	[image: image1.jpg]

	МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН

Государственное бюджетное профессиональное образовательное учреждение

Уфимский колледж радиоэлектроники, телекоммуникаций и безопасности

	
	УТВЕРЖДАЮ

Зам. директора

_____________ Л.Р. Туктарова

«29» августа 2017 г.

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ

ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ

ПРАКТИЧЕСКИХ РАБОТ

ДИСЦИПЛИНА «ОСНОВЫ АЛГОРИТМИЗАЦИИ И ПРОГРАММИРОВАНИЯ»

специальность 09.02.07 «Информационные системы программирование»
	
	 СОГЛАСОВАНО

 Зав. кафедрой

 __________ М.Е. Бронштейн
РАЗРАБОТЧИК
___________М.Е. Бронштейн

Уфа 2017 г.

СОДЕРЖАНИЕ

	
	Стр.

	Предисловие
	3

	Практическая работа № 1-2 «Составление линейной программы»
	5

	Практическая работа № 3-4 «Применение условного оператора»
	8

	Практическая работа № 5-6 «Применение оператора цикла с предусловием»
	11

	Практическая работа № 7-8 «Применение оператора цикла с постусловием»
	15

	Практическая работа № 9-10 «Применение оператора цикла с параметром»
	 19

	Практическая работа № 11-12 «Программирование массивов»
	22

	Практическая работа № 13-14 «Программирование матриц»
	25

	Практическая работа № 15-16 «Программирование строк»
Практическая работа № 17-18 «Программирование множеств»
	28
33

	Практическая работа № 19-20 «Программирование записей»
	37

	Практическая работа № 21-32 «Программирование подпрограмм»
	41

Практическая работа № 23-24 «Работа с файлами» 45
Практическая работа № 25-26 «Программирование рекурсивных алгоритмов» 49
Практическая работа № 27-28 «Определение сложности алгоритмов» 55
Практическая работа № 29 «Выполнение работ в интегрированной среде
разработчика» 57
Практическая работа № 30 «Создание консольного приложения» 60 Практическая работа № 31-32 «Создание проекта с использованием компонентов
для работы с текстом» 63
Практическая работа № 33-34 «Создание проекта с использованием компонентов

ввода и отображения чисел, дат и времени» 69
Практическая работа № 35-36 «Разработка оконного приложения с несколькими формами» 74
Практическая работа № 37-38 «Создание интерфейса» 81
ПРЕДИСЛОВИЕ

Методические указания для студентов по выполнению практических работ адресованы студентам очной формы обучения.

Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам, правильного составления отчетов.

Приступая к выполнению практической работы, необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы.

Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем.

Наличие положительной оценки по практическим работам необходимо для допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических работ

1. Студент должен прийти на практическое занятие подготовленным к выполнению практической работы.

2. После проведения практической работы студент должен представить отчет о проделанной работе.

3. Отчет о проделанной работе следует выполнять в журнале практических работ на листах формата А4 с одной стороны листа.

Оценку по практической работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.

Зачет по выполнению практических работ студент получает при условии выполнения всех предусмотренных программой работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий.

Обеспеченность занятия (средства обучения):
1. Учебно-методическая литература:

1. Алгоритмизация и программирование: Учебное пособие / С.А. Канцедал. - М.: ИД ФОРУМ: НИЦ ИНФРА-М, 2014. - (Профессиональное образование)

2.Семакин И.Г., Шестаков А.П. Основы алгоритмизации и программирования. (Среднее профессиональное образование). Учебник - ОИЦ «Академия», 2012

3. Фризен И.Г. Основы алгоритмизации и программирования (среда PascalABC.NET) : учеб. пособие / И.Г. Фризен. — М. : ФОРУМ : ИНФРА-М, 2017. - (Среднее профессиональное образование).

