие свойства: DataSet – Form 1.Table2 , чтобы связать блок с таблицейUspevaemost . db , которая является подчиненной к основной Studenti . db .

3. В свойстве Master нужно указать главный компонент с основными данными. Выбрать в этом свойстве QuickRep1 .

4. Расположить на компоненте QRSubDetail компоненты QRDBText в свойстве указав, к каким полям подчиненной таблицы они обращаются.

5. Получится следующий вид отчета:

Контрольные вопросы.
1. Каково назначение отчёта?

2. Перечислить этапы процедуры создания отчёта.

3. Какие технологии предусмотрены для формирования отчета и какая из них является базовой?

4. Перечислить виды отчётов.

5. Какой генератор применяется в Delphi для создания отчетов?

6. На какой странице Палитры компонентов расположены компоненты, предназначенные для управления отчётами в приложении? Какие из них являются важнейшими?

7. Перечислить этапы создания отчёта.

8. Как выполняют заготовку отчёта?

Лабораторная работа 15-16
Построение концептуальной модели базы данных
Цель работы: научить проектировать базы данных на основе концептуальной модели;

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· формировать и настраивать схему базы данных;

знать:

· основные принципы построения концептуальной, логической и физической модели данных.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Этапы проектирования базы данных

Процесс проектирования включает в себя следующие этапы:
· Концептуальное проектирование – это процедура конструирования информационной модели, не зависящей от каких-либо физических условий реализации.
· Логическое проектирование – это процесс конструирования информационной модели на основе существующих моделей данных, не зависимо от используемой СУБД и других условий физической реализации.
· Физическое проектирование – это процедура создания описания конкретной реализации БД с описанием структуры хранения данных, методов доступа к данным. 3. Концептуальное проектирование
Цель инфологического (концептуального) моделирования – обеспечение наиболее естественных для человека способов сбора и представления той информации, которую предполагается хранить в создаваемой базе данных.
Основными конструктивными элементами инфологических моделей являются сущности, связи между ними и их свойства (атрибуты).

 Основными задачами концептуального проектирования являются определение предметной области системы и формирование взгляда на ПО с позиций сообщества будущих пользователей БД, т.е. инфологической модели ПО.
Концептуальная модель ПО представляет собой описание структуры и динамики ПО, характера информационных потребностей пользователей в терминах, понятных пользователю и не зависимых от реализации БД. Это описание выражается в терминах не отдельных объектов ПО и связей между ними, а их типов, связанных с ними ограничений целостности и тех процессов, которые приводят к переходу предметной области из одного состояния в другое.
 Существуют следующие подходы к созданию концептуальной модели предметной области:
· функциональный подход ;
· предметный подход;
· с использованием метода "сущность-связь".
Метод "сущность–связь" (entity–relation, ER–method) является комбинацией двух предыдущих и обладает достоинствами обоих. Этап инфологического проектирования начинается с моделирования ПО. Проектировщик разбивает её на ряд локальных областей, каждая из которых (в идеале) включает в себя информацию, достаточную для обеспечения запросов отдельной группы будущих пользователей или решения отдельной задачи (подзадачи). Каждое локальное представление моделируется отдельно, затем они объединяются.
Выбор локального представления зависит от масштабов ПО. Обычно она разбивается на локальные области таким образом, чтобы каждая из них соответствовала отдельному внешнему приложению и содержала 6-7 сущностей.
Сущность – это объект, о котором в системе будет накапливаться информация. Сущности бывают как физически существующие (например, СОТРУДНИК или АВТОМОБИЛЬ), так и абстрактные (например, ЭКЗАМЕН или ДИАГНОЗ). Для сущностей различают тип сущности и экземпляр. Тип характеризуется именем и списком свойств, а экземпляр – конкретными значениями свойств. Типы сущностей можно классифицировать как сильные и слабые. Сильные сущности существуют сами по себе, а существование слабых сущностей зависит от существования сильных. Например, читатель библиотеки – сильная сущность, а абонемент этого читателя – слабая, которая зависит от наличия соответствующего читателя. Слабые сущности называют подчинёнными (дочерними), а сильные – базовыми (основными, родительскими).
 Для каждой сущности выбираются свойства (атрибуты). Различают: идентифицирующие и описательные атрибуты. Идентифицирующие атрибуты имеют уникальное значение для сущностей данного типа и являются потенциальными ключами. Они позволяют однозначно распознавать экземпляры сущности. Из потенциальных ключей выбирается один первичный ключ (ПК). В качестве ПК обычно выбирается потенциальный ключ, по которому чаще происходит обращение к экземплярам записи. Кроме того, ПК должен включать в свой состав минимально необходимое для идентификации количество атрибутов. Остальные атрибуты называются описательными и заключают в себе интересующие свойства сущности.
 Составные и простые атрибуты. Простой атрибут состоит из одного компонента, его значение неделимо. Составной атрибут является комбинацией нескольких компонентов, возможно, принадлежащих разным типам данных (например, ФИО или адрес). Решение о том, использовать составной атрибут или разбивать его на компоненты, зависит от характера его обработки и формата пользовательского представления этого атрибута.
Однозначные и многозначные атрибуты (могут иметь соответственно одно или много значений для каждого экземпляра сущности). Основные и производные атрибуты. Значение основного атрибута не зависит от других атрибутов. Значение производного атрибута вычисляется на основе значений других атрибутов (например, возраст студента вычисляется на основе даты его рождения и текущей даты).
Далее осуществляется спецификация связей внутри локального представления. Связи могут иметь различный содержательный смысл (семантику). Различают связи типа "сущность-сущность", "сущность-атрибут" и "атрибут-атрибут" для отношений между атрибутами, которые характеризуют одну и ту же сущность или одну и ту же связь типа "сущность-сущность". Каждая связь характеризуется именем, обязательностью, типом и степенью. Различают факультативные и обязательные связи. Если вновь порождённый объект одного типа оказывается по необходимости связанным с объектом другого типа, то между этими типами объектов существует обязательная связь (обозначается двойной линией). Иначе связь является факультативной. По типу различают множественные связи "один к одному" (1:1), "один ко многим" (1:N) и "многие ко многим" (M:N). Степень связи определяется количеством сущностей, которые охвачены данной связью. Пример бинарной связи – связь между отделом и сотрудниками, которые в нём работают. Примером тернарной связи является связь типа экзамен между сущностями ДИСЦИПЛИНА, СТУДЕНТ, ПРЕПОДАВАТЕЛЬ. Из последнего примера видно, что связь также может иметь атрибуты (в данном случае это Дата проведения и Оценка).
Пример ER–диаграммы с указанием сущностей, их атрибутов и связей приведен на рис. 1
[image: image82.png]q IBConsole [B=%]

Consie o G Dvabare Tods L e
ALK I
= 5 IneBase Servers oton Descipton
=¥ Local Server Disconnect Disconnect from the curtert database
£ P Datbuses Propeties Show daabase propeties
=@ Emplob Database Stalsics Display dabse talsics
f@8 Domains Shutdonn Shtdown the database
0t | g [oU——
B nderes Tiansacion Reso... Recover lmbo ansacions
B Viens ViewMeladala View Databese Meladaia
o [.
Lot oot Diptrcun dssbe
B | basbaebickus Barup e dsbae
Q) bty | Comoctdies Viowofte s ety conecte ot v
g e Resor Datse st an s datsase
& Backwp
B Coficates
[£] SewverLog
W& Users
< >

Server: Local Server Database: Exmpl.adb User: SYSDBA izc

.
 Рисунок 1 - Пример ER–диаграммы с однозначными и многозначными атрибутами
ПРИМЕР ПРОЕКТИРОВАНИЯ РЕЛЯЦИОННОЙ БАЗЫ ДАННЫХ
 Анализ предметной области
В качестве примера возьмем базу данных компании, которая занимается издательской деятельностью. База данных создаётся для информационного обслуживания редакторов, менеджеров и других сотрудников компании. БД должна содержать данные о сотрудниках компании, книгах, авторах, финансовом состоянии компании и предоставлять возможность получать разнообразные отчёты.
В соответствии с предметной областью система строится с учётом следующих особенностей:
· каждая книга издаётся в рамках контракта;
· книга может быть написана несколькими авторами;
· контракт подписывается одним менеджером и всеми авторами книги;
· каждый автор может написать несколько книг (по разным контрактам);
· порядок, в котором авторы указаны на обложке, влияет на размер гонорара;
· если сотрудник является редактором, то он может работать одновременно над несколькими книгами;
· у каждой книги может быть несколько редакторов, один из них – ответственный редактор;
· каждый заказ оформляется на одного заказчика;
· в заказе на покупку может быть перечислено несколько книг.
Выделим базовые сущности этой предметной области:
1. Сотрудники компании. Атрибуты сотрудников – ФИО, табельный номер, пол, дата рождения, паспортные данные, ИНН, должность, оклад, домашний адрес и телефоны. Для редакторов необходимо хранить сведения о редактируемых книгах; для менеджеров – сведения о подписанных контрактах.
2. Авторы. Атрибуты авторов – ФИО, ИНН (индивидуальный номер налогоплательщика), паспортные данные, домашний адрес, телефоны. Для авторов необходимо хранить сведения о написанных книгах.
3. Книги. Атрибуты книги – авторы, название, тираж, дата выхода, цена одного экземпляра, общие затраты на издание, авторский гонорар.
4. Контракты будем рассматривать как связь между авторами, книгами и менеджерами. Атрибуты контракта – номер, дата подписания и участники.
Для отражения финансового положения компании в системе нужно учитывать заказы на книги. Для заказа необходимо хранить номер заказа, заказчика, адрес заказчика, дату поступления заказа, дату его выполнения, список заказанных книг с указанием количества экземпляров.
 ER–диаграмма издательской компании приведена на рис. 2 (базовые сущности на рисунках выделены полужирным шрифтом).
[image: image41.png]M N
ABTOPEI potliie KHUTH
] M| 1
Sacasats
WorTpacT B
SAKASED

COTPYHIEIL

 Рисунок 2 - ER–диаграмма издательской компании
Задание по работе:
 По заданному описанию предметной области построить концептуальную модель базы данных : Выделите типы сущностей; Выделите типы связей и определите для них показатели кардинальности и степень участия сторон; Выделите атрибуты и свяжите их типами сущностей и связей; Определите потенциальные и первичные ключи сущностей; Нарисуйте ER-диаграмму. и проанализируйте информационные задачи и группы
Предметная область: «Итоги сессии» База данных должна содержать информацию о двух последних сессиях студентов. Источником информации являются экзаменационные ведомости. Необходимо проводить анализ успеваемости по специальностям, формам обучения, курсам, группам, предметам, вычислять средний балл по указанным критериям, а также число каждых оценок.

Контрольные вопросы.

1. Назовите основные этапы проектирования базы данных.
2. Какова основная цель этапа концептуального проектирования.
3. Объясните смысл понятия «представление пользователя » и укажите источники информации, которые могут использоваться при создании этого представления.

Лабораторная работа 17-18

Создание логической модели данных с помощью утилиты автоматизированного проектирования базы данных
Цель работы: 1. овладение навыками работы в Erwin;
 2. построение логической модели заданной предметной области
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· работать с современными Сase-средствами проектирования баз данных;

знать:

· основные принципы построения концептуальной, логической и физической модели данных.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

ERwin - средство разработки структуры базы данных (БД). ERwin сочетает графический интерфейс Windows, инструменты для построения ER-диаграмм, редакторы для создания логического и физического описания модели данных и прозрачную поддержку ведущих реляционных СУБД и настольных баз данных. С помощью ERwin можно создавать или проводить обратное проектирование (реинжиниринг) баз данных.

Сущность – это множество реальных или абстрактных объектов, например: (людей, мест, ситуаций и т.д), обладающих общими характеристиками.

 Первичный ключ - это атрибут или набор атрибутов, уникально идентифицирующий экземпляр сущности. Если несколько наборов атрибутов могут уникально идентифицировать сущность, то выбор одного из них осуществляется разработчиком на основании анализа предметной области.

Альтернативный ключ- это ключ, не являющийся первичным ключом сущности.

Атрибуты – характеристики сущностей, изображаемые именами внутри блоков.

Связь – это отношение между двумя или более сущностями. Отношение показывает, как эти типы данных связанны друг с другом.

Связь называется идентифицирующей, если экземпляр дочерней сущности идентифицируется через ее связь с родительской сущностью. Атрибуты, составляющие первичный ключ родительской сущности, при этом входят в первичный ключ дочерней сущности. Дочерняя сущность при идентифицирующей связи всегда является зависимой.

Связь называется не идентифицирующей, если экземпляр дочерней сущности идентифицируется иначе, чем через связь с родительской сущностью. Атрибуты, составляющие первичный ключ родительской сущности, при этом входят в состав не ключевых атрибутов дочерней сущности.

Задание:

Построить логическую информационную модель поставки товаров в соответствии с договорами средствами Erwin.
Последовательность выполнения работы

1. Знакомство с пользовательским интерфейсом

· Загрузите программу Erwin.

· В появившемся диалоговом окне установите переключатель Crеаte а New Model. На экране появится диалог Create Model – Select Template, где необходимо выбрать уровень моделирования.

Erwin имеет два уровня моделирования: логический и физический. На логическом уровне данные представляются так, как они выглядят в реальном мире. Объектами логического уровня являются сущности и атрибуты.

На физическом уровне модель зависит от конкретной реализации базы данных, выбираемой пользователем. При переходе модели на физический уровень производится трансформация сущностей в таблицы, а атрибутов в поля, поэтому все имена и описания физической модели должны соответствовать принятым для выбранной СУБД соглашениям.

· Установите переключатель Logical/Physical для создания модели с логическим и физическим уровнями.

· В полях DataBase и Version указывается тип и версия сервера, для которого создается модель. Выберите в списке Access, 2000. Нажмите кнопку ОК.

· На экране появится основное окно программы.

В верхней части окна находится титульная строка, в которой указано название программы, наименование модели, наименование подмножества (Subject Area) и хранимого отображения (Stored Display). Основную часть пространства программы занимает рабочая область, в которой создается ER-диаграмма.

[image: image83.jpg]o = @
B

i
DScars cars Deas Tears

Для переключения между логическим и физическим уровнями на панели инструментов имеется список (рис 1.1).

Рис. 1.1.

Помимо этого списка, на панели инструментов имеются кнопки (см. табл. 1.1).

Таблица 1.1.

Кнопки, расположенные на панели инструментов программы Erwin
	Кнопка
	Назначение

	
[image: image42.png]Ds e &

	Создание, открытие, сохранение и печать модели

	
[image: image43.png]

	Вызов диалога Report Browser для генерации отчетов

	
[image: image44.png]

	Изменение уровня просмотра модели: уровень сущностей, уровень атрибутов, уровень определений

	
[image: image45.png]Qeaer

	Изменение масштаба просмотра модели

	
[image: image46.png]

	Генерация схемы БД, выравнивание схемы с моделью и выбор сервера (доступны только на уровне физической модели)

	
[image: image47.png]

	Переключение между областями модели Subject Area

Для непосредственной работы с элементами модели в программе имеется палитра инструментов (Erwin Toolbox), представляющая собой «плавающее окошко» (рис. 1.2). При необходимости палитру инструментов можно убирать с экрана и вызывать нажатием комбинации клавиш «CTRL-T».

[image: image48]
Рис. 1.2. Палитра инструментов на логическом уровне

2. Создание хранимых отображений

В процессе создания модели она пройдет несколько уровней детализации. Поэтому создадим две закладки хранимых изображений на уровне сущностей и на уровне атрибутов.

· Выберите пункт главного меню FORMAT | Stored Display Settings. На экране появится окно редактирования хранимых отображений (рис. 1.3).

[image: image49.png]Stored Displays
Gererl | Logisl | Physical | Detion | UDP |
Author:
¥ Logical Model
™ Show Dangling Relationships
& Orthogonal
T

Рис. 1.3. Редактор хранимых отображений

В верхней части окна находится список хранимых отображений модели. В настоящее время он содержит только одно отображение, которое создается по умолчанию – Display1. В нижней части окна имеется несколько страниц с закладками для задания свойств отображения модели.

· На вкладке General в поле Author введите с клавиатуры свое имя.

· Установите опции Logical Model (логическая модель – хранимое отображение будет использоваться только на логическом уровне) и Display Shadows (показывать тени – прямоугольники сущности будут изображаться на экране с «тенью»).

· В рамке Relationships lines (линии связи) устанавливается способ изображения линий связи между сущностями. В режиме Orthogonal (ортогональный) линии связи прокладываются параллельно осям XY, в диагональном режиме (Diagonal) линии связи могут проводиться под произвольным углом. По умолчанию задан ортогональный режим изображения связей, оставьте эту установку без изменений.

· Перейдите на закладку Logical (логический уровень).

· Установите переключатель Display Level (уровень отображения) в положение Entity (сущность). Тем самым задается, что на экране будут показаны только сущности, без атрибутов.

· Установите флажок Verb Phrase (глагольная фраза), чтобы на диаграмме отображались глагольные фразы, именующие связи между сущностями. Остальные флажки на данной странице оставьте без изменений.

· Переименуйте отображение Display1, нажав на кнопку Rename. В появившемся диалоге введите имя отображения Уровень сущностей. Нажмите кнопку ОК и еще раз ОК. Это название появится в титульной строке, а также на закладке в нижней части экрана.

· Снова выберите пункт меню FORMAT | Stored Display Settings и создайте еще одно хранимое отображение под названием Уровень атрибутов. Для этого нажмите кнопку New и введите это название с клавиатуры.

· Выделите отображение Уровень атрибутов в списке и на странице Logical установите переключатели, как показано на рис. 1.4.

[image: image50.png]Stored Displays
Gerersl Logil | Physial | Defion | UDP |
 Entity ¥ Rolename/Attibute:
@ Attibute. ™ Attribute Datatype:
 Definition ¥ Attribute Domain
 Primary Key I~ Primary Key Designator
 Jeon IV Foreign Key Designator (FK)
R p e IV Altemate Key Designator (4K)
¥ Cardinalty é“”hu“e‘@"
™ Referential Integrity e
T

Рис. 1.4. Установка свойств уровня атрибутов

Теперь у диаграммы определены два отображения с разной степенью детализации, и для перехода из режима сущностей в режим атрибутов достаточно щелкнуть по соответствующей закладке в нижней части схемы (рис. 1.5).

[image: image51.png]UpaBeHs CYUHOETER), YposeHs aTpusyTos

Рис. 1.5. Закладки хранимых отображений

· Начиная разработку модели, необходимо выполнить настройку шрифтов. Для этого выберите пункт главного меню FORMAT | Default Fonts & Colors. В появившемся окне редактирования перейдите на вкладку General и в группе All Fonts в поле Font из списка выберите шрифт Arial Cyr и нажмите ОК.

3. Внесение в модель сущностей

На данном этапе необходимо внести в модель следующие сущности, выявленные в результате анализа предметной области (поставка товара в соответствии с договорами): покупатель, договор, накладная, товар, склад.

· Выберите на панели инструментов (ERwin Toolbox) кнопку Сущность
[image: image52.png]

, щелкнув по ней указателем мыши. Затем щелкните мышкой по тому месту на диаграмме, где необходимо расположить новую сущность. На поле диаграммы появится прямоугольник, изображающий новую сущность, с автоматически сгенерированным именем «Е/1».

· Введите с клавиатуры имя сущности «Покупатель» и нажмите Enter.

· Точно таким же образом вставьте в диаграмму еще четыре сущности: договор, накладная, товар, склад.

· Щелкнув правой кнопкой мыши по сущности и выбрав из контекстного меню пункт Entity Properties, можно вызвать редактор сущностей Entities (рис. 1.6), который позволяет изменять свойства выбранной сущности. Редактор сущностей также можно вызвать через главное меню: Model | Entities.

[image: image53.png][Eniios]
Enity. [Mognarens
Name: [Moxynarens
Detnon | te | Note2 | Nete3 | UDP | teon | Histo |

pain

ccacpron mmoognae o rorarare s =

2]

T~ Logical Only Cancel

Рис. 1.6. Редактор сущности

В верхней части окна редактора находится список всех сущностей, имеющихся на диаграмме. С его помощью можно выбрать сущность, свойства которой необходимо посмотреть или изменить. По умолчанию, выбранной является выделенная на диаграмме сущность, по которой щелкнули мышью. Далее имеется поле Name, в котором высвечивается имя сущности. Имя можно редактировать.

Ниже в окне редактора находится ряд закладок:

Definition (определение) – на этой странице вводится определение сущности.

Note, Note2, Note3 (примечание) – используются для ввода произвольного текста, связанного с сущностью, например, образцы данных и запросы.

UDP – определяемые пользователем свойства.

Icon (иконка) – для наглядности каждой сущности может быть присвоена иконка, которая выводится рядом с ее названием.

· Для каждой сущности введите определение Definition.

4. Определение атрибутов сущностей

Определив сущности, необходимо внести в схему и атрибуты этих сущностей. В табл. 1.2 приведен перечень сущностей и их атрибутов с характеристиками для рассматриваемой предметной области.

erwin логический модель база данное

Таблица 1.2.

Характеристика атрибутов сущностей

	Тип сущности
	Атрибут
	Ключ
	Тип данных

	Покупатель
	КОД_ПОК
	PK
	Number

	
	ИНН
	
	Number

	
	НАИМ_ПОК
	
	String

	
	АДРЕС_ПОК
	
	String

	
	ТЕЛ
	
	String

	
	НОМ_РСЧ
	
	String

	
	Банк
	
	String

	

	Товар
	КОД_ТОВ
	PK
	Number

	
	НАИМ_ТОВ
	
	String

	
	ЕИ
	
	String

	
	ЦЕНА
	
	Number

	
	СТАВКА_НДС
	
	Number

	

	Склад
	КОД_СК
	PK
	Number

	
	НАИМ_СК
	
	String

	
	АДРЕС_СК
	
	String

	
	ОТВ_ЛИЦО
	
	String

	

	Договор
	НОМ_ДОГ
	PK
	Number

	
	ДАТА_ДОГ
	
	Datetime

	
	СУММА_ДОГ
	
	Number

	

	Накладная
	НОМ_НАКЛ
	PK
	Number

	
	ДАТА_ОТГР
	
	Datetime

	
	СУММА_НАКЛ
	
	Number

· Выделите сущность Покупатель, щелкнув по ней указателем мыши, а затем вызовите пункт меню Model | Attributes. То же самое можно выполнить, выбрав пункт Attributes контекстного меню. При этом на экране появится окно редактора атрибутов Attributes.
Редактор атрибутов построен по тому же принципу, что и редактор сущностей. В верхней части диалогового окна находится выпадающий список, в котором можно выбрать сущность для редактирования. Рядом имеется кнопка, вызывающая редактор сущностей.