4. Языки программирования: Учебное пособие / О.Л. Голицына, Т.Л. Партыка, И.И. Попов. - 3-e изд., перераб. и доп. - М.: Форум: ИНФРА-М, 2015. - (Профессиональное образование).
2. Справочная литература:

1. Камаев В.А., Костерин В.В. Технологии программирования - М.: Высшая школа, 2011

2. Кьоу Дж. Объектно-ориентированное программирование, СПб.: Питер, 2011

3. Т.А.Павловская С# Программирование на языке высокого уровня. Учебник для вузов –СпбПитер, 2012

3. Технические средства обучения:

· калькулятор;

· персональный компьютер.

4. Программное обеспечение: Pascal ABC.NET, MS Visual Studio.
5. Отчет по выполнению практических работ.
Порядок выполнения отчета по практической работе
1. Ознакомиться с теоретическим материалом по практической работе.

2. Записать краткий конспект теоретической части.

3. Выполнить предложенное задание согласно варианту по списку группы.

4. Продемонстрировать результаты выполнения предложенных заданий преподавателю.

5. Записать код программы в отчет.

6. Ответить на контрольные вопросы.

7. Записать выводы о проделанной работе.

Практическая работа № 1-2
«Составление линейной программы»
Цель работы: научиться работать в среде программирования и составлять линейные программы с использованием операторов ввода, вывода и присваивания.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти
- типы данных
- базовые конструкции изучаемых языков программирования
Краткие теоретические и учебно-методические материалы по теме практической работы
Во всех приведенных примерах переменные могут быть типа REAL или INTEGER.

Кроме операторов, программа содержит описания переменных:

X: REAL;

 Y, Z, T: INTEGER;

Каждая переменная, используемая в программе, должна быть описана в разделе описаний

VAR X: REAL;

 Z, Y: INTEGER;

Схематически программа в Паскале выглядит следующим образом:

VAR A1;…; Ak;

 BEGIN – начало

 P1;…; Pn;

 END. – конец – операционные скобки (служебные слова)

N – имя программы (идентификатор);

A1;…; Ak – описание переменных;

P1;…; Pn – операторы; выписываются в порядке следования друг за другом.

; - необходимо.

Пример: Программа ROOT1 вычисления корней квадратного уравнения ax2 + bx + c = 0, заданного коэффициентами a, b, c (предполагая, что a ≠ 0и что корни действительные)

VAR a, b, c, x1, x2: REAL;

 BEGIN READ (a, b, c);

 x1: = (- b + sqrt (sqr (b) – 4 * a * c) / (2 * a));

 x2: = (- b – sqrt (sqr (b) – 4 * a * c) / (2 * a));

 WRITE (x1, x2)

 END.

Задания для практического занятия:
1. Найти значение переменной d:

Var a, b, c: integer; d: real;

Begin

Read (a);

B: = a*a;

C: = a+b;

D: = c/a;

End.

	
	B1
	B2
	B3
	B4
	B5
	B6

	a
	2
	3
	4
	5
	6
	7

	d
	
	
	
	
	
	

2. Разработать программу нахождения следующего значения согласно варианту и реализовать ее в программной среде:
№1 EQ \F(b+\r(;b2+4ac);2a) -a3c+b-2 №2 EQ

 EQ \F(d;c) * EQ \F(b;d) - EQ \F(ab-c;cd)
№3 EQ \F(sinx+cosy;cosx-siny) * tg xy

№4 EQ \F(x + y;x + 1) - EQ \F(xy-12;34+x) №5 EQ \F(3+ey-1;1 + x2 |y - tg x|) №6 x - EQ \F(x3;3) + EQ \F(x5;5)
№7 ln| (y - EQ \r(;|x|))(x - EQ \F(y;x + \f(x2;4))) №8 (1 – tg x)-2 + cos(x – y) №9 EQ \F(ln|cos x|;ln(1 + x2))
№10 (EQ \F(x + 1;x - 1))3 + 18xy2 №11 (1 + EQ \F(1;x2))4 - 12x2y
№12 EQ \F(x2 - 7x + 10;x2 - 8x + 12)
№13 EQ \F(cos x;(-2x) + 16x cos(xy) – 2 №14 x-3 – cosx + sin(2xy)
№15 2ctg(3x) - EQ \F(1;12x2 + 7x - 5)
№16 |x2 – x3| - EQ \F(7x;x3 - 15x) №17 x (ln x + EQ \F(y;cosx - \f(x;3))
№18 sin EQ \R(;x+1) - sin EQ