· Для ввода нового атрибута нажмите кнопку New.

· В диалоге New Attribute в поле Attribute Name введите имя атрибута –КОД_ПОК, в поле Column Name необходимо указать имя соответствующей атрибуту в физической модели колонки. По умолчанию Erwin генерирует имя колонки из имени атрибута, заменяя пробелы символом подчеркивания. Поскольку СУБД Access, для которой мы создаем модель, допускает использование букв русского алфавита в идентификаторах колонок таблиц, подставляемое по умолчанию значение в Column Name мы оставляем без изменения.

· В группе Domain находится список доменов, представляющих основные типы данных, используемые в СУБД: строковый (string), числовой (number), время (datetime), двоичный (blob). Для атрибута КОД_ПОК выберите числовой домен – Number.
· После нажатия кнопки ОК атрибут появится в окне редактора.

· Выделите атрибут КОД_ПОК и установите на закладке General флажок Primary Key, так как данный атрибут является первичным ключом сущности Покупатель.

· Аналогичным образом введите остальные атрибуты сущности Покупатель в соответствии с табл. 1.2.

В результате окно редактора атрибутов будет выглядеть так, как показано на рис. 1.7.

Порядок следования атрибутов в списке можно изменять при помощи кнопок со стрелками, находящимися над окном списка. Для этого необходимо выбрать нужный атрибут в списке, нажать одну их этих кнопок, и атрибут сместится в списке в направлении стрелки, изображенной на кнопке.

· Нажмите кнопку ОК.

[image: image54.png]General | Dtaype | Defiion | Nots | <]

Domain
et
 Alphabetically " Hierarchically |

Enty: [Moxsrarens

Atibute

AR
HAMM_OK

AIIPEC_NOK 7 curknown>

TEN @ Bob

HOMPo @ Datetine
it

e Sting

Ioon [Dt Nurer loon =

IV BinayKey T Logical Only*

New. | Peneme. | _pete |

Cance

Рис. 1.7. Атрибуты сущности Покупатель

· Как вы помните, мы создали два хранимых отображения – «Уровень сущностей» и «Уровень атрибутов». До сих пор мы работали на уровне сущностей, где сущности изображались просто прямоугольниками с названием сущности внутри. Перейдите на вкладку «Уровень атрибутов». Сущности изображаются здесь в виде прямоугольников, однако имя сущности пишется над прямоугольником, а внутри дается список атрибутов. Прямоугольник сущности делится на две части. В верхней части приводятся атрибуты первичного ключа, а в нижней – все остальные.

Пока на диаграмме определены только атрибуты сущности Покупатель, поэтому прочие сущности пусты.

· Определите атрибуты остальных сущностей на диаграмме в соответствии с табл. 1.2.

5. Определение альтернативных ключей и инверсных входов

Альтернативный ключ (Alternate Key) – потенциальный ключ, не ставший первичным. Erwin позволяет выделять атрибуты потенциальных ключей и при генерации схемы БД генерировать по этим группам отдельные уникальные индексы.

Инверсный вход (Inversion Entry) – атрибут или группа атрибутов, которые не определяют экземпляр сущности уникальным образом, но часто используются для обращения к экземплярам сущности. Erwin генерирует неуникальный индекс для каждого инверсного входа.

В табл. 1.3. приведен перечень ключевых групп, определенных для рассматриваемой предметной области.

Таблица 1.3.

Ключевые группы

	Сущность
	Атрибуты ключевой группы
	Имя ключевой группы
	Тип ключевой группы

	Покупатель
	ИНН
	ИНН
	Альтернативный ключ

	Покупатель
	НАИМ_ПОК
	НАИМ_ПОК
	Инверсный вход

	Товар
	НАИМ_ТОВ
	НАИМ_ТОВ
	Инверсный вход

	Склад
	НАИМ_СК
	НАИМ_СК
	Инверсный вход

· Вызовите редактор ключевых групп Key Groups, щелкнув правой кнопкой мыши по сущности Покупатель и выбрав из контекстного меню пункт Key Groups. Редактор ключевых групп также можно вызвать через главное меню: Model | Key Groups.

Редактор ключевых групп содержит элементы управления:

Entity – поле с выпадающим списком, в котором следует выбрать сущность для редактирования.

Окно с перечнем ключевых групп. Каждая группа представлена отдельной строкой, включающей в себя имя (Key Group), тип (Type) и определение (Definition).

Кроме того, диалоговое окно редактора ключевых групп содержит следующие закладки:

· Members (члены). Задаются члены ключевых групп и их порядок следования в группе.

· General (общие установки). Переключатели, позволяющие задавать тип ключевой группы. Для первичного и внешнего ключа эти группы недоступны.

· Definition (определение). Произвольная текстовая информация, относящаяся к выбранной ключевой группе.

· Note (примечание). Примечание к выбранной группе.

· UDP (пользовательские свойства).

· Нажмите кнопку New.

· В окне New Key Group в поле Key Group введите имя ключевой группы – ИНН. В поле Index выводится генерируемое программой Erwin имя индекса. Оставьте его без изменений.

· Переключатель Key Group Type задает тип создаваемого ключа. Это может быть альтернативный ключ (Alternate Key) или инверсный вход (Inversion Entry). Выберите Alternate Key и нажмите ОК. Вновь введенный альтернативный ключ появится в перечне ключей.

· Перейдите на закладку Members. Новый ключ пока не содержит никаких атрибутов, поэтому правый список Key Group Members (члены ключевой группы) пуст. Выберите в левом списке атрибут ИНН и переместите его в правый список при помощи кнопки со стрелкой (см. рис. 1.8).

[image: image55.png]O e

Key Group. Type _Defirition T~ Show FK Groups
Frinay e P New.

Rensme.

Delete

Wenbers | Gerera | Defion | ot | UDP |

st Ao Koy enoa [

Atibute: Cancel

Рис. 1.8. Редактор ключевых групп

· Таким же образом создайте ключевые группы для инверсных входов, приведенных в табл. 1.3.

6. Установление связей между сущностями

Связь является логическим соотношением между сущностями. Связь имеет имя, мощность, тип.

Имя связи (Verb Phrase) – фраза, характеризующая отношение между родительской и дочерней сущностями. Для связи один-ко-многим достаточно указать имя, характеризующее отношение от родительской к дочерней сущности (Parent-to-Child). Для связи многие-ко-многим следует указывать имена как Parent-to-Child, так и Child-to-Parent.

Мощность связи (Cardinality) – служит для обозначения отношения числа экземпляров родительской сущности к числу экземпляров дочерней.

Различают четыре типа мощности:

– общий случай, когда одному экземпляру родительской сущности соответствуют 0, 1 или много экземпляров дочерней сущности (не помечается каким-либо символом);

· символом P помечается случай, когда одному

P экземпляру родительской сущности соответствуют 1 или много экземпляров дочерней сущности (исключено нулевое значение);

· символом Z помечается случай, когда одному

Z экземпляру родительской сущности соответствуют 0 или

1 экземпляр дочерней сущности (исключены множественные значения);

· цифрой помечается случай, когда одному экземпляру

N
 родительской сущности соответствует заранее заданное число экземпляров дочерней сущности.

Различают два типа связей: идентифицирующая и неидентифицирующая.

Идентифицирующая связь устанавливается между независимой (родительский конец связи) и зависимой (дочерний конец связи) сущностями. Когда рисуется идентифицирующая связь, ERwin автоматически преобразует дочернюю сущность в зависимую. Зависимая сущность изображается прямоугольником со скругленными углами.

Экземпляр зависимой сущности определяется только через отношение к родительской сущности. При установлении идентифицирующей связи атрибуты первичного ключа родительской сущности автоматически переносятся в состав первичного ключа дочерней сущности. В дочерней сущности новые атрибуты помечаются как внешние ключи – (FK).

При установлении неидентифицирующей связи дочерняя сущность остается независимой, а атрибуты первичного ключа родительской сущности мигрируют в состав неключевых компонентов дочерней. Неидентифицирующая связь служит для связи независимых сущностей.

Идентифицирующая связь показывается на диаграмме сплошной линией с жирной точкой на дочернем конце связи, неидентифицирующая – пунктирной.

Для неидентифицирующей связи можно указать обязательность (Nulls). В случае обязательной связи (No Nulls) при генерации схемы БД атрибут внешнего ключа получит признак NOT NULL, несмотря на то, что внешний ключ не войдет в состав первичного ключа дочерней сущности. В случае необязательной связи (Nulls Allowed) внешний ключ может принимать значение NULL. Необязательная неидентифицирующая связь помечается прозрачным ромбом со стороны родительской сущности.

Атрибуты первичного ключа родительской сущности по умолчанию мигрируют со своими именами. ERwin позволяет ввести для них роли или функциональные имена (Rolename), т.е. новые имена, под которыми мигрирующие атрибуты будут представлены в дочерней сущности.

· Определим связи между сущностями в нашей разрабатываемой модели согласно табл. 1.4.

Таблица 1.4.

Характеристика связей для заданной предметной области

	Родительская сущность
	Дочерняя сущность
	Тип связи
	Мощность связи
	Нулевые значения
	Имя связи

	Покупатель
	Договор
	Неидентифицирующая
	0 или 1 к 1 или более
	No NULLS
	заключает

	Склад
	Накладная
	Идентифицирующая
	0 или 1 к 1 или более
	–
	Выписывает

	Договор
	Накладная
	Неидентифицирующая
	0 или 1 к 1 или более
	No NULLS
	Составляется

	Товар
	Договор
	Многие-ко-многим
	Заказывается (Parent-to-Child), включает (Child-to- Parent)

	Товар
	Накладная
	Многие-ко-многим
	Отгружается (Parent-to-Child), включает (Child-to- Parent)

· Создадим связь между сущностями Покупатель и Договор. Для этого выберите в палитре инструментов кнопку «Non-Identifying Relationship» (неидентифицирующая связь).

· Затем щелкните сначала по родительской сущности – Покупатель, а потом по дочерней – Договор. Между сущностями появится пунктирная линия неидентифицирующей связи. Посреди линии связи проставляется генерируемая по умолчанию глагольная фраза – R/1.

· Перейдите на уровень атрибутов и обратите внимание на то, что у сущности Договор добавился атрибут первичного ключа КОД_ПОК от сущности Покупатель
 и помечен буквами «FK».

· Выделите связь, щелкнув по ней указателем мыши. Затем нажмите правую кнопку мыши и в контекстном меню выберите пункт Relationship Properties (редактор связей).

В верхней части редактора связей находится выпадающий список, содержащий полное название связи. В нашем случае осмысленная глагольная фраза для связи еще не определена, поэтому в этом поле значится «Покупатель R/1 Договор». Здесь же находятся две кнопки New и Delete, с помощью которых можно добавить на схеме новую связь или удалить существующую.

Кроме того, диалоговое окно редактора связей содержит следующие закладки:

· General (общие свойства). Здесь задаются общие свойства связи – имя, тип и мощность связи.

· Definition (определение). На этой странице вводится определение связи, облегчающее восприятие модели.

· Rolename (Имя роли) – вводятся функциональные имена (для мигрирующих атрибутов).

· RI Actions (Установки ссылочной целостности) – задаются правила ссылочной целостности.

· Перейдите на закладку General. В группе Verb Phrase в поле Parent-to-Child введите имя связи – заключает.

· В группе Cardinality (мощность связи) установите опцию One or More (P).

· В группе Relationship Type (тип связи) установите опцию Non-Identifying (неидентифицирующая связь), а в группе Nulls (обязательность) включите флажок No Nulls, что означает недопустимость пустых значений внешних ключей.

· Задайте остальные связи для сущностей заданной предметной области в соответствии с табл. 1.4.

В результате логическая модель будет иметь вид, показанный на рис. 1.9.

[image: image56.emf]

заключает

P

выписывает

P

составляется

P

заказывается /

включает

огтружается /

включает

Покупатель

КОД_ПОК: Number

ИНН: Number (AK1.1)

НАИМ_ПОК: String (IE1.1)

АДРЕС_ПОК: String

ТЕЛ: String

НОМ_РСЧ: String

Банк: String

Договор

НОМ_ДОГ: Number

ДАТА_ДОГ: Datetime

СУММА_ДОГ: Number

КОД_ПОК: Number (FK)

Товар

КОД_ТОВ: Number

НАИМ_ТОВ: String (IE1.1)

ЕИ: String

ЦЕНА: Number

СТАВКА_НДС: Number

Накладная

НОМ_НАКЛ: Number

КОД_СК: Number (FK)

ДАТА_ОТГР: Datetime

СУММА_НАКЛ: Number

НОМ_ДОГ: Number (FK)

Склад

КОД_СК: Number

НАИМ_СК: String (IE1.1)

АДРЕС_СК: String

ОТВ_ЛИЦО: String

Рис. 1.9. Логическая модель

Контрольное задание
Для системы "Аренда Minus" разработана концептуальная модель:
[image: image84.jpg]

В соответствии с концептуальной моделью заключения договора аренды определены атрибуты отношений и представлена схема базы данных:
[image: image85.jpg]

Обозначение таблиц и полей

	Отношение
	Таблица
	Атрибут
	Поле

	Владелец
	Owner
	№Вл
	Non

	
	
	Вл
	Ow

	
	
	АдрВл
	AdO

	Договор
	Lease
	№Дог
	NLease

	
	
	Ар
	Tn

	
	
	АдрАр
	AdT

	
	
	АдрНд
	AdR

	
	
	Дата
	LDate

	Недвижимость
	Realty
	Тип
	Typ

	Плата
	Rent
	Пл
	Rn

Необходимо в пакете ErWin создать логическую модель данной базы данных.
Контрольные вопросы

1. Что представляет собой пакет ErWin?

2. Что такое связь? Какие виды связей существуют в модели , построенной с использованием ErWin?

3. Какой редактор используется для создания первичных ключей и атрибутов?

4. Что такое атрибут?

5. Чем отличается первичный ключ от альтернативного?
Лабораторная работа 19-20
Создание физической модели данных с помощью утилиты автоматизированного проектирования базы данных
Цель работы: 1. освоение роли CASE-средства Erwin при нормализации и денормализации;

2. построение физической модели заданной предметной области;

3. генерация средствами Erwin содержимого системного каталога для заданной СУБД.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· работать с современными Сase-средствами проектирования баз данных;

знать:

· основные принципы построения концептуальной, логической и физической модели данных.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

В ERwin существуют два уровня представления и моделирования - логический и физический. Логический уровень означает прямое отображение фактов из реальной жизни. Например, люди, столы, отделы, собаки и компьютеры являются реальными объектами. Они именуются на естественном языке, с любыми разделителями слов (пробелы, запятые и т.д.). На логическом уровне не рассматривается использование конкретной СУБД, не определяются типы данных (например, целое или вещественное число) и не определяются индексы для таблиц.

Целевая СУБД, имена объектов и типы данных, индексы составляют второй (физический) уровень модели ERwin. ERwin предоставляет возможности создавать и управлять этими двумя различными уровнями представления одной диаграммы (модели), равно как и иметь много вариантов отображения на каждом уровне.

На уровне физической модели сущности соответствует таблица в реальной СУБД, атрибуту – колонка таблицы, связи – внешний ключ, первичным и альтернативным ключам – уникальные индексы, а инверсным входам не уникальные.

Правила ссылочной целостности – это логические конструкции, которые выражают бизнес-правила использования данных. Они определяют, какие действия должна выполнить СУБД при удалении, вставке или изменении строки таблицы (экземпляра сущности). Заданные таким образом действия используются впоследствии при автоматической генерации триггеров, поддерживающих целостность данных.

Существуют следующие виды действий или правил, определяемых в логической модели:

· RESTRICT – запрет удаления, вставки или изменения экземпляра сущности.

· CASCADE – при удалении экземпляра родительской сущности удаление всех экземпляров дочерней сущности, ссылающихся на удаляемый родительский экземпляр.

· SET NULL – при удалении экземпляра родительской сущности атрибутам внешнего ключа всех экземпляров дочерней сущности присваивается значение NULL.

· SET DEFAULT – то же самое, что и в предыдущем случае, только вместо значения NULL присваивается значение по умолчанию.

· NONE – никаких действий не предпринимается.

Эти правила задаются на вставку, удаление и изменение экземпляра как родительской, так и дочерней сущности. Таким образом, каждая связь должна обладать набором из шести правил, которые вводятся в поля, объединенные общим заголовком «RI Actions». При добавлении связи в диаграмму Erwin по умолчанию устанавливает для нее набор правил, которые можно редактировать.

Завершающим этапом подготовки логической модели является проведение нормализации данных. Erwin не содержит полного алгоритма нормализации и не может проводить нормализацию автоматически, однако его возможности облегчают создание нормализованной модели данных:

· Erwin отмечает повторное использование имени сущности и атрибута;

· запрещает присвоение неуникальных имен атрибутов внутри одной модели (при соответствующей установке опции Unique Name), соблюдая правило «в одном месте – один факт».

На физическом уровне возможно проведение денормализации данных – процесса, обратного нормализации. Erwin позволяет сохранить на уровне логической модели нормализованную структуру, при этом построить на уровне физической модели структуру (возможно, денормализованную), которая обеспечивает лучшую производительность, используя особенности конкретной СУБД и бизнес-правила предметной области. Erwin имеет следующие возможности по поддержке процесса денормализации:

· Сущности, атрибуты, ключи и домены можно создавать только на уровне логической модели, включив в соответствующих редакторах опцию Logical Only. Такие объекты не будут отображаться на уровне физической модели и не будут создаваться при генерации базы данных.

· Таблицы, колонки, домены и индексы можно создавать только на уровне физической модели (опция Physical Only).

· При разрешении связи многие-ко-многим в физической модели создается новая таблица и структура данных может быть дополнена только на уровне физической модели.

Erwin позволяет создавать на физическом уровне представления, которые представляют собой объекты базы данных, данные в которых не хранятся постоянно, как в таблице, а формируются динамически при обращении к представлению. Представление не может существовать само по себе, а определяется только в терминах одной или нескольких таблиц.

Задание
Построить физическую модель поставки товаров в соответствии с договорами средствами Erwin.
Сгенерировать схему базы данных для СУБД Access.

Последовательность выполнения работы
1. Задание правил декларативной ссылочной целостности

· Находясь на логическом уровне модели данных, выделите связь «заключает» между сущностями Покупатель и Договор, щелкнув по ней указателем мыши. Затем нажмите правую кнопку мыши и в контекстном меню выберите пункт Relationship Properties (редактор связей).

· В окне редактора связей Relationship перейдите на вкладку RI Actions. Ознакомьтесь с правилами ссылочной целостности для связи «Покупатель – Договор», присвоенными по умолчанию. Данные установки запрещают вставку и изменение экземпляра дочерней сущности, а также удаление и изменение родительской сущности. Это означает, что не допускается удаление или изменение покупателя, если в базе данных имеются заключенные с ним договоры, а также ввод договора без указания покупателя или со ссылкой на несуществующего покупателя. Тем самым мы выполнили условие, по которому договор может существовать только для конкретного покупателя.

· Проанализируйте установленные правила ссылочной целостности для всех остальных связей.

Правила, присваиваемые связи по умолчанию, можно изменить, выбрав нужное значение из выпадающего списка.

2. Нормализация данных

Из модели видно, что в сущности Покупатель присутствует множественный атрибут ТЕЛ. Покупатель может иметь несколько телефонных номеров, что является нарушением первой нормальной формы, согласно которой все значения атрибутов должны быть атомарными. Поэтому необходимо выделить атрибут ТЕЛ в отдельную сущность.

· Создайте сущность Телефон, содержащую следующие атрибуты: КОД_ТЕЛ (первичный ключ, тип – number) и ТЕЛ (тип – string).

· Свяжите сущности Покупатель и Телефон идентифицирующей связью. Установите мощность связи – One or More (P) и введите имя связи – имеет.

3. Переход к физическому уровню модели

· В раскрывающемся списке, расположенном в правой части панели инструментов, выберите пункт Physical.

Erwin автоматически генерирует физическую модель данных для конкретной СУБД на основании логической модели по следующему принципу: сущности становятся таблицами, атрибуты – столбцами, а ключи – индексами.

4. Выбор сервера

· Выполните команду Database | Choose Database.

· В диалоговом окне Erwin/ERX – Target Server необходимо задать тип сервера – Access и его версию – 2000. Кроме того, здесь указывается используемый по умолчанию тип данных и условие NULL для вновь созданных колонок. Некоторые опции данного диалогового окна зависят от выбранного типа сервера.

· После выбора сервера нажмите кнопку ОК.

5. Денормализация данных

На модели имеются две связи типа «многие-ко-многим»: Товар – Договор и Товар – Накладная, которые должны быть разрешены на физическом уровне. Результат разрешения данных связей представлен в табл. 2.1.

Таблица 2.1.

Результат разрешения связей «многие-ко-многим»

	Связь

многие-ко многим
	Имя ассоциативной таблицы
	Новые колонки ассоциативной таблицы
	Тип данных

	Товар-Договор
	Поставка_План
	СРОК_ПОСТ
	Datetime

	
	
	КОЛ_ПОСТ
	Number

	
	
	СУММА_ПОСТ
	Number

	

	Товар-Накладная
	Отгрузка
	КОЛ_ОТГР
	Number

	
	
	СУММА_ОТГР
	Number

Разрешение связей «многие-ко-многим» осуществляется автоматически при переходе на физический уровень, либо с помощью специального мастера Many Relationship Transform Wizard.

· Для вызова данного мастера выделите связь «Товар – Договор», щелкнув по ней указателем мыши. Затем нажмите правую кнопку мыши и в контекстном меню выберите пункт Create Association Table (создать ассоциативную таблицу). На экране появится первый диалог мастера, содержащий текст о его назначении.

· Нажмите кнопку Далее. На экране появится второй диалог мастера, в котором задается им ассоциативной таблицы.

· Введите в поле Table Name (имя таблицы) – Поставка_План. В поле Table Comment (комментарии к таблице) введите текст: Сведения о поставках товара по договору.

· Нажмите кнопку Далее. На экране появится следующий диалог мастера, в котором указывается Transform Name (имя преобразования) и Transform Definition (определение преобразования).

· Нажмите кнопку Далее и затем Готово.

· На модели появилась новая таблица Поставка_План, связанная идентифицирующей связью с таблицами Товар и Договор.

· Новую таблицу необходимо дополнить тремя колонками (см. табл. 2.1). Для этого выделите таблицу Поставка_План, щелкнув по ней указателем мыши. Затем нажмите правую кнопку мыши и в контекстном меню выберите пункт Columns (редактор колонок). Работа с данным редактором аналогична работе с редактором атрибутов.

· Самостоятельно введите три новых колонки в соответствии с табл. 2.1.

· Рассмотренным выше способом (с использованием мастера) преобразуйте связь «Товар – Накладная» и дополните полученную ассоциативную таблицу Отгрузка двумя колонками согласно табл. 2.1.

6. Корректировка типов и размеров полей

В полученной модели необходимо скорректировать типы и размеры полей для заданной СУБД Access в соответствии с табл. 2.2.

Таблица 2.2.

Типы данных и размеры колонок таблиц физической модели

	Таблица
	Колонка
	Тип данных

	Покупатель
	КОД_ПОК
	Integer

	
	ИНН
	Long Integer

	
	НАИМ_ПОК
	Text (25)

	
	АДРЕС_ПОК
	Text (40)

	
	НОМ_РСЧ
	Text (20)

	
	Банк
	Text (25)

	Товар
	КОД_ТОВ
	Integer

	
	НАИМ_ТОВ
	Text (20)

	
	ЕИ
	Text (20)

	
	ЦЕНА
	Currency

	
	СТАВКА_НДС
	Integer

	Склад
	КОД_СК
	Integer

	
	НАИМ_СК
	Text (20)

	
	АДРЕС_СК
	Text (30)

	
	ОТВ_ЛИЦО
	Text (30)

	Договор
	НОМ_ДОГ
	Integer

	
	ДАТА_ДОГ
	Date/Time

	
	СУММА_ДОГ
	Currency

	Накладная
	НОМ_НАКЛ
	Integer

	
	ДАТА_ОТГР
	Date/Time

	
	СУММА_НАКЛ
	Currency

	Телефон
	КОД_ТЕЛ
	Integer

	
	ТЕЛ
	Text (15)

	Поставка_План
	СРОК_ПОСТ
	Date/Time

	
	КОЛ_ПОСТ
	Integer

	
	СУММА_ПОСТ
	Currency

	Отгрузка
	КОЛ_ОТГР
	Integer

	
	СУММА_ОТГР
	Currency

· Для этого вызовите редактор колонок Columns через пункт главного меню Model | Column, либо через контекстное меню.

· Редактируемая таблица выбирается в списке Table. Для каждой колонки таблицы на закладке Access определите тип данных согласно табл. 2.2, выбрав в поле Access Datatype из списка нужное значение.

· Кроме того, здесь задается опция NULL (группа Null Option), которая определяет допустимость пустых значений поля.

7. Задание правил валидации

7.1. Задание списка допустимых значений

В соответствии с рассматриваемой предметной областью для поля СТАВКА_НДС таблицы Товар зададим список допустимых значений: 0, 10 и 18 %.

· Вызовите контекстное меню таблицы Товар и выберите пункт Columns.

· В окне редактора в поле Column выберите колонку, для которой будет задаваться правило – СТАВКА_НДС.

· Перейдите на закладку выбранной СУБД – Access.

· Щелкните по кнопке, расположенной справа от раскрывающегося списка Valid.

· В диалоге Validation Rules щелкните по кнопке New.

· В диалоге New Validation Rule в поле Logical введите имя правила – Проверка ставки НДС. Нажмите кнопку ОК.

· Перейдите на закладку General. В группе Type установите опцию Valid Value List.

· В поле Valid Value в первой строке введите 0. Во вторую и третью строки введите значения: 10 и 18.

· Проверьте, чтобы в верхней части окна редактора Validation Rules появилась строчка: Проверка ставки НДС (Validation Name) IN (0, 10, 18) (Validation Rule).

· Нажмите ОК. В окне редактора Columns на закладке Access в поле Valid появилось наименование созданного правила – «Проверка ставки НДС».

7.2. Задание значений, присваиваемых по умолчанию

Создадим правило, согласно которому в поле ДАТА_ДОГ таблицы Договор будет по умолчанию подставляться значение текущей даты.

· Вызовите контекстное меню таблицы Договор и выберите пункт Columns.

· В окне редактора в поле Column выберите колонку, для которой будет задаваться правило – ДАТА_ДОГ.

· На закладке Access щелкните по кнопке, расположенной справа от раскрывающегося списка Default.

· В диалоговом окне Default/Initial Values щелкните по кнопке New.

· В диалоге New Default Value в поле Logical введите имя правила – Текущая дата. Нажмите кнопку ОК.

· На закладке Access в поле Server Value – Access Default введите Date() (функцию, получающую значение текущей даты).

· Нажмите ОК. В окне редактора Columns на закладке Access в поле Default появилось наименование созданного правила – «Текущая дата».

· Установите это же правило для поля ДАТА_ОТГР таблицы Накладная. Для этого в окне редактора колонок Column выделите поле ДАТА_ОТГР и на закладке Access в поле Default из раскрывающегося списка выберите правило Текущая дата.

7.3. Задание правил проверки вводимых значений

Создадим правило проверки вводимых значений для поля ЦЕНА таблицы Товар, согласно которому данное поле не может иметь значения, меньшие 0.

· Вызовите контекстное меню таблицы Товар и выберите пункт Columns.

· В окне редактора в поле Column выберите колонку, для которой будет задаваться правило – ЦЕНА.

· На закладке Access щелкните по кнопке, расположенной справа от раскрывающегося списка Valid.

· В диалоге Validation Rules щелкните по кнопке New.

· В диалоге New Validation Rule в поле Logical введите имя правила – Проверка цены. Нажмите кнопку ОК.

· Перейдите на закладку General. В группе Type установите опцию Min/Max.

· В поле Min введите 1. Кроме нижней границы диапазона значений здесь также можно задать и верхнюю границу (Max).

· В верхней части окна редактора Validation Rules в списке правил валидации добавилось вновь созданное: Проверка цены >=1.

· Нажмите кнопку ОК.

8. Внесение в диаграмму представлений

Создадим представление, которое будет содержать информацию об общих суммах заключенных договоров по покупателям, размер которых превышает 10000 руб.

· Выберите в палитре инструментов кнопку представления (View Table), затем щелкните по свободному месту диаграммы.

· Выберите кнопку связи (View Relationships). Щелкните по родительской таблице (Покупатель), затем по представлению. Поскольку в нашем представлении используются данные из двух таблиц: Покупатель и Договор, то таким же образом создайте связь представления с таблицей Договор.

· По умолчанию при создании связи Erwin включает в представление все колонки родительских таблиц. Оставьте следующие поля: Покупатель.НАИМ_ПОК, Договор.КОД_ПОК, остальные – удалите, выделив их и нажав кнопку Delete.

· Вызовите контекстное меню представления и выберите пункт DatabaseView Properties (редактор представлений).

· В окне редактора Views в поле Name введите имя представления.

· На закладке Select имеется два списка: в правом отображаются колонки представления, в левом – колонки, доступные для включения в представление.

· Помимо наименования (НАИМ) и кода (КОД) покупателя, нам необходимо подсчитать и вывести информацию об общей сумме заключенных им договоров. Для этого создадим выходной столбец с именем СУММА.

· Нажмите кнопку New Expression. В диалоговом окне New View Column в поле Name введите имя выходного столбца – СУММА, в поле Expression задайте выражение – Sum(Договор.СУММА_ДОГ). Нажмите кнопку ОК.

· Перейдите на закладку Where.

· В поле Group By введите имя поля, по которому будет осуществляться группировка, – Договор.КОД_ПОК.

· В поле Having задайте условие отбора групп записей, – Sum(Договор.СУММА_ДОГ)>10000.

· Нажмите кнопку ОК.

· В результате проделанной работы физическая модель будет иметь вид, показанный на рис. 2.1.

[image: image57.emf]

P

P

P

P

Покупатель

КОД_ПОК: Integer

ИНН: Long Integer (AK1.1)

НАИМ_ПОК: Text(25) (IE1.1)

АДРЕС_ПОК: Text(40)

НОМ_РСЧ: Text(20)

Банк: Text(25)

Договор

НОМ_ДОГ: Integer

ДАТА_ДОГ: Date/Time

СУММА_ДОГ: Currency

КОД_ПОК: Integer (FK)

Товар

КОД_ТОВ: Integer

НАИМ_ТОВ: Text(20) (IE1.1)

ЕИ: Text(20)

ЦЕНА: Currency

СТАВКА_НДС: Integer

Накладная

НОМ_НАКЛ: Integer

КОД_СК: Integer (FK)

ДАТА_ОТГР: Date/Time

СУММА_НАКЛ: Currency

НОМ_ДОГ: Integer (FK)

Склад

КОД_СК: Integer

НАИМ_СК: Text(20) (IE1.1)

АДРЕС_СК: Text(30)

ОТВ_ЛИЦО: Text(30)

Телефон

КОД_ТЕЛ: Integer

КОД_ПОК: Integer (FK)

ТЕЛ: Text(15)

Поставка_План

КОД_ТОВ: Integer (FK)

НОМ_ДОГ: Integer (FK)

СРОК_ПОСТ: Date/Time

КОЛ_ПОСТ: Integer

СУММА_ПОСТ: Currency

Отгрузка

НОМ_НАКЛ: Integer (FK)

КОД_ТОВ: Integer (FK)

КОД_СК: Long Integer (FK)

КОЛ_ОТГР: Long Integer

СУММА_ОТГР: Long Integer

Общие суммы договоров по покупателям

НАИМ_ПОК: Покупатель.НАИМ_ПОК: Text(25)

КОД_ПОК: Договор.КОД_ПОК: Integer NOT NULL

СУММА: <Sum(Договор.СУММА_ДО...>

Рис. 2.1. Физическая модель данных

9. Генерация системного каталога базы данных

· Прежде чем приступать к генерации физической схемы базы данных создайте новую базу данных в Access.

· В программе Erwin выполните команду Tools | Forward Engineer/Schema Generation.

· В диалоговом окне Access Schema Generation на закладке Option задайте опции генерации объектов модели, выбирая в левом списке объект, а в правом – соответствующие ему опции.

· Щелкните по кнопке Generate.

· В диалоговом окне Access Connection установите связь с созданной базой данных, заполнив все предложенные поля.

В поле Database укажите путь к базе данных, в поле System Database необходимо задать путь к системной базе данных, файл которой имеет следующее имя – system.mdw.

· В случае установления соединения будет выполняться SQL-скрипт. Если в процессе генерации возникают ошибки, то она прекращается, открывается окно с сообщениями об ошибках.

Контрольные вопросы.

1. Какие виды связей существуют в модели, построенной с использованием ErWin?
2. В чем разница между логической и физической моделями?
3. Как проводится генерация схемы БД в ErWin?
4. Как запустить окно просмотра программного кода?
Лабораторная работа 21
Разработка серверной части базы данных в инструментальной оболочке
Цель работы: познакомить с принципами и различными способами создания и изменения серверной части базы данных; приобрести навыки работы с утилитами сервера InterBase.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· современные инструментальные средства разработки схемы базы данных
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Файл базы данных

 В InterBase база данных может состоять из нескольких файлов. Имя файла базы данных присваивает программист, а расширение у файла – gdb.

 Файл базы данных представляет собой контейнер, внутри которого хранятся другие файлы, такие как табличные, индексные, просмотров и т.д. файл базы данных создается один раз и в дальнейшем изменяться не может. Внутри базы данных имеется некоторая область, которая называется метаданные. Внутри этой области хранятся программные блоки, которые содержат в откомпилированном виде описания триггеров, хранимых процедур и генераторов.
Алиас

Создание псевдонима (алиаса) позволяет работать с базой данных как единым объектом.

Псевдоним (alias) имеет символьный тип и состоит из набора символов латинского алфавита и цифр, но первый символ должен быть буквой. Алиас несет большую смысловую и техническую нагрузку. Ему в соответствие ставится полный путь к базе данных, имя драйвера доступа к данным и настройки сеанса связи.

 При переносе (запуске) приложения БД достаточно указать только ее алиас и все подключения будут выполнены автоматически. При переносе БД на другой персональный компьютер необходимо создать аналогичный алиас по новому месту эксплуатации базы данных. По этому псевдониму производится обращение к базе данных из приложения и из утилит. Созданный псевдоним регистрируется в файле конфигурации персонального компьютера.

Регистрация файла базы данных.

Файл БД (.gdb) может быть принесён извне и установлен в любую папку (каталог) на жёстком диске или вообще находиться на другом персональном компьютере. Такой файл необходимо зарегистрировать на сервере.

Для регистрации файла базы данных запускают утилиту IBConsol и сервер InterBase и из главного меню утилиты подают команду

 Database → Register
При этом на экран выводится диалоговая панель «Register Database and Connet», в которой заполняются поля «File», «Alias Name», «Default Character Set»

Для снятия с регистрации Database → Unregister
Снять с регистрации можно только закрытую базу данных.

Задание 1.

Создание "контейнера" базы данных

Создадим базу данных EXMPL.gdb формата InterBase
1. Создайте папку C:\dbApp\clSrv\Exmpl, где будет храниться база данных.
2. Запустите утилиту IBConsole (Пуск/InterBase/IBConsole).
3. Выделите мышью Local Server.
[image: image58.png]4 IBConsole

Console View Server D]

Выбор сервера в окне IBConsole
4. Используя меню Server/Login, зарегистрируйтесь с паролем masterkey как администратор.
Примечание

Под администратором баз данных понимают любого пользователя, который регистрируется под именем SYSDBA с паролем masterkey при условии, что этот пароль никто из них менять не будет.

6. Выберите команду Database/Create Database
7. Введите в поле Alias псевдоним – EXMPL.gdb.
8. В поле File(s) введите имя файла базы данных, включая полный путь: C:\dbApp\clSRV\Exmpl\ Exmpl.gdb
9. Для работы с символами национальной кодировки установите значение Default Character Set ПОЛЯ Options равным WIN1251.
[image: image86.jpg]

[image: image87.jpg]Databas

Component Editor,

Connestion
© Local C Remate

Database:
CIB\BAZA GDB

Database Parameters
User Name: Sefings:
SYSDEA
Passuord:
masterkey

SOLRdk:

Cheracter Set:
Nane -

I~ G st

0K Concel | Isat Help

10. Завершите работу, щелкнув мышью на кнопке ОК.

Как только база данных будет создана, IBConsole добавит псевдоним к дереву "сервер/базы данных.
Совет

Если вам необходимо удалить базу данных из дерева "сервер/базы данных", то предварительно сделайте ее неактивной (Database/Disconnect), а затем удалите ее командой Database/Unregister. Удаление самой базы производят командой Database/Drop Database.

Задание 2.

Создание алиаса для серверной базы данных

1. Запустите SQL Explorer.
2. Выберите на левой панели вкладку Databases.
3. Активизируйте команду Object/New.
4. В окне New-Database-Alias выберите драйвер INTRBASE.
 [image: image59.png]Database Diiver Name

= ——

K Corcsl | ek

5. Отредактируйте имя алиаса на левой панели. Пусть оно будет не INTRBASE1, a clsrvExmpl.
6. Укажите на вкладке Definition, которая находится на правой панели, путь к таблице. Для этого щелкните мышью на правой колонке, напротив SERVER NAME, а затем на кнопке выбора [image: image60.png]

7. В появившемся окне Открытие файла укажите путь C:\dbApp\clSRV\Exmpl\ Exmpl.gdb.
8. Выберите Pdox ansi Cyrillic в качестве LANGDRIVER.
9. Щелкните на пункте USER NAME и введите соответствующее имя пользователя InterBase — sysdba.
10. Чтобы новый алиас вступил в силу, выберите команду Object/Apply.
Задание 3.
Создание настольной базы данных
В соответствии со схемой базы данных и представленными атрибутами отношений создайте в каталоге «ARENDA» настольную базу данных "Arenda Minus" и его алиас dskExmpl.
 Обозначение таблиц и полей

	Отношение
	Таблица
	Атрибут
	Поле

	Владелец
	Owner
	№Вл
	Non

	
	
	Вл
	Ow

	
	
	АдрВл
	AdO

	Договор
	Lease
	№Дог
	NLease

	
	
	Ар
	Tn

	
	
	АдрАр
	AdT

	
	
	АдрНд
	AdR

	
	
	Дата
	LDate

	Недвижимость
	Realty
	Тип
	Typ

	Плата
	Rent
	Пл
	Rn

.

[image: image88.jpg]N [vispra maumres[ron somycra| P01 naneneua

adnasanasio 1930 Eaaia
[]2 ascm 1936 laodia
[z ascizs 1997 Neaidia
|2 Eaenon 2000 Eaaia
|1 aeei 200 laodia
6 aeei 1939 Neaidia

e =]a °

 nocasams vatnuy

 Схема базы данных "Arenda Minus"

Задание 4.

Создание серверной базы данных на основе настольной - Upsizing

Процесс создания серверной базы данных на основе настольной называют переносом унаследованных данных. Его производят с помощью утилиты Data Migration Wizard - Datapump. Но сначала следует создать алиас и таблицы настольной базы данных.
1. Запустите Data Migration Wizard командой Пуск/Программы/Borland Delphi 7/Datapump.
2. В первом окне выберите алиас источника данных — dskExmpl.
3. Во втором окне выберите алиас приемника данных — clsrvExmpl.
4. В окне Select Tables to Move выберите все таблицы.
5. Просмотрите, используя кнопку Modify Mapping Information For Selected Item,
 типы данных, к которым будут преобразованы поля настольной базы.
6. Завершите процесс переноса данных, щелкнув мышью на кнопке Upsize.
7. Просмотрите заключительный отчет и щелкните мышью на кнопке Done.
Контрольные вопросы

 1. Какая команда создаёт базу данных?

 2. Для чего используется опция Default Character Set и какое значение задается ей задаётся?

 3. Укажите назначение алиаса.

 4. Что значит зарегистрировать базу данных?

 5. Что изменилось после переноса настольной базы данных в контейнер?

 6. Что произойдет после выполнения данной операции?
 7. Как удалить базу данных из дерева "сервер/базы данных
Лабораторная работа 22
Визуальное проектирование структуры базы данных

Цель работы: познакомить с принципами разработки и внедрения SQL-сценариев при проектировании структуры базы данных; научиться работе в графическом построителе базы данных.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· разрабатывать прикладные программы с использованием языка SQL;

знать:

· основные положения теории баз данных, хранилищ данных, баз знаний
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Типы данных для сервера InterBase
	Тип столбца
	Размер, байт
	описание

	SMALLINT
	2
	Целочисленные значения от -32 768 до +32 767

	INTEGER
	4
	Целочисленные значения от -2 147 483 648

до +2 147 483 647

	FLOAT
	4
	Вещественные числа до 7 значащих цифр в диапазоне от 3,4 х 10-38 до 3,4 х 10+38

	DOUBLE PRECISION
	8
	Вещественные числа до 15 значащих цифр в диапазоне от 1,7 х 10-308 до 1,7 х 10+308

	NUMERIC или DICIMAL
	Переменный
	Вещественные числа с фиксированной запятой. При определении этого типа дополнительно указывается общее количество значащих цифр числа и количество цифр в дробной части.

	CHAR(n) или CHARACTER
	0-32 767
	Текстовый столбец длиной до n символов

	VARCHAR(n) или CHAR[ACTER] VARYING
	0-32 767
	Текстовый столбец переменной длины, содержащей до n символов

	DATE
	8
	Дата в пределах от 01.01.0100 до 11.12.5941. также может хранить сведения о времени

	BLOB
	Переменный
	Любой тип двоичных данных

 Доменами называются заранее созданные описания столбцов. Наряду с другими сущностями БД домены должны иметь уникальные имена. Раз созданный домен хранится в БД и может использоваться вместо типа столбца. С помощью доменов достигается унификация типов данных, хранящихся в различных столбцах, возможно, разных таблиц.

Пусть, например, в столбцах Name1 и Name2 таблицы Firms должна содержаться информация о контактных лицах партнера. Оба столбца должны иметь одинаковую длину и в них может использоваться кириллица. Объявление таблицы может выглядеть следующим образом:

CREATE TABLE Firms (. . . , Name1 VARCHAR (40) CHARACTER SET
WIN1251 COLLATE PXW_CYRL, Name2 VARCHAR (40) CHARACTER SET

WIN1251 COLLATE PXW_CYRL, . . .)

Вместо этого объявления можно сначала создать домен:

CREATE DOMAIN Firms_Names AS VARCHAR(40) CHARACTER SET WIN1251

 COLLATE PXW_CYRL
Далее этот домен используется при объявлении таблицы:
CREATE TABLE Firms (… , Name1 Firm_Names, Name1 Firm_Names, …)
Задание 1.
 Разработка SQL-сценариев создания объектов базы данных

Объекты базы удаленной данных: таблицы, триггеры, домены и т.д. Сначала следует удалить из Exmpl.gdb все таблицы, появившиеся после переноса их из настольной базы.
1. Запустите утилиту Interactive SQL командой Tools/Interactive SQL главного меню IBConsole.
2. Используя меню Query/Execute, удалите таблицы командой drop TABLE.
Определение типов данных таблиц

Назначая типы данных колонкам таблиц, можно использовать "свои" типы — домены.
Типы данных полей таблиц базы данных Exmpl.gdb

 Описание доменов базы данных
	Имя

таблицы
	Имя

поля
	Тип
	Длина
	Деся-

тичная

часть
	
	Имя

поля
	Тип
	Дли-на
	Значение

по умолчанию
	Ограничения

	Owner
	NOn
	SMALLINT
	
	
	
	dnNum
	SMALLINT
	-
	
	>0

	
	Ow
	CHAR
	10
	
	
	dnOwTn
	CHAR
	10
	
	нет

	
	AdO
	CHAR
	20
	
	
	dnAddrs
	CHAR
	20
	
	нет

	Lease
	NLease
	SMALLINT
	
	
	
	dnTyp
	CHAR
	20
	1-к.