 EQ \R(;x-1) ;

№19 ex - EQ \F(y2 + 12xy - 3x2;18y - 1) №20 EQ \F(1 + sin\r(;x + 1);cos(12y - 4))
 №21 2ctg(3x) - EQ \F(ln cosx;ln(1 + x2))
№22 ex – x – 2 + (1 + x)2 №23 3 – 4x + (y - EQ \R(;|x|))
№24 x- 10sinx + |x4 – x5|

№25 x – sin 10x + cos(x – y) №26 EQ \F(1 + sin2(x + y);2 + |x - \f(2x;1 + x2 y2)|) + x

№ 27.Найти площадь равнобедренной трапеции с основаниями а и b и углом а при большем основании а.
№ 28. Вычислить корни квадратного уравнения ах2 + bх + с = 0, заданного коэффициентами a, b и с (предполагается, что а ≠ 0 и что дискриминант уравнения неотрицателен).
№ 29.Найти площадь треугольника, две стороны которого равны а и b, а угол между этими сторонами равен g.
№ 30.Три сопротивления R1 ,R2, R3 соединены параллельно. Найди​те сопротивление соединения.
Контрольные вопросы

1. Для чего используется указание типа данных величин?

2. Охарактеризуйте целочисленные типы данных: какие они могут принимать значения, в каких операциях могут принимать участие, сколько места занимают в памяти. Какие стандартные функции определены для целых чисел?

3. Какие типы отношений определены над данными вещественного типа?

4. Чем отличаются вещественные числа от целых?

Практическая работа № 3-4
 «Применение условного оператора»

Цель работы: ознакомиться с условным оператором и научиться составлять программы с ветвлением.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Условный оператор используется для последующего выполнения или невыполнения некоторого оператора или группы операторов в зависимости от условия.

Если предлагаемое условие истинно, то вложенный оператор или блок кода выполняется. Альтернативная ветвь, которая может присутствовать (а может и нет), выполнится, если условие ложно.

Для того, чтобы переменной max присвоилось наибольшее из значений переменных x1 и x2, то необходимо сравнить значения x1 и x2 и в зависимости от результата сравнения выполнить либо оператор max: = x1, либо max: = x2. Действия такого рода задаются условным оператором:

if B then P1 else P2,

где В – условие, P1 и P2 – операторы, if – если, then – то, else – иначе. Если В соблюдается, то выполняется P1, иначе выполняется P2.

В качестве условий используются отношения. Отношения представляют собой записи равенств и неравенств. Примеры отношений: a = b; d ≠ 0; sqr (b) – 4 * a * c > 0.

В общем случае отношение – это два выражения, разделенные одним из знаков =, <, >, ≠, ≤, ≥ (<>, >=, <=)

Пример: Написать программу нахождения наибольшего значения из двух заданных целых чисел.

VAR x1, x2, max: INTEGER;

BEGIN

 WRITE ('x1, x2');

 READ (x1, x2);

 IF x1>x2 THEN max: = a1

 ELSE max: = x2;

 WRITE (max);

 END.

Оператор, расположенный после ELSE, может быть любым оператором; оператор, расположенный между THEN ELSE не может быть условным.

Задания для практического занятия:

1. Найти значение переменной c:

If a>b then c: = (a+b)/2

Else

If a<b then c: = a*a + b*b

Else c: = a-b;
	
	B1
	B2
	B3
	B4
	B5
	B6

	a
	5
	2
	3
	6
	1
	5

	b
	3
	3
	3
	2
	4
	5

	c
	
	
	
	
	
	