квартира
	1-к.квартира

2-к. квартира

дом

	
	Tn
	SMALLINT
	
	
	
	dnRn
	NUMERIC
	6,2
	60
	>0

	
	AdT
	CHAR
	20
	
	
	dnDATE
	TIMESTAMP
	-
	
	<= "TODAY"

	
	NOn
	SMALLINT
	
	
	

	
	AdR
	CHAR
	20
	
	

	
	LDate
	DATE
	
	
	

	Realty
	AdR
	CHAR
	20
	
	

	
	Тур
	CHAR
	20
	
	

	Rent
	Тур
	CHAR
	20
	
	

	
	Rn
	NUMERIC
	6
	2
	

Задание 2.
SQL-скрипты создания доменов и таблиц
1. В редакторе Блокнот набрать текст, представленный в листинге 1 и 2.
2. Сохраните в файлы domains.sql и tables.sql SQL-операторы создания доменов и таблиц соответственно.
	Листинг 1, SQL-операторы скрипта domains.sql
	Листинг .2. SQL-операторы скрипта tables.sql

	CREATE DOMAIN dnNum AS SMALLINT

CHECK (VALUE > 0)

NOT NULL;

commit;

CREATE DOMAIN dnOwTn AS CHAR(10)

NOT NULL;

commit;

CREATE DOMAIN dnAddrs AS CHAR (20)

NOT NULL;

commit;

CREATE DOMAIN dnTyp AS CHAR(20)

DEFAULT ‘1-к. квартира'

CHECK (VALUE IN (‘1-к. квартира',

2-к. квартира',

'дом'))

NOT NULL;

commit;

CREATE DOMAIN dnRn AS NUMERIC(6,2)

DEFAULT 60

CHECK (VALUE > 0)

commit;

CREATE DOMAIN dnDATE AS TIMESTAMP

CHECK (Value <= "TODAY");

commit;

	CREATE TABLE Owner(

NOn dnNum,

Ow dnOwTn,

AdO dnAddrs,

PRIMARY KEY (NOn))

commit;

CREATE TABLE Rent(

Тур dnTyp,

Rn dnRn,

PRIMARY KEY (Тур));

commit;

CREATE TABLE Realty(

AdR dnAddrs,

Тур dnTyp,

PRIMARY KEY (AdR),

FOREIGN KEY (Тур) REFERENCES Rent(Тур));

commit;

CREATE TABLE Lease(

NLease dnNum,

NTn dnNum,

NOn dnNum,

AdR dnAddrs,

Ldate dnDATE,

PRIMARY KEY (NLease),

FOREIGN KEY (NOn) REFERENCES Owner (NOn), FOREIGN KEY (AdR) REFERENCES Realty(AdR));

commit ;

Задание 3.
Выполнение скриптов:

1. Запустите утилиту IBConsole.
2. Зарегистрируйтесь на локальном сервере: Server/Login.
3. Соединитесь с базой данных Exmpl.gdb, для чего выделите ее псевдоним и, используя меню, выполните команду Database/Connect As.
4. Введите пароль, выберите character Set равным WIN1251 и щелкните мышью на кнопке Connect.
5. Запустите утилиту Interactive SQL (Tools/Interactive SQL).
6. Выполните команду Query/Load Script.
7. Укажите имя скрипта domains.sql и щелкните на кнопке Открыть.
8. Исполните скрипт командой Query/Execute.
9. Перейдите в окно IBConsole и убедитесь, что все домены созданы
10. Аналогично выполнить скрипт tables.sql
Контрольные вопросы
1. Для чего создаются домены?
2. SQL-операторы, создающие и определяющие объекты базы данных, называют операторами DDL (Data Definition Language, язык описания данных). Приведите, используя справочную систему InterBase, синтаксис оператора create table.
3. Что означает предложение collate pxw_cyrl?
Лабораторная работа 23
Разработка клиентской части базы данных в инструментальной оболочке
Цель работы: показать размещение компонент доступа к данным и компоненты отображения данных на листах различных типов приложения; грамотно использовать средства, события и методы компонентов;
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· основы разработки приложений баз данных.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Компоненты являются структурными единицами и делятся на визуальные (видимые) и невизуальньие (системные). При этом понятия “видимый” и “невидимый” относятся только к этапу выполнения, на этапе проектирования видны все компоненты приложения.

 К визуальным компонентам относятся, например, кнопки, списки или переключатели, a также собственно форма. Так как с помощью визуальных компонентов пользователь управляет приложением, их также называют управляющими компонентами или элементами управления. Именно визуальные компоненты образуют пользовательский интерфейс приложения.

 К невизуальным компонентам относятся компоненты, выполняющие вспомогательные, но не менее важные действия, например, таймер Timer или набор данных Table (компонент Timer позволяет отсчитывать интервалы времени, а компонент Table представляет собой записи таблицы базы данных).

При создании интерфейса приложения для каждого компонента выполняются следующие операции:

· выбор компонента в палитре компонентов и размещение его в форме;

· изменение свойств компонента.

Палитра компонентов InterBase
[image: image89.png]Object TreeView

E‘i

ER RN

Constaine
DSears
& FildDets

& Fieds
& ndeiDets

 1. IBTable. Компонент, используемый вместо Table для доступа к одной таблице набора данных.

Свойства и методы, отличающие данный компонент от компонента Ttable.
- cвойство BufferChunks типа integer определяет размер буфера по числу записей.
- cвойство TableTypes типа TIBTableTypes определяет тип доступных при выполнении с помощью свойства TableName таблиц и может принимать значения:
TtSystem (доступны системные таблицы и представления);
TtView (доступны представления).
Перед открытием таблицы во время работы приложения рекомендуется использовать свойство Exists типа Boolean для проверки существования в БД указанной в значении свойства TableName таблицы.

[image: image90.png]@ &

dbExmpl quVienLease

diViewLease

2. IBDatabase. Этот компонент обеспечивает соединение с базой данных InterBase.

Он отвечает за соединение с сервером БД.
Установить необходимые значения параметров успешного соединения с сервером БД можно в диалоговом окне DateBase Component Editor, которое открывается либо двойным щелчком на компоненте TIBDatebase, либо выбором пункта DateBase Editor контекстного меню компонента.
Необходимо задать в поле ввода DateBase полный путь к нужному файлу БД и заполнить поля User Name и Password. Можно отказаться от стандартного диалога ввода имени пользователя и пароля при установке соединения с сервером БД, сбросив флажок Login Prompt.
В этом же диалоговом окне можно проверить соединение с помощью кнопки Test. В случае успешного тестирования соединения достаточно вернуться в Инспектор объектов и с помощью свойства Connected типа Boolean сделать соединение активным.
Компонент IBDatebase обладает дополнительным свойством AllowStreamedConnected типа Boolean, позволляющим контролировать включение соединения в начале работы приложения. Установив его значение в False, разработчик получает дополнительный контроль над правильностью соединения. Рекомендуется использовать это свойство совместно с свойством Connected и методом checkDateBaseName, проверяющим, заполнено ли поле DateBaseName на этапе запуска программы.
Во время выполнения приложения можно проверить состояние соединения с сервером БД используя метод CheckActive или метод CheckInactive – его зеркальное отображение
[image: image91.png]=] B3

: | Bnaeneu [DBLookupComboBox!
Dﬁra:amfmfﬁe [DBE i1 i

oK e

Je: tmE

3. IBTransaction. Компонент обеспечивает доступ ко всем богатым возможностям транзакций InterBase.

Благодаря использованию транзакций с опциями, наиболее подходящими к той или иной ситуации, повышается эффективность работы. Поддерживаются распределенные транзакуии со множеством баз данных.
Один компонент типа IBTransaction может быть связан с несколькими компонентами типа IBDataBase.
Получить список и общее число связанных соединений можно с помощью свойств DataBases типа TIBDateBase и DataBaseCount типа Integer соответственно.

Задание 1.
Создание приложения в Delphi с использованием InterBase

А. Клиентская часть: размещение не визуальных компонентов, соединение с БД.

Рассмотрим использование компонент для создания простейшего приложения. База Baza.gdb состоит из одной таблицы с полями: Ncar, marka, year, fio.

1. Запустите Delphi, создайте приложение и модуль данных.
Создание модуля: → File → New → Data Module.

В модуль данных поместите компоненты
вкладка Data Access → DataSource1

вкладка Inter Base → IBTransaction1, IBTable1, IBDatabase1.

[image: image92.png].—“(Propetio] Metadata | Peimisons| Dalime

TaoR [ive [LEASE
;Kmnaalls/z T xoapmupe 10 OWNER
[[Merannyproe 55 aom {0 REALTY|

|[ElPKopcakoea 3 2x. xeaprpe D RENT

"

R SN e
1CATAP\SIABMONENTRLOL 1]

Для удобства работы, используя окно Object Inspector всем компонентам можно дать соответствующие имена:
	IBDatabase1
	 Dcars,

	IB Transaction1
	 Tcars,

	IB Table1
	 Cars,

	DataSource
	 DScars

2. В Инспекторе Объектов следует изменить свойства компонент – Dscars, cars, Tcars:

	Компонента
	Свойство
	Значение

	DScars
	DataSet
	cars

	cars
	Database
	Dcars

	
	Transaction
	Tcars

	Tcars
	DefaultDatabase
	Dcars

[image: image93.png]Pw;{:e;l;x] etacaa | Fsiis o] DBA)| DebacePche)

Name_ | CanDefer] Inii.. ? Index | Refetence Table_|
INTEG_§ NO NO RDBSFOREIGNS OWNER

A\dbApp\CISVAE kmpI\Exmpl.gdb ¢ " Tables -

3. Двойным щелчком по компоненту Dcars вызываем окно Database Component Editor. Нажимаем кнопку Browse и находим папку, где находится созданная база (baza.gdb), открываем ее. Далее делаем все так, как показано на рисунке и нажимаем ОК.

Б. Клиентская часть: размещение визуальных компонентов, отображение таблиц.

4. На форму поместите DBGrid1, DBNavigator1, BitBtn1 и BitBtn2.

DBGrid1 - таблица для отображения данных базы данных,

DBNavigator1 - навигатор для управления курсором,

BitBtn1 - кнопка для активизации таблицы,

BitBtn2 - кнопка для закрытия приложения.

	Компонента
	Свойство
	Значение

	DBGrid1
	DataSourse
	DM.DScars

	DBNavigator1
	
	

	cars
	Active
	True

	DBGrid1
	Visible
	False

	DBNavigator1
	Enabled
	False

В процедуре BitBtn1.Click (кнопка "показать таблицу") напишите:

DBGrid1.Visible:=True;

DBNavigator1.Enabled:=true;

В процедуре BitBtn2.Click (кнопка "закрыть приложение") напишите:

Form1.Close;

5. Сохраните проект на диске С:, в папке IB и запустите проект на выполнение.

6. При правильной работе программы у вас должно получится приложение, рисунок которого показан ниже:
[image: image94.png]@ violalion of FOREIGN KEY constraint ‘INTEG_7" on table "LEASE"

7. При нажатии на кнопку "показать таблицу", приложение должно принять вид:

[image: image95.png]Lease
‘NLease

Tn

vaef AdT

 NOn ——*| NOn (FK)

AdR (FK)
Oow LDate
AdO

7
Realty
AdR

Rent

Typ (FK) Typ

Задание 2.
 Создать приложение для базы EXMPL.gdb с использованием модуля данных и компонент для отображения и заполнения таблиц базы.

Создание серверной однотабличной базы данных
1. На диске С: создать папку IB.

2. В этой папке создать серверную базу данных BAZA.gdb формата InterBase
(в пункте 7 лаб_2 в поле Alias введите псевдоним BAZA.gdb; в поле File(s) введите имя файла БД, включая полный путь: C:\IB\Baza.gdb
3. Создать для базы данных алиас (в пункте 5 имя алиаса в левой панели установить inBaza; в пункте 7 – путь C:\IB\Baza.gdb)

4. Создать настольную базу данных. Для этого:

· на рабочем столе создать папку AVTO и в этой папке файл БД Avto.gdb (формат Paradox)

· создать алиас: BDE Administrator → Paradox → STANDARD → OK
в левой панели Администратора вместо стандартного STANDARD1 написать новое значение алиаса AVTO
· в файл Avto.gdb поместить таблицу Mash следующей структурой:

	Имя поля
	Тип поля
	Описание

	Ncar
	I
	Порядковый номер

	Marka
	А (10)
	Марка машины

	Year
	Datе
	Год выпуска

	Fio
	A (15)
	ФИО владельца

5. С помощью утилиты Datapump перенести таблицу Mash в серверную базу данных BAZA.gdb
6. Создать клиентское приложение для базы данных BAZA.gdb с использованием InterBase
DBGrid1, DBNavigator1 – вкладка Data Controls, BitBtn1, BitBtn2 – вкладка Additional
[image: image96.png]“ll Create Database.

Sewer: Lacal Server

Eiels}

Fienamefs]

Opiions:

Size (Pages)

Foge Size

Defaut Character Set

=3

[wiN1251

SGL Didect

3

¥ Registerdatabase

dlos: [EXHPLdo

[image: image61.png]e o

DataSaurce! IBTablelBDatabase 1B T ransaction

[image: image97.jpg]17 Mawshbl EBX

Ve ——

e e

Контрольные вопросы
1. На каком этапе создания приложения видны все компоненты приложения?
2. Какой компонент отвечает за соединение с сервером БД?
3. Каково назначение компонента Table?
Лабораторная работа 24-25
По​строение запросов к базе данных на языке SQL (различных типов)

Цель работы: познакомить с принципами формирования и выполнения операторов добавления, редактирования и удаления данных.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· разрабатывать прикладные программы с использованием языка SQL;

знать:

· основные положения теории баз данных, хранилищ данных, баз знаний.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

SQL(Structure Query Language) – один из самых распространенных языков запросов.

В SQL определены два подмножества языка:

SQL-DDL (Data Definition Language) – язык определения данных. Сюда относятся команды создания и удаления баз данных; создания, изменения и удаления таблиц; управления пользователями и т.д.
SQL-MDL (Data Manipulation) – язык манипулирования (управления) данными: добавления, изменение, удаление и извлечение данных, управление транзакциями
Обработка данных – добавление, редактирование и удаление записи.
При работе с удаленными БД обработку данных производят с помощью механизма транзакций (последовательность действий – запросов к БД – объединенных в единый блок и переводящих БД из одного целостного состояния в другое целостное состояние). Каждое действие выполняется друг за другом, без каких-либо дополнительных указаний пользователя. Под действием понимается один из запросов – INSERT, UPDATE, DELETE или SELECT.

Добавление новой записи –

 Полный формат запроса INSERT
INSERT INTO <имя таблицы>
 [(<имя поля_1>,< имя поля_2>, …,< имя поля_N>)]
VALUES(<значение_1>,< значение_2>,…,< значение_ N >)

Назначение опций:

<имя таблицы> – указывается имя таблицы, в которую добавляется запись;

<имя поля_1>,< имя поля_2>, …,< имя поля_N> – указываются имена полей, которым будут присвоены конкретные значения;

<значение_1>,< значение_2>,…,< значение_ N >) – указываются значения, которые будут присвоены соответствующим полям.

В этом случае имена полей могут идти в произвольном порядке, но при создании таблицы они должны быть описаны как физические. Программист должен обеспечить соответствие количества и типа полей количеству и типу присваемых им значений.

Добавление нескольких записей запросом INSERT
Формат запроса:

INSERT INTO <имя таблицы_приёмника>

 SELECT*FROM <имя таблицы_источника>

 WHERE<условие_отбора_записей>
Редактирование записи

При эксплуатации базы данных часто приходится вносить изменения (редактировать) в записи таблицы. В удаленных базах данных для этих целей предусмотрен запрос на изменение UPDATE, который реализуется с помощью соответствующего SQL-запроса.

Формат запроса:

UPDATE <имя таблицы>

SET <имя_поля_1>=<знач_1> [,<имя_поля_2>=<знач_2>, …,

 <имя_поля_N>=<знач_ N >]

[WHERE <логическое_условие>]

Удаление записи
Для удаления записи (записей) из таблицы предусмотрен запрос DELETE , который выполняется соответствующим SQL-оператором.

Формат запроса:

DELETE FROM <имя таблицы> [WHERE <логическое_условие>]

Задание 1.

Запросы на добавление данных.

Используя скрипт insert.sql, добавьте данные в таблицы базы из Exmpl.gdb.
Код скрипта insert.sql
//Добавить, данные о хозяевах недвижимости в таблицу Owner

INSERT INTO Owner VALUES (l, 'Иванов', 'Мира 36');

INSERT INTO Owner VALUES (2, 'Петров', 'Правды 2/36');

INSERT INTO Owner VALUES (3, 'Ивашко', 'Кирова 18');

commit;

//Добавить, данные о стоимости аренды недвижимости в таблицу Rent

INSERT INTO Rent VALUES ('2-к. квартира', 90);

INSERT INTO Rent VALUES ('1-к. квартира', 60);

INSERT INTO Rent VALUES ('дом', 1800);

commit;

//Добавить, данные о местоположении объекта недвижимости в таблицу Realty

INSERT INTO Realty VALUES ('Кирова 118/2', '1-к. квартира');

INSERT INTO Realty VALUES ('Металлургов 56', 'дом');

INSERT INTO Realty VALUES ('Р-Корсакова 32/15', '2-к. квартира');

commit;

//Добавить, данные о местоположении объекта недвижимости в таблицу Lease

INSERT INTO Lease VALUES (l, 'Петров', 'Правды 2/36', 1, 'Р-Корсакова 32/15', '01/01/01');

INSERT INTO Lease VALUES (2, 'Сидоров', 'Курская 18', 2, 'Кирова 118/2', '08/12/1999');

INSERT INTO Lease VALUES (3, 'Иванов', 'Мира 36', 3, 'Металлургов 56', '05/14/О2') ;

commit;
Задание 2.
Запросы на редактирование данных.

I. Редактирование данных о владельцах (Owner) и дат заключения договоров (LDate).
Прежде чем редактировать запись, ее следует выбрать. Для этого:

1. Используя приведенный ниже скрипт, создайте немодифицируемый просмотр sv_view__lease:
CREATE VIEW sv_View_Lease(NLease, Tn, Ow, Adr, LDate) AS

SELECT L.NLease, L.Tn, O.Ow, L.Adr, L.LDate

FROM Lease L, Owner 0

WHERE O.Non = L.NOn
2. Начните новый Delphi-проект.
3. Поместите на форму компоненты TDBNavigator, TButton и TDBGrid
[image: image62.png]mViewLease

B | 15 |, piaeranas|

Форма отображения данных договоров
4. Присвойте свойству Name формы значение fmViewLease.

5. Создайте модуль данных с именем dmEdit и назначьте свойства компонентов такими, как показано в таблице.

[image: image98.png]wed

Database Form Wi
; P Crosssatebietousowththefam

Table Neme: ;

[RENT_COST

@ REALTY <
@ REALTY_COST
@ RENT :J

ListFiles of Type: Diige o s v

<User Tables> ~| [8 cisvReal]

Свойство компонентов модуля данных

	Компонент
	Свойство
	Значение

	TDatabase
	AliasName
	clsrvExmpl

	
	DatabaseName
	Exmpl

	
	Name
	dbExmpl

	
	Params
	User Name=SYSDBA

PASSWORD=masterkey

	
	LoginPrompt
	False

	
	Connected
	True

	TQuery
	Name
	quViewLease

	
	DatabaseName
	Exmpl

	
	SQL
	Select *

from sv_View_Lease

	
	Active
	True

	TDataSourse
	DataSet
	quViewLease

	
	Name
	dsViewLease

6. Создайте папку Edit и сохраните в ней модуль данных и форму fmViewLease под именами dmEditU.pas и View.pas, соответственно.
7. Добавьте имя модуля данных в секцию implementation модуля View.
8. Теперь, когда записи отображены, реализуем их редактирование. Поставьте в соответствие событию btEditclick кнопки Редактировать процедуру:
Код процедуры btEditciick

procedure TfmViewLease.btEditcliick(Sender: TObject);
var Bookmark: TBookmark;

begin
Bookmark := dmEdit.quViewLease.GetBookmark; { установить закладку }

// Отобразить модально форму fmEdit

if (fmEdit.ShowModal = mrOK) and

{Если нажата кнопка OK и набор данных quEdLease находится в состоянии dsEdit или dslnsert }
((dmEdit.quEdLease.State = dsEdit) or (dmEdit.quEdLease.State = dslnsert}) then
begin

try
(сохранить текущее состояние набора данных}

dmEdit.quEdLease.Post;
{Показать текущее состояние набора данных}

dmEdit.quViewLease.Close;

dmEdit.quViewLease.Open;

finally
// Отобразить текущей ту запись, которую отредактировали

dmEdit.quViewLease.GotoBookmark(Bookmark);

dmEdit.quViewLease.FreeBookmark(Bookmark);

end;

end

else
dmEdit.quEdLease.Cancel;

[image: image99.png][_[D[x]

314052001

TEASELDD [LEASE DATE [j

[CAdbApp\clsiAFeatos

end;
Итак, по нажатии кнопки Редактировать модально отображается форма fmEdit. По нажатии кнопки ОК на этой форме сохраняются отредактированные данные набора dmEdit. quEdLease, отображаемые компонентами TDBLookupComboBox и TDBEdit.
II. Редактирование в договоре фамилии владельца недвижимости.
Здесь есть "маленькая" тонкость. Дело в том, что в наборе quEdLease есть только данные о порядковом номере владельца, который хранится в таблице Lease, а не его фамилии. Но конечный пользователь вашей информационной системы не обязан знать соответствие между номерами и фамилиями владельцев. Поэтому мы должны подменить номер на соответствующую фамилию. И добавим еще одно удобство — редактирование заменой данными таблицы.

1. Добавьте к модулю данных компоненты TQuery и TDataSource.
2. Назначьте значения их свойств.
	Компонент
	Свойство
	Значение

	TQuery
	Name
	quOwner

	
	DatabaseName
	Exmpl

	
	SQL
	SELECT Non, Ow

FROM Owner

	
	RequestLive
	True

	
	Active
	True

	TDataSourse
	DataSet
	quOwner

	
	Name
	dsOwner

3. Определите свойства компонентов формы.
	Компонент
	Свойство
	Значение

	TDBLookupComboBox
	DataField
	NOn

	
	DatabaseSource
	dmEdit.dsEdLease

	
	KeyField
	NOn

	
	ListField
	Ow

	
	ListSource
	dmEdit.dsOwner

	TDBEdit
	Name
	DBEdit1

	
	DataField
	LDate

	
	DatabaseSource
	dmEdit.dsEdLease

	TButton
	Caption
	OK

	
	ModalResult
	mrOk

	TButton
	Caption
	Отмена

	
	ModalResult
	mrCancel

 [image: image63.png][[Ox]
Bratened [foomo]

Lara 23k, gor-pa

0K

 Выбор значения поля Ow из набора данных quOwner
Задание 3.
Создать SQL-запрос на удаление записи о договоре.

Контрольные вопросы:

1. Пояснить особенности редактирования фамилии владельца.
2. Почему в организации процесса редактирования договора использован компонент TQuery, а не Ttable.
3. Перечислите основные возможности языка SQL.
4. Какие подмножества языка SQL вам известны?
5. Какие операторы языка определения данных реализованы в SQL?
Лабораторная работа 26-27
Выполнение сортировки, поиска, фильтрации данных: в базах данных и выборках

Цель работы: Научится выполнять сортировку, поиск и фильтрацию в наборах данных.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· разрабатывать прикладные программы с использованием языка SQL;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

 Сортировка набора данных

Сортировка заключается в упорядочивании записей по определенному полю в порядке возрастания или убывания содержащихся в нем значений. Сортировку можно выполнять и по нескольким полям.

Сортировка наборов данных Table выполняется автоматически по текущему индексу. При смене индекса происходит автоматическое переупорядочивание записей. Таким образом, сортировка возможна по полям, для которых создан индекс. Для сортировки по нескольким полям нужно создать индекс, включающий эти поля. Направление сортировки определяет параметр ixDescending текущего индекса.

Список полей, по которым выполняется сортировка наборов данных Query, указывается в операнде ORDER BY. Поля в списке обозначаются именами или номерами, которые соответствуют номерам в списке полей после слова SELECT. По умолчанию сортировка происходит в порядке возрастания значений полей. Для указания обратного порядка сортировки по какому-либо полю нужно указать после имени этого поля описатель DESC.

Поиск записей

Поиск — это нахождение записи, удовлетворяющей определенным условиям, и возврат значений ее полей с возможным переходом на найденную запись. Отметим, что поиск можно вести по одним полям, а возвращать значения других полей. Составы полей для поиска и для возврата значений в общем случае не совпадают.

При организации поиска записей важное значение имеет наличие индекса для полей, по которым ведется поиск. Индексирование значительно повышает скорость обработки данных, кроме того, ряд методов может работать только с индексированными полями. К средствам поиска можно отнести методы Locate, Lookup, FindFirst, FindLast, FindNext и FindPrior, осуществляющие переход на записи, удовлетворяющие условиям фильтра, а также просмотры и курсоры.

Создание просмотров

Для создания просмотра применяют команду:
CREATE VIEW имяПросмотра [(CTon6eu_view [,столбец_у!ew ...])]

AS <onepaTop_select> [WITH CHECK OPTION];
· (cтол6ец_view [,столбец_view...]) — необязательный список столбцов;

· <оператор_select> — критерий выбора строк, которые будут включены в просмотр

· with check option — предотвращение ввода записей, не удовлетворяющих критерию выбора для обновляемых просмотров.
Поиск в наборах данных

Для поиска записей по полям служат методы Locate и Lookup, причем поля могут быть неиндексированными. Функция Locate (const KeyFields: String; const KeyValues: Variant; Options: TLocateOptions): Boolean ищет запись с заданными значениями полей. Если удовлетворяющие условиям поиска записи существуют, то указатель текущей записи устанавливается на первую из них. Если запись найдена, функция возвращает значение True, в противном случае — значение False. Для поиска в наборе данных также используется функция Lookup(const KeyFields: String; const KeyValues: Variant; const ResultFields: String): Variant осуществляет поиск записи, удовлетворяющей определенным условиям, но, в отличие от метода Locate, не перемещает указатель текущей записи на найденную запись, а считывает информацию из полей записи.

Поиск по индексным полям

Для набора данных Table имеются методы, позволяющие вести поиск записей только по индексным полям. Перед вызовом любого из этих методов следует установить в качестве текущего индекс, построенный по используемым для поиска полям. Методы поиска:

1. FindKey, SetKey, EditKey и GotoKey - поиска на точное соответствие;

2. FindNearest, SetNearest, EditNearest и GotoNearest, - частичное совпадение заданных для поиска значений и значений полей записей.

Фильтрация записей

Фильтрация — это задание ограничений для записей, отбираемых в набор данных. Фильтрация записей бывает: по выражению и по диапазону. Фильтрация похожа на SQL-запросы, но менее эффективна, т. к. ограничивает количество записей, видимых в наборе.

Фильтрация по выражению

При использовании фильтрации по выражению набор данных ограничивается записями, удовлетворяющими выражению фильтра, задающему условия отбора записей. Достоинством фильтрации по выражению является то, что она применима к любым полям, в том числе к неиндексированным. В связи с тем, что в процессе отбора просматриваются все записи таблицы, фильтрация по выражению эффективна при небольшом количестве записей. Для задания выражения фильтра используется свойство Filter: string. Если выражение фильтра не позволяет сформировать сложный критерий фильт-рации, то можно использовать обработчик события OnFilterRecord. Для активизации и деактивизации фильтра применяется свойство Filtered: boolean. Параметры фильтрации задаются с помощью свойства FilterOptions:TFilterOptions. Это свойство принадлежит к множественному типу и может принимать комбинации двух значений:

1. focaseinsensitive — регистр букв не учитывается.

2. foNoPartiaicompare — выполняется проверка на полное соответствие содержимого поля и значения, заданного для поиска.

Для связанных таблиц на отбор записей в набор данных также влияет ограничение, налагаемое отношением "главный-подчиненный" между таблицами БД.

Фильтрация по диапазону

Для включения и выключения фильтрации по диапазону применяются методы ApplyRange - активизирует фильтр и CancelRange – деактивизирует. Методы SetRangeStart и SetRangeEnd устанавливают нижнюю и верхнюю границу диапазона, соответственно. Для изменения предварительно установленных границ диапазона предназначены методы EditRangeStart и EditRangeEnd. Когда одна из границ диапазона не задана, то диапазон открыт, т. е. нижняя граница становится равной минимально возможному, а верхняя граница — максимально возможному значению этого поля. Если фильтрация выполняется одновременно по нескольким полям, то после вызова методов SetRangeStart или SetRangeEnd должны стоять несколько операторов присваивания, каждый из которых определяет границу по одному полю. Предварительно в качестве текущего должен быть установлен индекс, построенный по этим полям.

Задание 1.
Выполнить сортировки в таблицах базы данных Exmpl.gdb:
	Таблица
	Поле
	Порядок сортировки

	Owner
	Ow
	По убыванию

	
	NOn
	По убыванию

	Lease
	Ldate
	По возрастанию

	Realty
	Тур
	По алфавиту

	Rent
	Rn
	По возрастанию

Задание 2.
Создайте просмотр rent_cost, который позволит просмотреть данные таблицы Rent.

1. Запустите утилиту Interactive SQL командой Tools/Interactive S QL главного меню IBConsole.
2. Используя меню Query/Execute создайте просмотр rent_cost командой:
CREATE VIEW RENT_COST

AS SELECT Тур, Rn FROM Rent
3. Закройте утилиту.
4. Инициировать просмотр из клиентской части системы:
4.1. Начните новый Delphi-проект.
4.2. Используя Form Wizard создайте клиент-серверное приложение на основе компонента TTable, алиаса clsrvExmpl и "таблицы" rent.
[image: image100.png]EEE—
bbh’ans

 Выбор просмотра RENT_COST
Поскольку просмотр — это виртуальная таблица, то можно модифицировать ее данные. Однако это возможно, если запрос соответствует трем условиям:

· просмотр должен формироваться из записей только одной таблицы;

· в просмотр должен быть включен каждый столбец таблицы, имеющий атрибут not null;
· SELECT-оператор просмотра не содержит подзапросы, агрегатные функ​ции, зарезервированное слово distinct, предложение having, хранимые процедуры и функции, определенные пользователем.
Такой запрос называют модифицируемый (updatable). Если в определении просмотра нарушено хотя бы одно из выше перечис​ленных условий, то он — не модифицируемый (read-only).
rent_cost —. модифицируемый запрос. Чтобы убедиться, можете переоценить стоимость аренды однокомнатных квартир.

1. Используя утилиту Interactive SQL, исполните следующую команду:
UPDATE RENT_COST SET Rn = 70 WHERE Rn = 60
2. Чтобы изменения вступили в силу, выберите команду Transactions/Commit.
Задание 3..
1. Создайте не модифицируемый просмотр realty_cost, используя следующую команду:

CREATE VIEW REALTY_COST AS
SELECT ADR, RN
FROM REALTY, RENT
WHERE RENT.TYP = REALTY.TYP
2. Чтобы убедиться, что просмотр realty_cost не модифицируемый, исполните следующую SQL-команду:
UPDATE REALTY_COST SET RN = 60 WHERE RN = 70
Задание 4.
Выполнить отбор информации об объекте и владельцах недвижимости в таблицах базы данных Exmpl.gdb.
Задание 5.
Проверить информацию об арендованных объектах недвижимости на введенный период.

Контрольный вопросы

1. Какие методы поиска работают по любому полю (полям)?
2. Какие методы поиска работают только по полю (полям) текущего индекса?
3. Чем отличается процедура фильтрации от процедуры поиска?
4. Какие методы фильтрации работают по любым полям?
5. Каким должен быть результат исполнения следующей команды:
SELECT * FROM REALTY_COST
Лабораторная работа 28
Создание и использование хранимых процедур.
Цель работы: Научится создавать, ставить на выполнение, редактировать и удалять хранимую процедуру.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать хранимые процедуры и триггеры на базах данных;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы
Хранимая процедура — это отдельная программа, написанная на процедурном языке используемого сервера баз данных. Существует две разновидности хранимых процедур: процедуры выбора (аналог SELECT-запросов) и исполняемые процедуры. Процедуры выбора возвращают наборы данных, которые состоят из строк или отдельных значений. Исполняемые процедуры не возвращают данные. Они предназначены для исполнения команд, например, delete. Синтаксис объявления хранимой процедуры:
CREATE PROCEDURE ИмяПроцедуры [(вхПараметр <тип>
[,вхПараметр <тип> ...])] [RETURNS (выхПараметр <тип>
[,выхПараметр <тип> ...])]
AS <телоПроцедуры> [;]

Для передачи процедуре значений из вызывающего приложения используют вхПараметр. Для возвращения результатов хранимой процедуры — выхПараметр. Тело процедуры имеет формат:
[DECLARE VARIABLE имяПерем <тип>;

[DECLARE VARIABLE имяПерем <тип>," . . .]]

BEGIN
< оператор>
[...]
[<оператор>]

END
Ключевые слова declare variable объявляют локальные переменные процедуры.

Изменение и удаление хранимых процедур

Изменение хранимой процедуры производится оператором
ALTER PROCEDURE ИмяПроцедуры [(вхПараметр <тип>
[,вхПараметр <.тип > ...])]
[RETURNS(выхПараметр <тип>
[,выхПараметр <тип> ...])] AS <тело процедуры>;

После выполнения оператора alter procedure предыдущее определение процедуры заменяется новым определением параметров, переменных и тела процедуры. Для удаления хранимой процедуры из базы данных используется оператор: DROP PROCEDURE ИмяПроцедуры;

Исполнение хранимых процедур

Запуск исполняемой хранимой процедуры производят командой execute procedure, а процедуры выбора — select.

Возвращение данных

Хранимые процедуры позволяют возвращать единичные данные, например, максимальное значение столбца. Такие процедуры можно исполнять, используя компонент TQuery.
1. Создание хранимой процедуры

В качестве примера приведем процедуру выбора, которая по значению номера арендатора (Tenant_No) возвращает все номера (Lease_ID) и даты(Lease_Date) заключенных с ним договоров.

Ход работы:

1. Сохраните в текстовом файле StoredProc.sql код скрипта создания хранимой процедуры Get__Lease_Data.
Код скрипта StoredProc.sql
SET TERM ^;
CREATE PROCEDURE Get_Lease_Data (Tenant__No SMALLINT)
RETURNS (Lease_ID SMALLINT, LeaseJDate TIMESTAMP)
AS
BEGIN
FOR SELECT DISTINCT Lease.NLease, Lease.LDate
FROM Tenant, Lease
WHERE Tenant.NTn = :Tenant_No AND Lease.NTn = Tenant.NTn
INTO :Lease_ID, :Lease_Date
DO
SUSPEND; END ^

Примечание: Поясним команду set term. Точка с запятой (;) для утилиты Interactive SQL означает конец оператора. Другими словами, каждый оператор, заключенный в разделители, должен быть исполнен. Чтобы этого не произошло в момент создания хранимой процедуры, команда set term назначает разделитель операторов ^ взамен точки с запятой. Он не инициирует исполнение команд.

2. Запустите утилиту Interactive SQL.
3. Исполните скрипт, используя команду Query/Load Script.
2. Исполнение хранимых процедур

Ход работы:

Создадим исполняемую хранимую процедуру Add_0wner.
1. Запустите утилиту Interactive SQL.
2. Соединитесь с базой данных Exmpl.gdb.
3. Создайте следующую исполняемую хранимую процедуру:
CREATE PROCEDURE Add_0wner (NOn SMALLINT, Ow CHAR(10), AdO CHAR(20))
AS
BEGIN
INSERT INTO OWNER (NOn, Ow, AdO)
VALUES (:NOn, :Ow, :AdO);
SUSPEND;

END
4.
Исполните процедуру следующей командой:
EXECUTE PROCEDURE Add_0wner (4,'Моренко','Сумская 6')

5.
Чтобы изменения вступили в силу, выполните команду Transactions/Commit.
3. Исполнение хранимых процедур выбора.

Ход работы:

1. Запустите процедуру выбора Get_Lease_Data на исполнение следующей SQL-командой:

select * from Get_Lease_Data. Результат исполнения команды.

[image: image101.png]Cern. [2]x]
Konpuripaisi | Wermimincauun | Unpaenersse gocruron |

B CUCTEMe UCTaHOBNEHSI CASALIOLINE KOMMOHEHTEE

B Knmenr ann ceren Microsoft
I Nnara IntellR) PRO/100+ Management
¥~ IPX/SPX-coBMecTHMb I npaToKon

[

¥ Noaaepxxa NETBIOS ans IPX/SPX-cosmecTiamoro npo
“ »

Ynanan Coogerea |

2. Измените значение входного параметра на 2 и вы увидите, что в отличие от просмотра хранимая процедура позволяет реализовать динамический запрос.

4. Запуск процедур выбора из приложения клиента

В случаях, когда сервер базы данных (например, Sybase) поддерживает метод OPEN компонента TStoredProc, то предпочтительнее использовать его. Для InterBase-сервера это не так, поэтому рассмотрим возвращение наборов данных с помощью компонента TQuery.

Ход работы:

1. Начните новый Delphi-проект.

2. Поместите компонент TQuery на форму.

3. Установите свойство DatabaseName равным алиасу базы данных — clsrvExmpl.

4. Запишите в свойстве SQL компонента TQuery вызов процедуры выбора. Например: Get_Lease_Data: SELECT * FROM Get_Lease_Data

5. Поместите на форму компоненты TDBGrid, TDataSource и определите их свойства.

6. Установите свойство Active компонента TQuery равным True или вызовите метод open.

5. Возвращение данных

Ход работы:

1. Создайте хранимую процедуру, используя следующий скрипт:

CREATE PROCEDURE GET_Last_Realt

RETURNS (Last_Realt CHAR(20)) AS

BEGIN
/* Выбрать адрес недвижимости, договор на аренду которой заключался последним */

SELECT Adr FROM Lease

WHERE (LDate IN (SELECT MAX(LDate) FROM Lease))

INTO :Last_Realt;

SUSPEND;

END
2. Начните новый Delphi-проект.

3. Поместите на форму компонент TQuery.

4. Определите его свойства.

	Свойство
	Значение

	DataBase
	clsrvExmpl

	SQL
	SELECT Last_Realt

FROM GET_Last_Realt

5. Поместите на форму компоненты TDBGrid, TDataSource и определите их свойства.

6. Установите свойство Active компонента TQuery равным True или вызовите метод open.

[image: image64.png][RetumData-TQuery B[] 3

LAST_REALT =]
| BfMeranyproe 56

Возвращение данных с помощью TQuery
6. Возвращение результатов

Хранимые процедуры можно применять для возвращения некоторого ре​зультата. Например, суммарной стоимости аренды объектов одним из арендаторов.
Создайте процедуру Get_SumRent, используя скрипт SumRent.sql
Код скрипта SumRent.sql
CREATE PROCEDURE Get_SumRent(Tenant CHAR(10))
RETURNS (Rent_SUM INTEGER)
AS
BEGIN
SELECT SUM(Rent.Rn)
FROM Tenant, Lease, Realty, Rent WHERE (Tenant.Tn = :Tenant)
AND (Lease.NTn = Tenant.NTn) AND (Realty.AdR = Lease.AdR) AND (Rent.Тур = Realty.Тур) GROUP BY Tenant.Tn, Rent.Rn INTO :Rent_SUM;
SUSPEND; END
Такие хранимые процедуры следует исполнять, используя компонент TStoredProc.

Ход работы:

1. Начните новый Delphi-проект.
2. Поместите на форму компонент TDatabase с вкладки BDE и назначьте его свойства

	Свойство
	Значение

	AliasName
	clsrvExmpl

	DatabaseName
	Exmpl

	Params
	User Name=SYSDBA

PASSWORD=masterkey

	LoginPrompt
	False

	Connected
	True

3. Поместите компонент TStoredProc на форму.
4. Установите свойство DatabaseName равным имени компонента TDatabase — dbExmpl.

6. [image: image102.png]Ceoactsa: TCPAP [2]x]

Mpvesaa 1| Nonomwrrensio. |/ NetBi0s |
Korurupaiiss DNS | Uinos. | Konpwrypaiuua WINS * IP-aapec

Apec P Oxer GiiTh NHCEOEH STOMY KOMMBITepy.
BBTOMATHNECKH, ECAIM CETh HE NPUCBAUBABT BBTOMATHNECKH
anpeca P, BbiACHHTE APEC Y AANAHICTDATOPS CeTM U
EBBeQTe 570 B CooTRETCTBURLES NONE.

£ [longwrs IP-anpec aetomaniecky

~(Ucasars P-aapec seweim o6pasort

1P-gapec:

Используя раскрывающийся список, выберите имя хранимой процедуры GET_SUMRENT в свойстве StoredProcName.
7. Определите значение свойства параметра равным Петров.
8. Поместите на форму кнопку Итого и ассоциируйте с ней

следующий код:

Procedure TForml.ButtonlClick(Sender: TObject);

begin
with StoredProcl do begin Prepare;
{исполнить хранимую процедуру} ExecProc;
{отобразить результат}
Editl.Text := ParamByName('Rent_SUM').AsString; end; end;

9. Поместите на форму компонент TEdit.
10. Сохраните проект под именем RetResStorProc.
11. Откомпилируйте приложение.
12. Щелкните на кнопке Итого.
7. Запуск процедур манипуляции данными из приложения клиента

Хранимые процедуры позволяют не только возвращать данные, но и мани​пулировать ими. Для этого используют DML-команды языка SQL. Такие процедуры удобны, например, для реализации каскадного механизма сохранения ссылочной целостности. Покажем, как, используя компоненты TStoredProc и TQuery, можно инициировать процедуры манипуляции данными.
8. Использование TstoredProc

Ход работы:

1. Начните новый Delphi-проект.
2. Поместите на форму компонент TDatabase
3. Поместите компонент TStoredProc на форму
Свойства компонента TDatabase

Свойства компонента TStoredProc
	Свойство
	Значение
	
	Свойство
	Значение

	AliasName
	clsrvExmpl
	
	DatabaseName
	Exmpl

	DatabaseName
	Exmpl
	
	StoredProcName
	Update_Lease

	Params
	User Name=SYSDBA

PASSWORD=masterkey
	
	Params
	Ldat=12.08.2005

	LoginPrompt
	False
	

	Connected
	True
	

4.
Создайте хранимую процедуру:
CREATE PROCEDURE UPDATE_LEASE(LDat TIMESTAMP, NumLease SMALLINT)
AS
BEGIN
UPDATE Lease SET LDate = :LDat
WHERE NLease = :NumLease;

SUSPEND;

END
5.
Для исполнения хранимой процедуры поместите на форму кнопку и ассоциируйте с ней процедуру:
procedure TForml.ButtonlClick(Sender: TObject); begin
with StoredProcl do begin
ParamByName('NumLease').Aslnteger := StrToInt(Editl.Text); Prepare; ExecProc;
Editl.Text := 'Данные изменены' end; end;
6. Поместите на форму компонент TEdit.
7. Откомпилируйте и запустите приложение.
9. Введите в поле редактора, например, цифру 2 и щелкните мышью на кнопке.
10. Используя IBConsole можете убедиться, что дата заключения договора изменилась.

9. Использование TQuery

Ход работы:

1. Начните новый Delphi-проект.
2. Поместите на форму компонент TDatabase и назначьте его свойства.
3. Поместите компонент TQuery на форму и назначьте его свойства.
	Свойство
	Значение

	DatabaseName
	Exmpl

	SQL
	EXECUTE PROCEDURE UPDATE_LEASE(’14.05.2001’, 3)

4. Для исполнения хранимой процедуры поместите на форму кнопку и ассоциируйте с ней процедуру:
procedure TForml.ButtonlClick(Sender: TObject);

begin
with Queryl do begin
Prepare; ExecSQL;
Editl.Text := 'Данные изменены';

end;

end;
5. Поместите на форму компонент TEdit.
6. Откомпилируйте и запустите приложение и щелкните мышью на кнопке.
Используя, IBConsole можете убедиться, что дата заключения третьего договора изменилась.
Контрольные вопросы:

1. Что такое хранимая процедура? Виды хранимых процедур и их назначение.

2. Команда создания хранимой процедуры: формат команды и назначение опций.

3. С помощью какой команды вносятся изменения в хранимую процедуру? Формат команды и особенности её работы.

4. Как осуществляется вызов хранимой процедуры пользователем?

5. Может ли одна хранимая процедура вызывать другую хранимую процедуру? Если «да», то как?

6. Как удалить хранимую процедуру?
Лабораторная работа 29
Создание генераторов и триггеров в базах данных. Каскадные воздействия.

Цель работы: научится создавать, ставить на выполнение, редактировать и удалять триггер; создавать, ставить на выполнение, редактировать и удалять генератор.
Образовательные результаты, заявленные во ФГОС третьего поколения:
Студент должен

уметь:

· создавать хранимые процедуры и триггеры на базах данных;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Триггер — это процедура, автоматически исполняемая SQL-сервером при наступлении события "обновление", "удаление" или "добавление" новой записи таблицы. По отношению к инициализирующему их событию различают два типа триггеров:

· выполняемые до или после наступления события;

· автоматически обеспечивающие каскадные воздействия в дочерних таблицах при изменении, удалении записи в родительской таблице.

Нельзя вызывать триггер непосредственно из программы, передавать ему входные параметры и возвращать их значения. Триггеры всегда реализуют действие.