2. Разработать программу нахождения следующего значения согласно варианту и реализовать ее в программной среде:
№ 1 Даны три действительные числа. Возвести в квадрат те из них, значения которых неотрицательны, и в четвертую сте​пень — отрицательные.
№ 2 Даны две точки A(x1 ,у1) и B(х2, y2). Составить алгоритм, оп​ределяющий, которая из точек находится ближе к началу координат.
№ 3 Даны два угла треугольника (в градусах). Определить, существует ли такой треугольник. Если да, то будет ли он прямоугольным.
№ 4 Даны действительные числа х и у, не равные друг другу. Меньшее из этих двух чисел заменить половиной их суммы, а большее — их удвоенным произведением.
№ 5 На плоскости XOY задана своими координатами точка А. Указать, где она расположена: на какой оси или в каком коор​динатном углу.
№ 6 Даны целые числа т, п. Если числа не равны, то заменить каждое из них одним и тем же числом, равным большему из исходных, а если равны, то заменить числа нулями.
№ 7 Дано трехзначное число N. Проверить, будет ли сумма его цифр четным числом.
№ 8 Определить, равен ли квадрат заданного трехзначного числа кубу суммы цифр этого числа.

№ 9 Определить, является ли целое число N четным двузначным числом.

№ 10 Определить, является ли треугольник со сторонами а, b, с рав​носторонним.

 №11 Определить, является ли треугольник со сторонами а, b, с рав​нобедренным.
 № 12 Определить, имеется ли среди чисел а, b, с хотя бы одна пара взаимно противоположных чисел.

 № 13 Подсчитать количество отрицательных среди чисел а, b, с.
 № 14 Подсчитать количество положительных среди чисел а, b, с.
 № 15 Подсчитать количество целых чисел среди чисел а, b, с.

 № 16 Определить, делителем каких чисел а, b, с является число k.

№ 17 Услуги телефонной сети оплачиваются по следующему правилу: за разговоры до А минут в месяц оплачиваются В р., а разговоры сверх установленной нормы оплачиваются из расчета С р. в минуту. Написать программу, вычисляющую плату за пользование телефоном для введенного времени разговоров за месяц.

 № 18 Даны три стороны одного и три стороны другого треугольни​ка. Определить, будут ли эти треугольники равновеликими, т.е. имеют ли они равные площади.
№ 19 Программа-льстец. На экране появляется вопрос «Кто ты: мальчик или девочка? Введи Д иди М». В зависимости от ответа на экране должен появиться текст «Мне нравятся девочки!» или «Мне нравятся мальчики!».
№ 20 Грузовой автомобиль выехал из одного города в другой со скоростью υ1 км/ч. Через t ч в этом же направлении выехал легковой автомобиль со скоростью υ2 км/ч. Составить программу, определяющую, догонит ли легковой автомобиль грузовой через t1 ч после своего выезда.
№ 21 Перераспределить значения переменных х и у так, чтобы в х оказалось большее из этих значений, а в у — меньшее.
№ 22 Определить правильность даты, введенной с клавиатуры (число — от 1 до 31, месяц — от 1 до 12). Если введены некор​ректные данные, то сообщить об этом.

№ 23 Составить программу, определяющую результат гадания на ромашке — «любит — не любит», взяв за исходное данное ко​личество лепестков п.
№ 24 Написать программу нахождения суммы большего и меньше​го из 3 чисел.
№ 25 Написать программу, распознающую по длинам сторон среди всех треугольников прямоугольные. Если таковых нет, то вы​числить величину угла С.
 № 26 Найти max{min(a, b), min(c, d)}.
№ 27 Даны три числа а, b, с. Определить, какое из них равно d. Если ни одно не равно d, то найти max(d-a, d-b, d-c).
№ 28 Даны четыре точки А1(х1,у1), А2(х2,у2), аз(х3,у3), А4(х4,,у4). Определить, будут ли они вершинами параллелограмма.
№ 29 Даны три точки А(х1 ,y,), В(х2, у2)и С(х3, у3). Определить, будут ли они расположены на одной прямой.
№ 30 Даны действительные числа а, b, с. Удвоить эти числа, если а<b<с, и заменить их абсолютными значениями, если это не так.
№ 31 На оси ОХ расположены три точки а, b, с. Определить, какая из точек b, с расположена ближе к а.