Создание триггеров

Триггер создается SQL-командой:

CREATE TRIGGER ИмяТриггера FOR ИмяТаблицы
[ACTIVE/INACTIVE]

{BEFORE/AFTER}

{DELETE/INSERT/UPDATE}

[POSITION номер]

AS <тело триггера>[;]
Структура тела триггера:

[<объявление локальных переменных процедуры>]

BEGIN

<оператор>

[<оператор>]

END

Значение номера задается числом. Триггеры с меньшими номерами выполняются раньше.

Генераторы предназначены для обеспечения уникальности значений ключевых столбцов (первичных и альтернативных) и используются совместно с триггерами

Создание генератора – используется команда CREATE GENERATOR <имя генератора>;

для задания начального (стартового) значения используется команда

 SET GENERATOR <имя генератора> TO <значение>.

Начальное значение генератора задаётся один раз при создании самого генератора и должно быть целочисленным. Генератор принадлежит всей базе данных и а общем случае его можно вызывать при заполнении поля первичного или альтернативного ключа любой таблицы, принадлежащей этой базе данных.

Вызов генератора происходит из приложения клиента с помощью функции

 GEN_ID (<имя генератора>, <шаг>);

Задание 1. Создадим триггер для родительской таблицы Realty, который при изменении значения ее первичного ключа будет автоматически изменять значение внешнего ключа дочерней таблицы Lease, другими словами, если в таблице Realty изменилось значение поля Adr, то триггер изменит значение поля Adr в соответствующей записи таблицы Lease.

Ход работы:

1. Запустите утилиту Interactive SQL.
2. Создайте триггер updat_realty.
CREATE TRIGGER UPDAT_REALTY FOR Realty
ACTIVE
BEFORE UPDATE
AS BEGIN
IF (OLD.Adr <> NEW.Adr) THEN UPDATE Lease
SET Adr = NEW.Adr WHERE Adr = OLD.Adr;

END
3. Попробуйте изменить значение адреса в таблице Realty. Как видите, это не удается. ПОЯСНИТЕ.
[image: image103.png]] Register Sesver and Connect [Z1X]

|+ Server nfomation

e ¥
it G Bemote Server

| Sgver Name; " Network Protogol
“fc22 [tcPap =]
1 lias Name:

1jco2

' Description.

fco32

|
1 [V Save Alies Information

~ Login Information -

| UserName: [S5ySppa

[image: image104.png]Communication Diagnostics (2]

[Pinging c232 [212.1.122.28] with 32 bytes of datr]

2 tme=0ms TTL=64 “
2 time=0ms TTL=64
2 time=1ms TTL=64
2 tme=0ms TTL=64

~ [Reply from 212.1.122.28: byte
[Reply from 212.1.122.28: byt
[Reply from 212.1.122.28: bytes=:
[Reply fiom 212.1.122.28; byl

Ping stalistics for 212.1.122.28;

Packets: Send = 4, Received = 4, Lost = 0 (0%),
[Approximate tound tip times in mil-seconds
Minimum = Oms, Masimum = 1ms, Average = Oms

Сообщение о нарушении ссылочной целостности

Изменение значения адреса в таблице Realty
4.
Удалите связь между таблицами Realty и Lease (ограничение INTEG_7):
ALTER TABLE Lease

DROP CONSTRAINT INTEG_7

5. Можете убедиться, что она отсутствует: теперь таблица Lease не связана с Realty.
6. Измените значение адреса в таблице Realty.
[image: image105.png]DB Connestion! TCP/IP | NetBEUI| 57X |

[Setvet rfomation
‘ Host Service:

[c232 e 3

|

Besuls:

[Attempting connection to c232.
[Socket for connection obtained.

¥ |Connection established to host 'c232,
on pott gds_db.

TCP/IP Communication Test Passed!

of!

Просмотр связей таблицы Lease
Как видите, теперь при изменении значения ее первичного ключа триггер автоматически изменяет значение внешнего ключа дочерней таблицы Lease. Другими словами, реализован механизм обеспечения ссылочной целостности "cascade".

Задание 2. Создание генераторов
Ход работы:

При создании таблицы Owner поле Non было объявлено как ключевое целочисленного типа.
1. Создадим генератор GenStore, который при обращении к нему возвращает уникальное целочисленное значение:

CREATE GENERATOR GenStore
SET GENERATOR GenStore TO 1;

· Создадим триггер, который при добавлении к таблице новой записи обращается к генератору и заносит возвращаемое им значение в ключевое поле.

CREATE TRIGGER NZ_Non FOR Owner
ACTIVE
BEFORE INSERT
AS

BEGIN
NEW.Non=GEN_ID (GenStore,1);

END
Задание 3.
Создать триггер для родительской таблицы Owner, который при изменении значения ее первичного ключа будет автоматически изменять значение внешнего ключа дочерней таблицы Lease, т.е. если в таблице Owner изменилось значение поля NOn, то триггер изменит значение поля NOn в соответствующей записи таблицы Lease.

Задание 4.
Создать триггер для каскадного удаления записей из таблицы Realty и Lease.
Контрольные вопросы:
1. Дайте определение триггеру. Укажите отличия триггера от хранимой процедуры.

2. Назовите и объясните назначение параметров триггера.

3. Укажите области использования триггера.

4. Каким способом можно внести изменения в триггер?

5. Как удалить триггер?
6. Назовите назначение генератора?
7. Укажите команду создания генератора.
8. Как запускается генератор?

Лабораторная работа 30
Формирование и печать отчетов

Цель работы: Научится форматировать отчеты разных видов.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

 Отчет предназначен для вывода части информации (или всей информации) из базы данных на бумагу.

 Процедура создания отчета включает в себя два этапа: формирование отчета (с просмотром на экране монитора) и вывод отчета на печать. Для формирования отчета предусмотрены три технологии — Quick Report, Fast Report и Rave Report.

Технология Quick Report является базовой технологией, на основе которой поострены технологии Fast Report и Rave Report
Виды отчётов:

1) простой отчет – отображаются данные из одного НД

2) отчёт с группированием данных

3) отчёт для таблиц, связанных отношением «главный-подчиненный» («главный-детальный») – используется информация из двух НД, связанных соответствующим реляционным отношением

4) составной отчёт (композитный), объединяющий несколько разных отчётов – строится как механическое объединение двух и более отчётов
Задания.

1. Разработка меню

Ход работы:

1. Начните новый Delphi-проект.
2. Измените СВОЙСТВО формы Name на fmMenu, a Caption на Аренда.
3. Поместите на форму компонент TMainMenu.
4. Откройте Menu Designer, для чего выберите компонент меню на форме, щелкните на нем дважды мышью и создайте меню.
5. Чтобы убедиться в работоспособности меню, откомпилируйте его модуль.
6. Сохраните проект как Exmpl.dpr, а модуль — Menu.pas.
[image: image65.png]5¥ Apenna [_[o]x]
Rorosop. O nparparve.
Penakrhposame

MeuaTs 00rosopa

Форма меню информационной системы "Аренда Minus"
2. Печать договора
Ход работы:
Пусть текст договора будет таким, как показано на рисунке.
Здесь в фигурных скобках указаны имена полей таблиц базы данных.
[image: image66.png]YTBEPHJAIO
JvpexTop “Apenga Minus"
H.C. Pent

Aorosop apeHgb!

1, HOKENOATUCAS LIWICA, {Lease. Tn), MeHyeMbii B ARMbHERUEM "APeHAATOR", C

0HOM CTOPOHSI 1M {OWner Ow), umeryembiit & AansHeituem "Bnagened’, ¢ apyroii|

[CTOPOHG! 38KMIOHMIM HACTO AWM AOTDBOP O HIKECNEAYIOUEM:

1. Brapenew, oBAsyeTca {LeaseLDate) caTb & apenay (Rent.Typ) no aapecy
{Lease.AdR).

2. ApegaTOp OBASYETCA EKEMECAUHO BHOCHTE BPEHIHYIO MNaTy B pasMepe
{Rert Rn} py6.

IOpUAMUECKMUE BAPECE CTOPOH:
Aperpatop: Cyme, {Lease. AdT}

Moanmce: {Lease.Tn)
Briageney; Cymel, {Owner AdO}

Moanwce: {Owner Ow}

Текст договора
Прежде чем печатать договор, найдем соответствующие ему данные. Для этого:
1. Используя скрипт GET_LEASE_DATS.sql создайте процедуру выбора.
Код скрипта GET_LEASE_DATS.sql
SET TERM ^;

CREATE PROCEDURE GET_LEASE_DATS (TN_Name CHAR(10))

RETURNS (L_Tn CHAR(10), 0_0w CHAR(10), L_LDate TIMESTAMP, Rl_Typ CHAR(20),

L_AdR CHAR(20), Rl_Rn NUMERIC(6, 2), L_AdT CHAR(20), 0_AdO CHAR(20))

AS

BEGIN

FOR SELECT DISTINCT L.Tn, O.Ow, L.LDate, Rl.Тур, L.Adr, Rl.Rn, L.AdT, O.AdO

FROM Lease L, Owner 0, Realty R, Rent Rl

WHERE (L.Tn = :Tn_Name) AND (O.Non = L.Non) AND (R.AdR = L.AdR)

AND (Rl.Typ = R.Typ)

INTO :L_Tn, :0_0w, :L_LDate, :Rl_Typ, :L_Adr, :Rl__Rn, :L_AdT, :0_AdO

DO SUSPEND;

END ^

commit;
[image: image106.png]Type INTRBASE S
BATCH COUNT 200 [
(4159 IBLOCAI || ENABLE SUHEMA LAL FALSE ’
| B3 Ml ” LANGDRIVER Pdox ANSI Cyilic n

1 ©g %.WU SERVER NAME c232.c:\dbApp\clsrvARenta.gdb

Примечание Для поиска и печати данных договоров, которые будут возвращены процедурой GET_LEASE_DATS используем компонент TIBQuery.

2. Начните новый Delphi-проект.
3. Поместите на форму компоненты TLabel, TEdit, TButton и TDBGrid,
4. Присвойте СВОЙСТВУ Name формы значение fmFindLease.
Форма поиска
5. Создайте модуль данных и назначьте свойства компонентов
[image: image67.png](5]
dbExmpl _actExmpl quLsOwRANn dsLsOWARN

Модуль данных
	Компонент
	Свойство
	Значение

	TDatabase
	DatabaseName
	C:\dbApp\clSRV\Exmpl\ Exmpl.gdb

	
	Name
	dbExmpl

	
	Params
	User Name=SYSDBA

PASSWORD=masterkey

	
	LoginPrompt
	False

	
	Connected
	True

	TQuery
	Name
	quLsQwRRn

	
	DatabaseName
	dbExmpl

	
	SQL
	Select *

from GET_Lease_Dats(:NameTn)

	TDataSourse
	DataSet
	quLsQwRRn

	
	Name
	dsLsQwRRn

	TIBTransaction
	Name
	Tr_actExmpl

	
	DefaultDatabase
	dbExmpl

6. Создайте папку Print и сохраните в ней (File/Save As) модуль данных dmPrn и форму fmFindLease под именами dmPrnU.pas и Find.pas, соответственно.
7. Добавьте имя модуля данных в секцию implementation модуля Find (File/Use Unit).
8. Назначьте значение свойства DataSource компонента TDBGrid равным dmPrn.dsLsOwRRn.
9. Определите значение свойства Name кнопки Поиск равным btFind и поставьте в соответствие ее событию OnClick процедуру:
procedure TfmFindLease.btFindClick(Sender: TObject);

begin
with dmPrn.quLsOwRRn do begin

Close;
ParamByName('NameTn').AsString := Editl.Text;

Open ;

end;

end;
10. Сохраните проект в папке Print (File/Save Project As), откомпилируйте его и проверьте работоспособность.
[image: image107.png]Propest

Sewver (232
InterBase Servers e

%) LocalServer [P General|
28 cx i
b € Databases Alias Name: i
[Reolod | [Femtom
Backup oy
Servei Log

- Eie

 [c\dappiciReat g

 Результат поиска
Совет: Для отображения всех цифр года в дате создайте постоянный набор quLsOw-RRnL_LDATE, используя Fields Editor, и определите свойство DisplayFormat набора как dd.mm.yyyy.

11. Теперь, когда данные договора извлечены, реализуем его печать. Поставим в соответствие событию Onclick кнопки Печать (btPrint) процедуру:
procedure TfmFindLease.btPrintClick(Sender: TObject);

begin
PrintLease(True);

end;
При таком значении параметра процедура

procedure TfmFindLease.PrintLease(Preview: Boolean);

begin
if Preview then
PrnLease.QuickRepl.Preview

else
PrnLease.QuickRepl.Print;

end;
печатает отчет. PrnLease — форма отчета.

12. Объявите процедуру PrintLease в разделе private модуля Find.pas.

13. Создадим форму отчета. Добавьте новую форму и назовите ее PrnLease (File/New/Form).
[image: image68.png]PinLease

¢ “YTBEPHCAID"

JvpexTop "Aperga Minus"
HC. Pent

Jorosop apengel

A, HaKenopnacas uwic, {L_Tn), umenyensii & anbHeiiiies "ApeHASTOR", ¢ OBHOT
CTOpOHS! 1 {O_Ow}, WMeHyensii & AanbHefiiem "BageneLy’, ¢ ARy oM CTOPOHS! SaKMO
HACTOAWM AOTDBOP O HILKECTEAYIOEM:

1. Brageneu obssyeTcs {L_LDate} caats {R1_Typ}no agpecy {L_AdR).
2. ApengaTop 0BAIYETCA EXEMECAHHO BHOCHT apeHaHylo MNaTy b paowepe (R1_Rn) pyS.

I0pHgIIeCKyte agpeca CTOpoH:

Apergatop: Cymel, {L_AdT)
Mogvos: _______ {L_Tn)
Bragenel; Cym, {0_AdO}
Moanwce: {0_Ow}
% 4
1D

Результат поиска
14. Поместите на нее компонент TQuickRep.
15. Поместите в отчет компонент TQRBand, и определите его свойство BandType как rbDetail.
16. Расположите на полосе компонент TQRExprMemo.

17. Используя свойство Lines, вызовите окно String List Editor и введите туда текст договора аренды.

[image: image69.png]"UTBEPKIAD"
Dupexrop "Aperaa Minus”
H.C. Pert

Jlorosop aperasi

| A, maxenoarmcaswwics, {L_Tn), umeryemoni 6 aansresien “Apenaaror:

|cropore! u {0_Ow), umeryenit 8 aansreriwen “Bnageneu’’, ¢ apyroi cTope 1

[HACTOAWIW 0T 0BOP 0 HIKEChEAYULEN i

1. Bragenew obmayerca {L_LDate} caars {R1_Typ} no aapecy {L_AdR). f

2 ApeHAATO G6A3YETCA EXEMECHHHO BHOCHTL 3PEHIHUO NSTY B pasm!p:l—,-‘ |
< | »

Code Editor... IE Eam:d = “Hub -

Окно String List Editir

18. Закройте редактор и увеличьте размеры полосы и компонента TQRExprMemo так, чтобы было видно весь текст договора.

19. Теперь щелкните правой кнопкой мыши в поле отчета и выберите из контекстного меню пункт Report settings.
20. Выберите из раскрывающегося списка Paper size значение Custom Size и установите требуемую ширину и высоту листа, которая на ширину полей превышает текст договора.

21. Сохраните в папке Print разработанный модуль печати договора , PrnLease под именем PrnLeaseLJ.pas.
[image: image70.png]"YTBEPH BAID"
DupexTop "Aperpa Minus"
HC. Pent

Borosop speras!

1, HKENOAMMCAB WWWICA, CHAOROE , MEHYEMbNA B AansHeitwen "ApeHAATOP", C OAHOM
CTOpoHs! U NETPO B, MMEHYEMBI & AanbHeliuen "Brageneu’, ¢ ApYToi CTOPOHSI 3Bk
HBCTOAUNT RO 0P © HOKECTERYOWEH

1. Bragenel| 05asyeTca 12.08.93 caaTs 1-k. KeapTupa no agpecy Kuposa 11872
2. ApengaTop 05 ASYETCA EXEMECAUHO BHOCUTE BREHAHYIO NnaTy B pasMepe 60 py6

IOpuMECKse agpeca CTOPOH.

Aperpatop: Cyms, Kypckas 18

Noarwgw ____ Cupopos
Brapenew Cywbi, Mpasgs! 2136

Mogowck: _____Metpos

Результат печати отчета
22. Добавьте имя модуля в секцию implementation модуля Find (File/Use Unit).
23. Добавьте имя модуля данных в секцию implementation модуля PrnLeaseUjB
24. Объявите значение свойства Dataset компонента TQuickRep равным dmPrn.quLsOwRRn.
25. Сохраните проект в папке Print, откомпилируйте его и проверьте работоспособность.
Контрольные вопросы:

1. Каково назначение отчёта?

2. Перечислить этапы процедуры создания отчёта.

3. Какие технологии предусмотрены для формирования отчета и какая из них является базовой?

4. Какой генератор применяется в Delphi для создания отчетов?

5. На какой странице Палитры компонентов расположены компоненты, предназначенные для управления отчётами в приложении? Какие из них являются важнейшими?

6. Как выполняют заготовку отчёта?

Лабораторная работа 32
Создание клиентской программы

Цель работы: Ознакомиться с установкой связи между таблицами
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Лабораторная работа 33
Установление привилегий доступа

Цель работы: Научится устанавливать привилегии на доступ к таблице, полю таблицы, к хранимой процедуре.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· разрабатывать прикладные программы с использованием языка SQL;
знать:

· способы контроля доступа к данным и управления привилегиями.

Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Привилегии представляют собой права доступа к БД. Управление привилегиями заключается в их установке и удалении. Установку привилегий выполняет инструкция:

GRANT <Список описателей вида доступа>

ON [TABLE] {<Имя таблицы> | <Имя просмотра>}

ТО {<Пользователь> | <Список пользователей;}

EXECUTE ON PROCEDURE <Имя процедуры>

ТО {<Пользователь> | <Список пользователей;};

<Пользователь> =

PROCEDURE <Имя процедуры>

/ TRIGGER <Имя триггера>

/ VIEW <Имя просмотра>

/ [USER] <Имя пользователя>

/ PUBLIC

<Список пользователей> =

[USER] <Имя пользователя1>

...

[,[USER] <Имя пользователяN]

 [WITH GRANT OPTION]
Привилегии позволяют разграничить доступ к таблицам и просмотрам со стороны пользователей. При этом под “ пользователем“ понимается любой объект, обращающийся к данным.

Кроме собственно пользователя (приложения), такими объектами могут быть таблицы, просмотры, хранимые процедуры и триггеры. Если привилегия предоставляется одновременно нескольким пользователям, то их имена перечисляются через запятую.

Описатель WITH GRANT OPTION означает, что пользователь может устанавливать предоставленные ему привилегии другим пользователям. В качестве описателей, определяющих вид доступа, указываются следующие:

1. ALL (все права доступа);

2. INSERT (вставка);

3. SELECT (только чтение);

4. UPDATE (модификация);

5. DELETE (удаление).

Установка привилегий:

Ход работы:

1. Запустить утилиту IBConsole
2. Запустить утилиту Interactive SQL.
3. Создать роли - OBEKT и ARENDA: CREATE ROLE OBEKT; CREATE ROLE ARENDA.
4. Назначить права доступа каждой из этих ролей; роль OBEKT – просмотр всех таблиц, изменение имени и адреса места жительства владельца недвижимости, роль ARENDA – полное право доступа ко всем таблицам.
роль OBEKT

GRANT SELECT ON Rent TO OBEKT;

GRANT SELECT ON Lease TO OBEKT;

GRANT SELECT ON Realty TO OBEKT;

GRANT SELECT, UPDATE (Ow, AdO) ON Owner TO OBEKT;

роль ARENDA

GRANT ALL ON Owner TO ARENDA;

GRANT ALL ON Lease TO ARENDA;

GRANT ALL ON Realty TO ARENDA;

GRANT ALL ON Rent TO ARENDA;

Удаление привилегий заключается в отмене заданного ранее права доступа. Отмену привилегии выполняет инструкция REVOKE, формат которой аналогичен формату инструкции GRANT установки привилегии. Отличие заключается в том, что инструкция дополнительно имеет необязательный описатель GRANT OPTION FOR, который удаляет не саму привилегию, а право выдачи ее другим пользователям. Отметим, что удалить привилегию может только тот, кто ее установил. После выполнения команды REVOKE ALL ON Rent TO OBEKT; пользователь с именем OBEKT лишается права доступа к таблице Rent.
Контрольные вопросы:

1. Что такое привилегии и кому они назначаются?
2. Кто может назначить привилегии?
3. Для работы с какими объектами БД могут выдаваться привилегии?
4. Какая инструкция используется для установки привилегий?
5. Что такое право наследования? Как оно передаётся? Кем оно изымается?
6. Команда на изменение и отмену привилегии: формат команды.
7. Кто может изменить и изъять привилегии?
8. Что произойдет после выполнения команды REVOKE ALL ON Lease TO ARENDA?
Лабораторная работа 34
Копирование и восстановление данных

Цель работы: Научится создавать резервную копию базы данных, производить восстановление базы данных; выполнять регистрацию новых пользователей.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· применять стандартные методы для защиты объектов базы данных;

знать:

· основные методы и средства защиты данных в базах данных;

Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Резервное копирование базы данных и её восстановление – две наиболее востребованные операции, выполняемые администратором базы данных.
Копирование БД преследует две цели – создание архива и дефрагментацию (удаление неактуальных версий записей) базы данных.

При копировании БД появляется единственная возможность изменить размер страниц, разделить БД на несколько файлов, перенести БД на другую платформу и выполнить прочие операции по изменению организации базы данных.

Резервная копия БД имеет формат, отличный от формата .gdb.

Резервное копирование может быть выполнено одним из способов: с помощью утилиты gbak, которая вызывается в командной строке, или с помощью специальных инструментов.

А) Работа с утилитой gbak.

Эта утилита входит в стандартную поставку InterBase и обеспечивает доступ к любому серверу InterBase , позволяет как создавать резервную копию, так и восстанавливать БД из архива.

Формат запуска утилиты для создания резервной копии:

gbak [-B] [options] <имя_БД_источника> <имя_файла_резервной_копии>

-В – действие (опция), которое необходимо выполнить. Знак минус указывать обязательно.

Для создания резервной копии БД необходимо иметь соответствующие права доступа, которые должны быть представлены пользователю на трёх уровнях:

1. уровень InterBase .

2. уровень WINDOWS NT \2000\XP

3. уровень соединения.

Если соединение компьютера клиента с сервером БД выполняется по протоколу TCP/IP, то никаких дополнительных прав предоставлять не надо. В этом случае к БД может подключиться любой пользователь, не имеющий никаких прав. Поэтому для пользователей, не имеющих никаких прав, при создании БД необходимо предусмотреть только режим просмотра (возможно даже некоторых таблиц).

Если соединение не выполняется по протоколу Named Pipes, то пользователю необходимо явно предоставить право на модификацию файла БД и каталога.

БД, как правило, имеет большой объем – до нескольких десятков гигабайта. Для размещения резервной копии необходимо предусмотреть достаточный объем памяти. Если требуемого объема памяти выделить невозможно, то администратору предоставляется возможность создания многотомного файла резервной копии.

Б) Специальные инструменты

Резервную копию БД можно создать с помощью утилиты IBConsol. После запуска утилиты IBConsol необходимо открыть БД, для которой необходимо выполнить резервную копию. Запустить процедуру создания резервной копии можно двумя способами:
1) подать команду Database →Maintenance → Backup / Restore → Backup
2) слева на дереве каталогов выбрать Backup и выполнить двойной щелчок на имени БД.
В открывшейся диалоговой панели определить параметры создаваемого файла резервной копии. Если сервер запущен, но файл БД не открыт, то на экран представляется пустая форма, в противном случае – заполненная форма. Графический диалог для создания резервной копии БД предоставляют и другие утилиты (Services API, IBExpert, IBAccess, IBAdmin и др.)

Для восстановления БД используется та же утилита gbak.
Формат команды:

gbak -с│-r [options] <имя_файла резервной копии>
<имя_файла_восстанавливаемой БД>
-с│-r – режимы восстановления БД

-с – восстанавливает файл БД по указанному адресу.

Если по этому адресу уже существует файл базы данных (дубликат имени), то процедура восстановления прекращается и выдается сообщение об ошибке (create_database);

-r-восстанавливает файл базы данных по указанному адресу. Если по этому адресу уже существует файл базы данных (дубликат имени), то процедура восстановления автоматически перезапишет файл базы данных.
В отличие от копирования БД, восстановить (переопределить) базу данных может любой пользователь, за исключением восстановления БД путём замены существующей базы данных. пользователь, восстановивший БД, становится её владельцем.
Задания
1. Регистрация параметров сервера на клиенте

При работе с InterBase-сервером по протоколу TCP/IP необходимо описать его свойства на компьютере клиента.
1. Указать в файле HOSTS.SAM IP-адрес компьютера, на котором он установлен. Например, так (IP-адрес и сетевое имя сервера соответственно):
10.03.0.14 С232

2. В файле SERVICES указать протокол доступа к серверу InterBase: gds_db 3050/tcp
Примечание
Файлы HOSTS.SAM и SERVICES находятся в папке, куда инсталлирована операционная система Windows.

Чтобы узнать IP-адрес компьютера, на котором установлен сервер InterBase, если этот компьютер работает под управлением Windows 98.

Ход работы:

1. Выполните на этом компьютере команду Настройка/Панель управления.
2. Выберите значок Сеть.
3. В появившемся окне выберите компонент TCP/IP.
[image: image108.png][l InstaliShield Express Borland Limited Edition N=x
e o son 50 b 5l 1o 150

|xo@EEm| e - m [BEG| e

faspield Today

Tussday, October 18, 2005

Select a projecttype, provide 2 new projectname and locaton (or
| veteome accept the defaul),selct projectanguage, and clck Create

welcome to Instalshiskd reate anew project

ot

Project Type:
©)crocte anew project

Createancwproect, | .
G s profc o th scted 0 D ¥

lroject wizard Bk SeklR]
Open a project... Project

(= —
e oot

(@ tostlishied servces
‘Access Support services and Resources

Description:
This allows you to create an i package, starting from scratch,

Project Name and Location:
[Drtest_dblprainstidbapp.m

wowe.| 1y

(Opens an existing project I Lo

[image: image109.png][dbapp - InstaliShield Express Borland Limited Edition

BEX]

T

[rosEmm| v v om @EG e

¥ InstallShield Today

Tussday, October 18, 2005

welcome to Instalshiskd reate anew project

Project Type:

Select a projecttype, provide 2 new projectname and locaton (or
| veteome accept the defaul),selct projectanguage, and clck Create

c Create a new project.

‘Open an existing project or browse to
locate a project

(@ tostlishied servces
‘Access Support services and Resources

ot

Description:

Project Name and Location:

This allows you to create an i package, starting from scratch,

Reay 0

(]
Yy

o |

Выбор протокола соединения
Определение IP-адреса

4. Щелкните мышью на кнопке Свойства.
5. В появившемся окне посмотрите IP-адрес
2. Соединение с удаленным сервером

Прежде чем соединить приложение-клиент с SQL-сервером, следует проверить наличие сетевого соединения. Это можно сделать с помощью утилит PING или TELNET.

Ход работы:

1. Запустите IBConsole.
2. Зарегистрируйте сервер:
· выберите в главном меню Server/Register;
· [image: image110.png][& fmFindLease [_[OIx]
 Aperarop- [EdtT Movex | ©
I

Nevars | °:

в появившемся окне Register Server and Connect активизируйте переключатель Remote Server, в поле Server Name наберите сетевое имя сервера, а в поле Network Protocol выберите TCP/IP.
Регистрация сервера

Регистрация сервера

3. Используя утилиту PING проверьте доступность по сети компьютера, на котором установлен сервер. Если компьютер доступен, то в окне Communication Diagnostics вы увидите значение параметра Lost равным нулю.
Если после щелчка на кнопке Test в окне Communication Diagnostics число потерянных пакетов (параметр Lost) будет отлично от нуля, то в сети есть проблемы с протоколом TCP/IP.
4. Проверьте доступность сервера InterBase. Если сервер доступен, то в ок​не Communication Diagnostics вы увидите сообщение "TCP/IP Communication Test Passed!".
Если после щелчка на кнопке Test в окне Communication Diagnostics вместо сообщения "TCP/IP Communication Test Passed!" вы увидите "TCP/IP Communication Test Failed!", то доступ к серверу InterBase отсутствует.
Проверка связи с компьютером
 Проверка связи с сервером InterBase
3. [image: image111.png]flevars orvera [-1O]

Aperaarop [Mearoe Tovek

[Aperaamop] dara sak aor-pa| Braaenen]| Heasvormocts |

Meanos 14.05.2002 feauko 2o _[ﬂ
Ll L

© Mevare

=

Описание параметров базы данных в клиентском приложении

[image: image112.png]e Hui KoNED

B

COTPYJTHUK

Tenepos

]

Oxnag

pabotats

OTIEX

EHTONHATE

Fon npocira

N

TIPOEKT

Haseamne) (Jara navsana

Условно разделим клиентские приложения на BDE-ориентированные и прочие. Другими словами, использующих для доступа к базе данных либо алиас, либо полный путь.
В первом случае для соединения с удаленной базой данных по протоколу TCP/IP используйте двоеточие для отделения имени сервера от полного имени базы данных. Например, так:
с232: C:\dbApp\clsrv\Exmpl\Exmpl.gdb
Здесь с232 — сетевое имя компьютера, на котором установлен сервер;
 Параметры соединения BDE-ориентированного клиента

В случае не BDE-ориентированных клиентов имя компьютера на котором установлен сервер, и полный путь к базе данных прописываются отдельно. Например, используя IBConsole, мы сначала зарегистрировали сервер.
Теперь можно зарегистрировать саму базу данных (Database/Register), чтобы убедиться, что ее данные доступны на настоящем клиентском месте.
[image: image113.png]

[image: image114.png]

 Параметры соединения не ВDEориентированного клиента
Контрольное задание:

Выполнить резервное копирование таблиц базы данных Exmpl.gdb.

Контрольные вопросы:

1. Какие параметры можно изменить у базы данных при выполнении резервной копии?

2. Укажите способы создания резервной копии.

3. Утилита командной строки для создания резервной копии: формат и особенности работы

4. Создание резервной копии с помощью утилиты IBConsol: особенности работы.

5. Какие пользователи могут создать резервную копию базы данных?

6. Что такое восстановление базы данных?

7. Какие проблемы можно решить при выполнении процедуры восстановления базы данных?

8. Какие пользователи имеют право на восстановление базы данных?

9. Назовите способы восстановления базы данных.

Лабораторная работа 35
Копирование клиентской части

Цель работы: Научится управлять работой утилиты InstallShield .
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

· создавать объекты баз данных в современных системах управления базами данных и управлять доступом к этим объектам;

знать:

· структуры данных систем управления базами данных (СУБД), общий подход к организации представлений, таблиц, индексов и кластеров.
Краткие теоретические и учебно-методические материалы по теме лабораторной работы

Одной из важнейших проблем при разработке заказных программных продуктов является окончательная сборка проекта и поставка приложений. Эта проблема может быть решена различными способами в зависимости от условий поставки, числа установок, состава поставляемого продукта.

Создание дистрибутивов с помощью InstallShield Express

При запуске Install Shield Express появляется окно с радиогруппой, предлагающее открыть существующий проект или создать новый.

При создании нового проекта следует ввести имя проекта и указать каталог, в котором расположены файлы приложения
В разделе Set the Visual Design следует заполнить поля со сведениями о приложении: название приложения, как оно будет выглядеть в программной группе, имя исполняемого файла, каталог, в который следует установить приложение.
Install Shield содержит несколько переменных, идентифицирующих диски и каталоги компьютера пользователя, что позволяет не знать реальную систему каталогов и дисков этого компьютера:

· <INSTALLDIR> - каталог для установки, указанный пользователем,

· <WINDIR> - каталог, в котором содержится Windows

· <WINSYSDIR> - каталог Windows\System

· <WINDISK> - диск, на котором содержится Windows

· <WINSYSDISK> - диск, на котором содержится каталог Windows\System

· <ProgramFilesDir> - каталог Program Files.

Раздел - Specify InstallShield Options for Borland C++ - предназначен для выбора компонентов, часто поставляемых с приложениями: BDE, SQL Links и др.
При установке параметров псевдонимов можно выбрать тип псевдонима и местоположение данных. Остальные параметры псевдонима (в том числе и языковые драйверы) можно указать в текстовом редакторе.Щелкнув по закладке Advanced Options, можно ознакомиться со списком файлов дополнительных компонентов (в нашем случае BDE) и сведениями о них.

Раздел - Specify Components and Files - предназначен для определения групп файлов, компонентов приложения и типов установки. Щелкнув на закладке Components, можно определить компоненты дистрибутива (их сможет выбирать пользователь в случае выбора варианта инсталляции Custom, поэтому можно дать им русскоязычные названия) и указать, из каких групп файлов они состоят. Закладка - Setup Types - предназначена для определения вариантов установки.
В разделе Select User Interface Components можно выбрать диалоги, в которых пользователь вводит необходимую информацию во время инсталляции (например, сведения о себе и компании, серийный номер продукта), знакомится с лицензионным соглашением и файлам readme, указывает каталог для инсталляции, выбирает тип установки и т.д.

Раздел - Specify Folders and Icons - позволяет определить состав будущей программной группы, а также определить параметры командной строки (закладка Advanced).

Последний раздел - Run Disk Builder. После сохранения инсталляционного скрипта (с помощью нажатия на кнопку с изображением дискеты на панели инструментов главного окна InstallShield) и выбора типа носителей происходит создание на жестком диске образов дистрибутивных дискет. Выбрав затем раздел Create Distribution Media, можно записать на дискеты созданный дистрибутив. Опцию Test Run можно использовать для проверки работы инсталляционного приложения. Однако не рекомендуется делать это на компьютере, где производится разработка приложений. Лучше провести тестовые испытания на компьютере, похожем на компьютеры ваших пользователей. Кроме того, рекомендуется создать на этом компьютере копию Windows, чтобы в случае некорректной работы инсталлятора можно было вернуть программное обеспечение в исходное состояние

Запуск инсталляционной программы приводит к последовательному появлению выбранных в разделе Select User Interface Components диалогов.
Результатом работы инсталляционного приложения является установка приложения и необходимых для его работы файлов на компьютер пользователя, создание программной группы, внесение необходимых ключей в реестр

Таким образом, хотя InstallShield Express и не решает полностью всех проблем, возникающих при поставке приложений, с его помощью во многих случаях возможно быстрое создание дистрибутивов, удовлетворяющих современным требованиям к функциональности и дизайну инсталляционных приложений.

Задания.
1. Создание дистрибутива приложения с помощью InstallShield Express

Рассмотрим ситуацию, когда необходимо перенести приложение на компьютер, где не установлен BDE или приложение разрабатывалось в новой версии. В этом случае применяют утилиту InstallShield Express. Рассмотрим перенос информационной системы "Аренда Minus", приложение, которой расположена на диске D: в папке D:\Test_Db, а база Exmpl.gdb в папке D:\Test_Db\Db
Ход работы:

1. Создайте на диске D: папку Test_Db и вложенную в нее папку Db.
2. Скопируйте в папку Test_Db exe-файл разработанного приложения.
3. Таблицы базы скопируйте в папку Db.
4. Запустите утилиту InstallShield.

5. Выполните команду меню View- View List
I шаг Organize Your Setup

6. Выберите команду Create a new project

7. Создайте папку prjInst для хранения проекта.

8. Введите полное имя проекта D:\test_db\prJInst\dbApp.ism

9. [image: image115.png]nokasars TagnLy

aKpeis npunoKerUe

[image: image116.png]B

ableB DataSources

T

Add fields... Ctrl+A
New field... Ctr+N
Cut Clrl-d
Copy Ctri+C
Paste Chrl+y
Delete Del

Select al Chil+l
Retrieve atfributes Chrl+R
Save attrbutes Chl+S
Save attributes as... Ctr+E
Associate attributes,.. Crl+O

Unassociate attributes Ctrl+U

ced

10. Выбрать опцию General Information/

11. Свойство INSTALLDIR - [ProgramFilesFolder]\test_db

12. Свойство DATABASEDIR - [INSTALLDIR]\db

13. В управляющем списке выбрать возможные типы установки.

II шаг Specify Application Data

14. Выбрать в управляющем списке Files.
15. Щелкните правой кнопкой мыши на пункте Destination Computer в окне Destination computer’s folders и выберите из появившегося контекстного меню Show Predefined Folder/[INSTALLDIR].
16. В верхнем окне перейдите в папку D:\Test_DB и перетащите исполняемый файл в папку [INSTALLDIR].
17. Аналогично перетащить файлы базы данных в папку [DATABASEDIR].
18. Описать драйверы, которые должны быть в дистрибутиве

Выбрать Object/Merge Modules;

· В окне InstallShield Object/Merge Modules выбрать BDE_ENT;

· Выбрать Create a new BDE Configuration file;

· Перейти в окно навигатора и создать в папке D:\test_db\prJInst файл BDEcfg.ini ;

· Далее кнопка Launch и окно выбора алиаса и драйвера базы данных.

III шаг Configure the Target System

19. Выбрать в управляющем списке Registry.

20. Скопируйте папку HKEY_LOCAL_MACHINE/Software/Borland/Database Engine
21. Поместите копию в папку HKEY_LOCAL_MACHINE/Software/Borland/Database Engine
IV шаг Prepare for Release

22. Выбрать в списке Build Your Release.
23. В списке Builds выбрать CD-ROM .
24. В контекстном меню выбрать Build.
25. Выполните пункт Distribute Your Release.
Контрольные вопросы:

1. Перечислите последовательность шагов, которые следует выполнить для создания дистрибутива.
2. В каком разделе нужно заполнить поля со сведениями о приложении?
3. В каком разделе пользователь, знакомится с лицензионным соглашением?
4. Какую опцию можно использовать для проверки работы инсталляционного приложения?
Лабораторная работа № 36-37
 «Резервное копирование и восстановление БД Oracle»
Цель работы: получение практических навыков администрирования и сопровождения логической и физической структур базы данных.

Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

- создавать хранимые процедуры и триггеры на базах данных;

- применять стандартные методы для защиты объектов базы данных.
знать:

- основные положения теории баз данных, хранилищ данных, баз знаний;

- методы организации целостности данных.
Краткие теоретические и учебно-методические материалы

по теме лабораторной работы

Администратор может создавать новые табличные пространства, изменять размер файлов данных, добавлять файлы к табличным пространствам, устанавливать и изменять параметры хранения по умолчанию сегментов в табличном пространстве, переводить табличное пространство в состояние «только чтение» или «чтение-запись», делать табличное пространство временным или постоянным или удалить его.

Табличное пространство system и другие

1. Табличное пространство system:

- создается во время создания базы данных

- содержит словарь данных

- содержит сегмент отмены system

2. Другие табличные пространства:

- отделяют сегменты

- обеспечивают большую гибкость решения задач администрирования пространства

- дают возможность контролировать выделение
пространства пользователю.
Табличное пространство может быть создано при помощи следующей команды:

CREATE TABLESPACE табличное_пространство

[DATAFILE фраза_файла_данных]

[MINIMUM EXTENT целое[К|М]]

[BLOCKSIZE целое [К]]

[LOGGING|NOLOGGING]

[DEFAULT фраза_хранения]

[ONLINE I OFFLINE]

[PERMANENT I EMPORARY]

[extent_management_clause]

[autoextend_clause]

Файлы параметров инициализации:

табл_пространство – имя табличного пространства, которое требуется создать.

DATAFILE –задает файл или файлы данных, составляющие это табличное пространство. Для временных табличных пространств можно использовать TEMPFILE.

MINIMUM EXTENT – обеспечивает то, что размер каждого экстента этого табличного пространства кратен целому (используйте К и М для указания размера в килобайтах и мегабайтах).

BLOCKSIZE – указывает размер блока данных, с которым будет создано табличное пространство. Необходимо указать параметр инициализации DB_nK_CACHE_SIZE (n- 2,4,8,16 или 32, размер блока) для этого размера блока. Он устанавливает размер кэша буферов для обслуживания табличных пространств с указанным размером блока. Можно указать до 4 параметров. По умолчанию используется стандартный размер блока и кэш буферов по умолчанию, заданный параметром инициализации DB_CACHE_SIZE.

LOGGING – указывает, что по умолчанию все изменения таблиц, индексов и секций табличного пространства записываются в журнал (режим LOGGIN установлен в команде по умолчанию).

NOLOGGING – указывает, что по умолчанию все изменения таблиц, индексов и секций табличного пространства не записываются в журнал (режим NOLOGGIN затрагивает только некоторые команды DML и DDL, например, использующие прямую загрузку).

DEFAULT – задает параметры хранения по умолчанию для всех объектов, которые будут созданы в данном табличном пространстве.

ONLINE – делает табличное пространство доступным сразу после создания.

OFFLINE – сразу после создания табличное пространство будет недоступно.

PERMANENT – указывает на то, что это табличное пространство может быть использовано для хранения постоянных объектов.

TEMPORARY – указывает на то, что данное табличное пространство может хранить только временные объекты, например, сегменты, используемые фразой ORDER BY для неявной сортировки. Используется стандартный размер блока.

SIZE – задаёт размер файла (используйте К и М для задания размера файла).

REUSE – разрешает серверу Oracle повторно использовать существующий файл.

autoextend_clause OFF/ON – разрешает или запрещает автоматическое расширение файла данных: NEXT- какими кусками будет расширяться файл, MAXSIZE/UNLIMITED- до какого максимального размера.

Пример создания нового табличного пространства:

CREATE TABLESPACE userdata

DATAFILE '/u01/oradata/userdata01.dbf

SIZE 100M

AUTOEXTEND ON NEXT 5M

MAXSIZE 200M;

Перевод табличного пространство в режим только для чтения запрещает последующие операции записи в файлы данных. Табличные пространства «только для чтения» используются для предотвращения каких-либо изменений и для отмены необходимости выполнять резервирование и восстановление больших, статичных областей базы данных. Сервер Oracle никогда не обновляет файлы табличного пространства, используемого только для чтения, и, поэтому эти файлы могут располагаться на носителях, запись на которые невозможна, таких как CD-ROM.

Табличное пространство может быть переведено в режим только для чтения или «чтение-запись» при помощи команды ALTER TABLESPACE:

ALTER TABLESPACE табличное_пространство READ [ONLY | WRITE]

Пример1: укажите параметры autoextent для нового файла данных.
В следующих командах с помощью фразы AUTOEXTEND включается или отключается автоматическое расширение файла данных:

- CREATE DATABASE

- CREATE TABLESPACE ... DATAFILE

- ALTER TABLESPACE ... ADD DATAFILE
Используйте команду ALTER DATABASE, чтобы изменить файл данных и предоставить возможностью его автоматического расширения:

ALTER DATABASE DATAFILE спецификация_файла [фраза_авторасширения].

Если в табличном пространстве существует несколько файлов, расширяться будет тот, в котором, сервер захочет выделить экстент. Если в файле нет места, и он не может расширяться, будет взят другой файл. Если ни в одном файле нет места, и они не могут расширяться дальше, пользователь, чья команда требует, расширения сегмента получит ошибку.

фраза_авторасширения :== [AUTOEXTEND { OFF | ON [NEXT целое [К |М]] [MAXSIZE UNLIMITED | целое[К|М]] }],

где:

AUTOEXTEND OFF выключает автоматическое расширение файла данных.

 AUTOEXTEND ON включает автоматическое расширение файла данных. NEXT устанавливает размер выделяемого дискового пространства, когда требуются дополнительные экстенты.

MAX SIZE определяет максимальный размер дискового пространства, который может быть выделен файлу данных.

 UNLIMITED снимает ограничение на максимальный размер дискового пространства для файла данных.

Пример установки автоматического расширения файла данных:
ALTER DATABASE DATAFILE

 '/u01/oradata/app_data_04.dbf‘

 SIZE 200M AUTOEXTEND ON NEXT 10M MAXSIZE 500M.

Пример 2: измените установки autoextend для существующего файла данных.
Для включения или отключения автоматического расширения уществующего файла данных используется команда ALTER DATABASE:

ALTER DATABASE [database] DATAFILE 'имя_файла'[,'имя_файла']...фраза_авторасширения

Определение параметров AUTOEXTEND:

 DBA_DATA_FILES есть столбцы, показывающие параметры Авторасширения. Столбец AUTOEXTENSIBLE показывает включено или нет авторасширение:

 SQL> select tablespace_name, file_name, autoextensible from dba_data_files;

Например:

TABLESPACE_NAME FILE_NAME AUTOEXTENSIBLE

SYSTEM /home/dbaOl/ORADATA/uOl/systemOl.dbf YES

DATA01 /home/dba01/ORADATA/u04/data01.dbf NO
USERS /home/dba01/ORADATA/u03/users01.dbf NO
UNDO2 /horae/dba01/ORADATA/u01/UND02.dbf NO
Задания для лабораторной работы:
Сопровождение табличных пространств и файлов данных

1. Создайте постоянные табличные пространства со следующими именами и параметрами хранения:
DATA01, управляемое с помощью словаря данных.