 № 32 Даны три положительных числа а, b, с. Проверить, могут ли они быть длинами сторон треугольника. Если да, то вычислить площадь этого треугольника.
 № 33 Дан круг радиуса R. Определить, поместится ли правильный треугольник со стороной а в этом круге.
 № 34 Написать программу, которая по заданным трем числам опре​деляет, является ли сумма каких-либо двух из них положи​тельной.
 № 35 Известно, что из четырех чисел а1 а2, а3 и а4 одно отлично от трех других, равных между собой; присвоить номер этого числа переменной n.

Контрольные вопросы:

1. Что такое условный оператор?

2. Назначение, формы записи и порядок выполнения оператора условия if?

3. Как выглядит блок-схема программы с ветвлением?

Практическая работа № 5-6
 «Применение оператора цикла с предусловием»

Цель работы: ознакомиться с оператором цикла с предусловием и научиться составлять программы с его использованием.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы

Оператор цикла while do.
Циклы с условием используются в тех случаях, когда число повторений тела цикла заранее неизвестно. Такой цикл продолжает работу пока выполняется (или не выполняется) условие окончания цикла.
Если условие окончания цикла проверяется перед выполнением тела цикла, то такие циклические структуры называют циклами с предусловием.
[image: image2.png]TNornyekoe
BhipakeHue

Teno nukia

Выполняется этот оператор цикла так: проверяется условие, и если оно удовлетворяется, то выполняется оператор, а затем вновь проверяется условие и т.д. Как только на очередном шаге окажется, что условие не удовлетворяется, то выполнение оператора цикла прекращается.

Формат оператора цикла с предусловием:
while (<лог.выражение>) do
begin
<тело цикла>

уnd;
Логическое выражение проверяется до того, как начнет выполняться тело цикла.

Цикл продолжает свою работу, пока значение выражения остается истинным.

while (x ≤ 0) do x :=х+ 1,
если значения х положительно, то выполнение оператора цикла прекратится после первой же проверки условия x ≤ 0, и значение переменной х не измениться. Если же значение х не положительно, то к этому значению будет добавляться по единице до тех пор, пока значение не станет положительным.

Пример:

Пусть даны числа a, b (a > 1) и надо получить все члены бесконечной последовательности a, a2, a3, … меньше числа b.

var a, b, c : real;

begin

 read (a, b); c := a;

 while c < b do

 begin

writeln (c); c := c * a

 end
 end.

Если a ≥ b, то не будет выведено ни одного члена последовательности a, a2, a3.

Задания для практического занятия:
1. Найти значение переменной c:

While a<b do

begin

 с:= c+a*b;

 а:= a+1;

еnd;
	
	B1
	B2
	B3
	B4
	B5
	B6

	a
	2
	1
	3
	-1
	0
	-2

	b
	4
	3
	5
	2
	3
	1

	c
	3
	2
	1
	5
	4
	3

	c
	
	
	
	
	
	

2. Разработать программу, выполняющую следующие действия и реализовать ее в программной среде:

№ 1 Дано натуральное число N. Вычислить:

 S = EQ \F(1;sin1) + EQ \F(1;sin1 + sin2) + … + EQ \F(1;sin1 + sin2 + … +sinN)
№ 2 Дано натуральное число N. Вычислить произведение первых N сомножителей

 P = EQ \F(2;3) (EQ \F(4;5) (EQ \F(6;7) (… (EQ \F(2N;2N + 1)

№ 3 Дано натуральное число N. Вычислить:
 EQ \F(cos1;sin1) (EQ \F(cos1 + cos2;sin1 + sin2) (… (EQ \F(cos1 + cos2 + … + cosN;sin1 + sin2 + … + sinN)
№ 4 Дано действительное число х. Вычислить:
 x - EQ \F(x3;3!) + EQ \F(x5;5!) - EQ \F(x7;7!) + EQ \F(x9;9!) - EQ \F(x11;11!) + EQ \F(x13;13!)
№ 5 Даны натуральное n, действительное х. Вычислить:

 S = sinx + sinsinx + … sinsin…sinx

 n раз
№ 6 Даны действительное число а, натуральное число n. Вычис​лить:

 Р = а (а + 1) х … х (а + n- 1)
№7Дандействительное число а, натуральное число n. Вычис​лить:
 Р = а (а - n)(а – 2n) х ... х (а - n2).
№ 8 Даны действительное число а, натуральное число n. Вычис​лить:

 S = EQ \F(1;a) + EQ \F(1;a2) + EQ \F(1;a4) + … + EQ \F(1;a2n-2)
№ 9 Даны натуральное n действительное х. Вычислить:
 sinx + sinx2 +...+ sinn.
№ 10 Дано натуральное n. Вычислить:
 S - 1 • 2 +2 - 3 • 4 + ... + n •(n + 1) х ... х 2n.
№ 11 Дано натуральное число n. Вычислить:

 P = (1 - EQ \F(1;22))(1 - EQ \F(1;33))*…*(1 - EQ \F(1;nn)), где n>2
№ 12 Дано натуральное число n. Вычислить:
P = (1 - EQ \F(1;2))(1 - EQ \F(1;4))(1 - EQ \F(1;6))*…*(1 - EQ \F(1;2n))
№ 13 Дано натуральное число n. Вычислить:
 S= 1! + 2! + 3! + ... + n! (n>1).
№ 14 Дано натуральное число n. Вычислить:
 S = EQ \F(1;32) + EQ \F(1;52) + EQ \F(1;72) + … + EQ \F(1;(2n + 1)2)
№ 15 Дано натуральное n. Вычислить: у - 1 • 3 • 5 х ... х (2n - 1).
№ 16 Дано натуральное n. Вычислить: у - 2 • 4 • 6 x ... х (2n).
№ 17 Вычислить: у = cosx + cosx2 + cosx3 + ... + cosxn.
№ 18 Вычислить: у = sinl + sinl,l + sinl,2 + ... sin2.

№ 19 Дано натуральное число N. Вычислить:

 S = 1 - EQ \F(1;2) + EQ \F(1;4) - EQ \F(1;8) + … + (-1)n * EQ \F(1;2n)
№ 20 Дано натуральное число N. Вычислить:
 S = EQ \F(1;sin1) + EQ \F(1;sin1 + sin2) +…+ EQ \F(1;sin1 + sin2 + … +sinN)
№ 21 Дано натуральное число N. Вычислить произведение первых N сомножителей

 P = EQ \F(2;3) (EQ \F(4;5) (EQ \F(6;7) (… (EQ \F(2N;2N + 1)
 ,
№ 22 Дано натуральное число N. Вычислить:
 EQ \F(cos1;sin1) (EQ \F(cos1 + cos2;sin1 + sin2) (… (EQ \F(cos1 + cos2 + … + cosN;sin1 + sin2 + … + sinN)
№ 23 Дано действительное число х. Вычислить:
 x - EQ \F(x3;3!) + EQ \F(x5;5!) - EQ \F(x7;7!) + EQ \F(x9;9!) - EQ \F(x11;11!) + EQ \F(x13;13!)
№ 24 Даны натуральное n, действительное х. Вычислить:
 S = sinx + sinsinx + … sinsin…sinx

 n раз
№ 25 Даны действительное число а, натуральное число n. Вычис​лить:
 S = EQ \F(1;a) + EQ \F(1;a2) + EQ \F(1;a4) + … + EQ \F(1;a2n-2)
№ 26 Дано действительное х. Вычислить: EQ \F((x - 1)(x - 3)(x - 7)…(x - 63);(x - 2)(x - 4)(x - 8)…(x - 64))
№ 27 Вычислить: (1 + sin0,l)(l + sin0,2) х ... х (1 + sinl0).

Контрольные вопросы:

1. Каково назначение операторов повтора (цикла)?

2. Какие требования предъявляются к выражениям, управляющим повторениями?
3. В каких случаях используется оператор цикла с предусловием?

4. Когда осуществляется выход из цикла с предусловием?

Практическая работа № 7-8
 «Применение оператора цикла с постусловием»

Цель работы: ознакомиться с оператором цикла с постусловием и научиться составлять программы с его использованием.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы

Оператор цикла repeat until.
Циклы с условием используются в тех случаях, когда число повторений тела цикла заранее неизвестно. Такой цикл продолжает работу пока выполняется (или не выполняется) условие окончания цикла.