DATA02, с экстентами одинакового размера (размер каждого экстента должен быть кратен 100 Кб.) (включите автоматическое расширение с выделением пространства размером 500 Кб и максимальным размером 2 Мб.

 RONLY для таблиц, доступных только на чтение с параметрами хранения по умолчанию.

НЕ СОЗДАВАЙТЕ табличное пространство в режиме «только чтение» в данный момент времени.

2. Выведите информацию из словаря данных.

3. Выделите дополнительно 500Кб для табличного пространства DATA02 . Проверьте результат.

4. Переместите табличное пространство DATA01 в другой каталог (оба способа).

5. Добавьте файл данных для табличного пространства DATA01.

6. Измените размер фала данных для DATA01 вручную.

7. Создайте таблицу в табличном пространстве RONLY. Переведите RONLY в режим «только чтение».

8. Попытайтесь создать еще одну таблицу. Удалите первую таблицу. Что произошло и почему?

9. Удалите табличное пространство RONLY и соответствующий файл данных. Проверьте результат.

2. Резервное копирование и восстановление

1. Выполните резервное копирование управляющих файлов и файлов данных.

2. Удалите один из файлов данных.

3. Выполните восстановление удаленного файла путем создания нового файла данных.

4. Удалите все управляющие файлы.

5. Восстановите управляющие файлы из резервной копии.

6. Проверьте работоспособность БД.
Контрольные вопросы
1. Что такое резервное копирование?

2. За что отвечает табличное пространство?

3. Какими способами можно восстановить удаленный файл?

4. Что такое словарь данных?

Лабораторная работа № 38-39

«Защита баз данных на примере MS ACCESS»

Цель работы: изучение способов защиты информации в БД на примере СУБД MS Access
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

- создавать хранимые процедуры и триггеры на базах данных;

- применять стандартные методы для защиты объектов базы данных.

знать:

- основные положения теории баз данных, хранилищ данных, баз знаний;

- методы организации целостности данных.

Краткие теоретические и учебно-методические материалы

по теме лабораторной работы
Система безопасности БД должна обеспечивать физическую целостность БД и защиту от несанкционированного вторжения с целью чтения содержимого и изменения данных.

Защита БД производится на двух уровнях:

- на уровне пароля;

- на уровне пользователя (защита учетных записей пользователей и идентифицированных объектов).

Для защиты БД Ассеss использует файл рабочих групп systеm.mdw (рабочая группа - это группа пользователей, которые совместно используют ресурсы сети), к которому БД на рабочих станциях подключаются по умолчанию. Файл рабочих групп содержит учётные записи пользователей и групп, а также пароли пользователей. Учётным записям могут быть предоставлены права на доступ к БД и её объектам, при этом сами разрешения на доступ хранятся в БД.

Для обеспечения защиты БД Ассеss необходимо создать рабочую группу, используя файл - администратор рабочих групп wrkgаdm.еxе. При создании уникальной рабочей группы задается имя пользователя, название организации и код рабочей группы.

Файл рабочей группы MS Ассеss содержит следующие встроенные учётные записи:

1. Аdmins - стандартная учётная запись пользователя. Данные записи являются одинаковыми для всех экземпляров Мs Ассеss;

2. Аdmin - учётная запись группы администратора - является уникальной в каждом файле рабочей группы;

3. Usеrs - содержит учётные записи пользователей.

Для создания файла рабочих групп необходимо выйти из Ассеss и в папке systеm или systеm32 в каталоге windоws найти файл рабочей группы и создать новую рабочую группу (может быть до 20 цифровых или буквенных обозначений).

Группа Аdmins может содержать произвольное число пользователей, но владелец объекта всегда один (владельцем объекта может быть учётная запись, которая создавала объект или которой были переданы права на его использование).

Так как чтение записи Аdmin возможно для всех рабочих групп и данные учётные записи являются одинаковыми, то пользователя АDМIN необходимо удалить из группы администраторов, для чего следует создать новую учётную запись администратора и задать пароль на его учётные записи и на учетные записи владельца.

Разграничение прав доступа пользователей

Разрешения к доступу называются явными, если они принадлежат или присвоены учётной записи пользователя. Разрешения будут неявными, если они присвоены учётной записи группы, при этом пользователь, включённый в группу получает все её разрешения.

Полномочия пользователя определяются по минимальным разрешениям доступа. Изменить разрешения для пользователей могут члены группы Аdmins, владелец объекта и пользователь, получивший на этот объект разрешения администратора. При подключении к БД пользователи получают права групп, которым они принадлежат.

ТИПЫ РАЗРЕШЕНИЙ НА ДОСТУП К БД

	Разрешения
	Разрешённые действия
	Объекты БД

	Открытие и

запуск
	Открытие БД, формы или отчёта
	БД, формы, отчёты, макросы

	Монопольный доступ
	Монопольное открытие БД
	БД

	Чтение макета
	Просмотр объектов в режиме конструктора
	Таблицы, запросы, формы, отчёты, макросы и модули

	Изменение

макетов
	Просмотр и изменение макетов, удаление
	Таблицы, запросы, формы, отчёты, макросы и модули

	Разрешения

администратора
	Установка пароля в БД, репликация БД
	Предоставление прав доступа другим пользователям

	Чтение данных
	Просмотр данных
	Таблицы и запросы

	Обновление данных
	Просмотр и изменение данных без удаления и вставки
	Таблицы и запросы

Пример: Защита на уровне пароля
Откройте БД, в пункте меню Сервис выберите Защита/Задать пароль базы данных (см. рис.1).

[image: image71.jpg]Baiin [lpasca Bua Bergexa | Cepeuc Oxmo 2
D @ W& [& | 5 Y Doorpena. 77
Aorosms

E

D et | (5] 3ory 8 Cxemonmmesc
o »

Cogretrase mporpaven >

Pennwaus g

s hhok Mogaceate s rpynne.
Margoc ol B
L Moo,
R Zrevermu Aciek.
o ,_ Wnopoosme/neuspooars.

Napaverpu

Рисунок 1 – Экранная форма защиты БД

Появится окно, в котором вас попросят ввести пароль и повторить его (рис.2).

[image: image72.jpg]

Рисунок 2 – Экранная форма для ввода пароля
Рекомендации по выбору пароля:

- не желательно в качестве пароля использовать такие данные, как ваше имя, дата рождения и т.д.;

- не стоит выбирать короткий пароль, так как он может быть подобран при помощи специальных программ за достаточно короткое время;

- нежелательна комбинация букв и цифр, так как это затрудняет подбор пароля и делает бесполезной атаку по словарю.

Защита на уровне пользователя

Для этого вида защиты необходимо сначала создать новую рабочую группу (если вы будете использовать старую, то БД легко можно будет вскрыть, т.к. в этом случае для алгоритма защиты будут браться данные, указанные при установке Windows или MS Access). Для создания новой рабочей группы запустите программу WRKGADM.EXE, находящуюся в каталоге WINDOWS/SYSTEM, и нажмите кнопку Создать (рис.3).

[image: image73.jpg]pyne

Coeaermn 0 Braneabue pagos

L3 onpeae e Hogr o a6 paoserpuTt sagare .
Hasearse opr A 1R

BocTonsLTecE MpyeeRerIi HIKE CoRersIA WM SoesuTe
208 i asE e opr el Urobelcecneus

B T
CaRep X 0 20 WADP U BB C YTCM pErUCTPS.|

Mr
o
Ko rpynnet

Mo

s e

Pafin patosed et

P04 (411 CrDEAEAETCA $non, HnonsSenions TOw sancre.
Hiieerca sostoxHOCT: S36art 0RO DRGOI0 DU CO348E5 HOESH D3,
L CTaMOBIT CoR3 €O CTAPOM RTION, MeHsSA Gain IR e i

- Cosagre. Cense. Bewon

Рисунок 3 –Экранная форма сведений о владельце

В появившемся диалоге введите запрашиваемую информацию и нажмите кнопку ОК. Задайте имя новой рабочей группы, например MY_GR.MDW (рис.4).
[image: image74.jpg]Bocronaurect Aa e 1 BSERATo AP OB WA 415 HOBOTO.
@ina patoved oy,

ones

Рисунок 4 – Экранная форма файла рабочей группы

В случае правильного введения данных и их подтверждения появится сообщение о завершении создания рабочей группы. Теперь можно выйти из программы Администратор рабочих групп.

Запустите БД, которую необходимо защитить. В пункте меню Сервис выберите Защита/Пользователи и группы (рис.5).

[image: image75.jpg]Mo,

™ U rpyo

Nomsccaren |]| Uswenerse o |

Momsoearens

s
Comars... | yaanme | coms capons

Ty
Vourecs pym;

s

ot >>

<<Yaamms

Yasrve s pye:

Lers

Рисунок 5 – Экранная форма пользователи и группы

Нажмите кнопку Создать… и введите имя нового пользователя, например user1, укажите его код. По умолчанию запись войдет в группу Users. Повторите эти действия для всех пользователей, которые будут работать с БД.

Перейдите в вкладку Изменение пароля. Задайте пароль администратора, после чего при каждом запуске Access будет появляться окно, предлагающее ввести имя пользователя и пароль (рис.6).

[image: image76.jpg]

Рисунок 6 – Экранная форма запроса имени и пароля пользователя

В пункте меню Сервис выберите Защита/Разрешения (рис.7). Выберете защищаемый объект, например Таблица1. Задайте разрешения для группы Users, а затем и для каждого из пользователей. Ну вот и все, остается каждому пользователю самому ввести свой пароль. Для этого необходимо зайти в БД под своим имением и выполнить действия как при создании пароля Администратора.

[image: image77.jpg] om Er—

e

T oen srowe sove
7 wrswo ors [ey
[— [—

[, [y

] o T

Рисунок 7 – Экранная форма разрешения для входа

Задания дя лабораторной работы

1. Создать новую базу данных из БД «Борей» и импортировать в нее следующие объекты:

- Таблицы: Заказано, Заказы, Клиенты, Товары;

- Запросы: Сведения о заказах;

-Формы: Заказы клиентов, Подчиненная форма заказов 1 и Подчиненная форма заказов 2.

2. Определить два уровня доступа к БД:

-для чтения;

-для изменения.

При выполнении защиты БД необходимо исключить доступ к информации несанкционированных пользователей (произвести проверку надежности защиты).
Алгоритм защиты БД MS Access

1. Создать новую уникальную рабочую группу.

2. Создать новую учетную запись администратора. Подключится к новой рабочей группе; открыть любую БД; в меню – сервис выбрать защиту и пользователей группы; создать нового пользователя, ввести имя и код учетной записи (это не пароль); в списке имеющейся группы выбрать: Admins – добавить.

3. Удалить из группы администраторов пользователя Admin.

4. Выйти из Access и войти новым пользователем в Access; обязательно ввести пароль на данную учетную запись.

5. Создать заново БД, которую хотим защитить.

6. Выполнить импорт объектов из исходной БД в БД, созданную на предыдущем шаге.

7. Выполнить распределение прав на необходимые объекты.

Написать макросы к проделанным действиям на встроенном языке программирования.
Контрольные вопросы

1. Способы защиты информации в БД Access.

2. Группы и пользователи БД Access . Файл рабочей группы.

3. Объекты БД Access и права доступа к объектам. Понятие владельца объекта.

4. Алгоритм защиты БД Access.

Лабораторная работа № 40-41
«Аппаратные решения для выявления и предотвращения утечек конфиденциальной информации в базах данных»

Цель работы: получение навыков при выявлении утечек информации
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

- создавать хранимые процедуры и триггеры на базах данных;

- применять стандартные методы для защиты объектов базы данных.

знать:

- основные положения теории баз данных, хранилищ данных, баз знаний;

- методы организации целостности данных.

Краткие теоретические и учебно-методические материалы

по теме лабораторной работы
Сегодня защита конфиденциальных данных - одна из главных задач любого бизнеса. Почти каждая компания располагает торговыми или промышленными секретами, приватными сведениями своих сотрудников, клиентов и партнеров, а в некоторых случаях интеллектуальной собственностью и другими цифровыми активами. Чтобы защитить всю эту информацию от несанкционированного доступа, предприятия берут на вооружение брандмауэры, системы обнаружения и предотвращения вторжений, средства двухфакторной аутентификации, а также другие продукты и технологии. Однако от инсайдеров - обширной категории служащих компании, имеющих легальный доступ к конфиденциальной информации в силу своих должностных обязанностей, - данные, не подлежащие разглашению, чаще всего остаются беззащитными. Тому, как обеспечить внутреннюю IT-безопасность, зафиксировать и предотвратить утечку или нецелевое использование активов.

Сейчас утечка конфиденциальной информации представляет самую опасную угрозу IT-безопасности. Так, по данным CXO Media и PricewaterhouseCoopers, на долю инсайдеров приходится 60% всех инцидентов IT-безопасности. В то же самое время по сведениям компании InfoWatch, опросившей более 300 представителей российского бизнеса, 64% респондентов считают кражу данных главной угрозой IT-безопасности, при этом на втором месте со значительным отставанием оказалась угроза вредоносных кодов (49%).

В дальнейшем проблема защиты чувствительных данных только усилится. Это связано, прежде всего, с ужесточением законодательных требований, как по всему миру, так и в России.

Конфиденциальная информация может "покинуть" корпоративный периметр самыми разными путями. Среди самых распространенных каналов утечки следует отметить мобильные устройства или накопители, электронную почту и веб. Разумеется, никто не мешает нечистому на руку сотруднику воспользоваться более изощренными способами, скажем, переписать данные посредством беспроводных сетей (Bluetooth или Wi-Fi), поменять жесткий диск персонального компьютера и забрать с собой оригинальный и т. д. Таким образом, защита от утечки требует комплексного подхода: учета всех возможных коммуникационных каналов, обеспечения физической безопасности, шифрования резервных копий и информации, покидающей корпоративный периметр, и других организационных мероприятий (создание политики IT-безопасности, разрешение юридических вопросов и модификация трудовых договоров, тренинги и т. д.).

Сегодня на рынке существует довольно много решений, позволяющих детектировать и предотвращать утечку конфиденциальной информации по тем или иным каналам. Однако комплексных решений, покрывающих все существующие каналы, значительно меньше. Некоторые разработчики предоставляют продукты лишь для контроля над почтовым трафиком или коммуникационными портами рабочей станции. Такой подход обладает всего одним преимуществом: заказчик покупает автономный продукт, который требует минимум усилий при внедрении и сопровождении. Тем не менее слабых сторон намного больше: компания должна сама позаботиться об оставшихся непокрытыми каналах передачи информации (что нередко просто невозможно), а также самостоятельно провести комплекс организационных мероприятий (для чего штатным специалистам часто не хватает опыта и знаний). Другими словами, при выборе конкретного решения заказчик должен обратить самое пристальное внимание на диапазон покрываемых каналов утечки и наличие важных сопроводительных услуг.

Еще один важный параметр, который необходимо учитывать, - наличие или отсутствие аппаратных модулей в комплексном решении либо в автономном продукте. Самые продвинутые поставщики сегодня предлагают на выбор программные и аппаратные компоненты для контроля над теми коммуникационными каналами, где это возможно. Так, ни один разработчик не предложит сегодня аппаратных модулей для предотвращения утечек через ресурсы рабочих станций (порты, принтеры, приводы и т. д.), поскольку эффективность подобной технологии сомнительна. Однако обеспечить контроль над почтовым или веб-трафиком с помощью отдельного устройства, а не выделенного сервера вполне логично. Дополнительным преимуществом такого подхода является возможность более эффективной защиты информационных активов крупной компании, имеющей обширную сеть филиалов. В этом случае можно настроить и протестировать аппаратные компоненты в штаб-квартире, а потом быстро внедрить их в филиалах. В отличие от программных модулей автономные устройства могут быть легко развернуты и не требуют серьезного сопровождения (следовательно, филиалу не обязательно иметь специалистов по IT-безопасности). К тому же большинстве случаев аппаратное решение обладает более высокой производительностью. Хотя программные компоненты, работающие на выделенных серверах, в некоторых случаях обладают большей гибкостью и возможностями более тонкой настройки. Вдобавок программные модули чаще всего обходятся значительно дешевле аппаратных.
Пример: написать программный код для защиты информации, используя процедуры: CREATE PROCEDURE p ()
LANGUAGE SQL
NOT DETERMINISTIC
SQL SECURITY DEFINER
COMMENT 'A Procedure' <--
SELECT CURRENT_DATE, RAND() FROM t
CREATE FUNCTION factorial (n DECIMAL(3,0))
RETURNS DECIMAL(20,0)
DETERMINISTIC
BEGIN
DECLARE factorial DECIMAL(20,0) DEFAULT 1;
DECLARE counter DECIMAL(3,0);
SET counter = n;
factorial_loop: REPEAT
SET factorial = factorial * counter;
SET counter = counter - 1;
UNTIL counter = 1
END REPEAT;
RETURN factorial;
END
Задания для лабораторной работы

Используя языки программирования высокого уровня написать программный по защите информации файлов на текущем диске.
Контрольные вопросы

1. Что такое конфиденциальная информация?

2. Что такое аппаратный модуль?

3. Для чего необходимы коммуникационные каналы?

4. Что такое физическая бепасность?
Лабораторная работа № 42-43
«Представления, хранимые процедуры, функции, триггеры»

Цель работы: познакомиться с возможностями MySQL по работе с хранимыми процедурами, функциями, триггерами, представлениями.
Образовательные результаты, заявленные во ФГОС третьего поколения:

Студент должен

уметь:

- создавать хранимые процедуры и триггеры на базах данных;

- применять стандартные методы для защиты объектов базы данных.

знать:

- основные положения теории баз данных, хранилищ данных, баз знаний;

- методы организации целостности данных.

Краткие теоретические и учебно-методические материалы

по теме лабораторной работы
Представления (views) можно сравнить с временными таблицами, наполненными динамически формируемым содержимым.. В настоящей реализации есть две возможности создания представлений: с использованием алгоритма временных таблиц MySQL и с созданием самостоятельной таблицы. Нас интересует именно второй способ (первый был реализован, скорее всего, исходя из соображений совместимости и унификации). Такие представления позволяют значительно снизить объём кода, в котором часто повторялись простые объединения таблиц. К ним (после создания) применимы любые запросы, возвращающие результат в виде набора строк. То есть команды SELECT, UPDATE, DELETE, можно применять так же, как и к реальным таблицам. Важно и то, что посредством представлений можно более гибко распоряжаться правами пользователей базы данных, так как в этом случае есть возможность предоставлять доступ на уровне отдельных записей различных таблиц.

В СУБД MySQL появилась возможность создания и хранения функций и процедур. Объявление и работа с процедурами и функциями отличаются в следующем:

· в заголовке функции помимо описания формальных параметров обязательно указывается тип возвращаемого ею результата;

· для возврата функцией значения в точку вызова среди ее операторов должен быть хотя бы один, в котором имени функции или переменной Result присваивается значение результата;

· вызов процедуры выполняется отдельным оператором;

· вызов функции может выполняться там, где допускается ставить выражение, в частности, в правой части оператора присваивания.

Пользовательские функции по функциональности похожи на хранимые процедуры. Разница заключается в том, что возможностей у них меньше (в частности, они должны возвращать только одно значение, например, скалярное или табличное), но их удобнее использовать с точки зрения синтаксиса.

Как процедуры, так и функции могут возвращать значения (в виде набора записей). Различие состоит в том, что функция вызывается из запроса, а процедура из отдельной команды.
Три́ггер (англ. trigger) — это хранимая процедура особого типа, которую пользователь не вызывает непосредственно, а исполнение которой обусловлено наступлением определенного события (действием) — по сути добавлением INSERT или удалением DELETE строки в заданной таблице, или модификаци UPDATE данных в определенном столбце заданной таблицы реляционной базы данных. Триггеры применяются для обеспечения целостности данных и реализации сложной бизнес-логики. Триггер запускается сервером автоматически при попытке изменения данных в таблице, с которой он связан. Все производимые им модификации данных рассматриваются как выполняемые в транзакции, в которой выполнено действие, вызвавшее срабатывание триггера.
Пример: Создание процедур и функций

CREATE

 [DEFINER = { user | CURRENT_USER }]

 PROCEDURE sp_name ([proc_parameter[,...]])

 [characteristic ...] routine_body
CREATE

 [DEFINER = { user | CURRENT_USER }]

 FUNCTION sp_name ([func_parameter[,...]])

 RETURNS type
 [characteristic ...] routine_body
 proc_parameter:

 [IN | OUT | INOUT] param_name type
 func_parameter:

 param_name type
type:

 Any valid MySQL data type
characteristic:

 LANGUAGE SQL

 | [NOT] DETERMINISTIC

 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

 | COMMENT 'string'

routine_body:

Внесение изменений
ALTER {PROCEDURE | FUNCTION} sp_name [characteristic ...]

characteristic:

 { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

 | SQL SECURITY { DEFINER | INVOKER }

 | COMMENT 'string'

Удаление процедур и функций
DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name
Вызов процедур и функций

CALL sp_name([parameter[,...]])

CALL sp_name[()]

Оператор CALL позволяет вызвать ранее определенную процедуру.

Пример создания и работы триггера:

CREATE TABLE t22 (s1 INTEGER)

CREATE TRIGGER t22_bi

BEFORE INSERT ON t22

FOR EACH ROW

BEGIN

SET @x = ‘Trigger was activated!’;

SET NEW.s1 = 55;

END;

Задания для лабораторной работы
Разработать программный код на языке Си для создания представлений, процедур, функций и триггеров.

Контрольные вопросы

1. Что такое триггер?

2. Какие виды триггеров бывают?

3. Для чего используют пользовательские функции?

4. Чем отличаются функции от процедур?
�EMBED PBrush���

�EMBED PBrush���

Режим указателя

Создание идентифицирующей связи

Создание категориальной связи

Создание сущности

Создание связи многие-ко-многим

Создание неидентифицирующей связи

PAGE
5

[image: image117.png]

[image: image118.png]

_1485133329

_1485133331

_1485133335

_1485133336

_1485133334

_1485133330

_1485133327

_1485133328

_1485133326

_1485133325