Если проверка условия происходит после выполнения тела цикла, то используется цикл с постусловием («Выполнять до тех пор, пока»).
В данном случае тело цикла выполняется до проверки условия.
[image: image3.png]Teno nukIa

TNornyekoe
BbipakeHue

Формат оператора цикла с постусловием:

repeat
 <тело цикла>
 until

 (<лог.выражение>);

Логическое выражение проверяется после того, как выполнится тело цикла.

Цикл продолжает свою работу, пока значение выражения остается ложным.
Пример:
Вычислить сумму: 1 + 1/2+ 1/3 + … + 1/50 с использованием оператора цикла repeat …until.

var S : real; N : integer;

begin

S := 0; N := 1;

repeat S := S + 1 / N; N := N + 1;

until N > 50;

write (S)

end.

Результат S = 4,499…

Задания для практического занятия:
1.Найти значение переменной с:
Repeat
 b:= b+1;

 а:= a-b;

 с:= a+b;

Until a≤0;
	
	B1
	B2
	B3
	B4
	В5
	B6

	A
	10
	9
	8
	7
	6
	5

	B
	5
	4
	3
	3
	2
	1

	С
	
	
	
	
	
	

2. Разработать программу, выполняющую следующие действия и реализовать ее в программной среде:

№ 1 Дано натуральное число N. Вычислить:

 S = EQ \F(1;sin1) + EQ \F(1;sin1 + sin2) + … + EQ \F(1;sin1 + sin2 + … +sinN)
№ 2 Дано натуральное число N. Вычислить произведение первых N сомножителей

 P = EQ \F(2;3) (EQ \F(4;5) (EQ \F(6;7) (… (EQ \F(2N;2N + 1)

№ 3 Дано натуральное число N. Вычислить:
 EQ \F(cos1;sin1) (EQ \F(cos1 + cos2;sin1 + sin2) (… (EQ \F(cos1 + cos2 + … + cosN;sin1 + sin2 + … + sinN)
№ 4 Дано действительное число х. Вычислить:
 x - EQ \F(x3;3!) + EQ \F(x5;5!) - EQ \F(x7;7!) + EQ \F(x9;9!) - EQ \F(x11;11!) + EQ \F(x13;13!)
№ 5 Даны натуральное n, действительное х. Вычислить:

 S = sinx + sinsinx + … sinsin…sinx

 n раз
№ 6 Даны действительное число а, натуральное число n. Вычис​лить:

 Р = а (а + 1) х … х (а + n- 1)
№7Дандействительное число а, натуральное число n. Вычис​лить:
Р = а (а - n)(а – 2n) х ... х (а - n2).
№ 8 Даны действительное число а, натуральное число n. Вычис​лить:

 S = EQ \F(1;a) + EQ \F(1;a2) + EQ \F(1;a4) + … + EQ \F(1;a2n-2)
№ 9 Даны натуральное n действительное х. Вычислить:
 sinx + sinx2 +...+ sinn.
№ 10 Дано натуральное n. Вычислить:
 S - 1 • 2 +2 - 3 • 4 + ... + n •(n + 1) х ... х 2n.
№ 11 Дано натуральное число n. Вычислить:

 P = (1 - EQ \F(1;22))(1 - EQ \F(1;33))*…*(1 - EQ \F(1;nn)), где n>2
№ 12 Дано натуральное число n. Вычислить:
P = (1 - EQ \F(1;2))(1 - EQ \F(1;4))(1 - EQ \F(1;6))*…*(1 - EQ \F(1;2n))
№ 13 Дано натуральное число n. Вычислить:
 S= 1! + 2! + 3! + ... + n! (n>1).
№ 14 Дано натуральное число n. Вычислить:
 S = EQ \F(1;32) + EQ \F(1;52) + EQ \F(1;72) + … + EQ \F(1;(2n + 1)2)
№ 15 Дано натуральное n. Вычислить: у - 1 • 3 • 5 х ... х (2n - 1).
№ 16 Дано натуральное n. Вычислить: у - 2 • 4 • 6 x ... х (2n).
№ 17 Вычислить: у = cosx + cosx2 + cosx3 + ... + cosxn.
№ 18 Вычислить: у = sinl + sinl,l + sinl,2 + ... sin2.

№ 19 Дано натуральное число N. Вычислить:

 S = 1 - EQ \F(1;2) + EQ \F(1;4) - EQ \F(1;8) + … + (-1)n * EQ \F(1;2n)
№ 20 Дано натуральное число N. Вычислить:
 S = EQ \F(1;sin1) + EQ \F(1;sin1 + sin2) +…+ EQ \F(1;sin1 + sin2 + … +sinN)
№ 21 Дано натуральное число N. Вычислить произведение первых N сомножителей

 P = EQ \F(2;3) (EQ \F(4;5) (EQ \F(6;7) (… (EQ \F(2N;2N + 1)
 ,
№ 22 Дано натуральное число N. Вычислить:
 EQ \F(cos1;sin1) (EQ \F(cos1 + cos2;sin1 + sin2) (… (EQ \F(cos1 + cos2 + … + cosN;sin1 + sin2 + … + sinN)
№ 23 Дано действительное число х. Вычислить:
 x - EQ \F(x3;3!) + EQ \F(x5;5!) - EQ \F(x7;7!) + EQ \F(x9;9!) - EQ \F(x11;11!) + EQ \F(x13;13!)
№ 24 Даны натуральное n, действительное х. Вычислить:
 S = sinx + sinsinx + … sinsin…sinx

 n раз
№ 25 Даны действительное число а, натуральное число n. Вычис​лить:
 S = EQ \F(1;a) + EQ \F(1;a2) + EQ \F(1;a4) + … + EQ \F(1;a2n-2)
№ 26 Дано действительное х. Вычислить: EQ \F((x - 1)(x - 3)(x - 7)…(x - 63);(x - 2)(x - 4)(x - 8)…(x - 64))
№ 27 Вычислить: (1 + sin0,l)(l + sin0,2) х ... х (1 + sinl0).

Контрольные вопросы:

1. Каково назначение операторов повтора (цикла)?

2. Какие требования предъявляются к выражениям, управляющим повторениями?

3. В чём отличия операторов цикла с предусловием и постусловием?

4. Когда осуществляется выход из цикла с постусловием?

Лабораторная работа № 9-10

 «Применение оператора цикла с параметром»

Цель работы: ознакомиться с оператором цикла с параметром и научиться составлять программы с его использованием.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Оператор цикла for.

Цикл for используют, как правило, когда число повторений известно заранее, т. е. в задачах, связанных с перебором.
For i := число 1 to число 2 do оператор;
i – переменная типа integer, которая называется параметром цикла. Такой оператор цикла

заставляет i принимать значения число 1, число 1 + 1, число 1 + 2, …, число 2. Для каждого из

значения выполняется оператор. Если число 1 > число 2, оператор не будет выполнен не разу.

S = 0;

for i := 1 to n do S := S + i * i * i

После выполнения S = 13 + 23 + … + n3.

Пример:
Программа вычисления n!.

Применяется, когда число шагов легко определить по исходным данным.

var n, i, p : integer;

begin read (n); p := 1;

for i := 1 to n do p := p * i;

write (n'! = ', p)

end.

Задания для практического занятия:
1. Найти значение переменной с:
For i:=1 to n do
с:= c+a*b;
	
	B1
	B2
	B3
	B4
	B5
	B6

	а
	2
	3
	2
	5
	2
	1

	b
	4
	2
	3
	2
	5
	2

	C
	3
	4
	4
	1
	1
	5

	n
	3
	4
	3
	4
	3
	4

	с
	
	
	
	
	
	

Задание 2. Разработать программу, выполняющую следующие действия и реализовать ее в программной среде:

№ 1 Дано натуральное число N. Вычислить:

 S = 1 - EQ \F(1;2) + EQ \F(1;4) - EQ \F(1;8) + … + (-1)n * EQ \F(1;2n)
№ 2 Дано натуральное число N. Вычислить:
 S = EQ \F(1;sin1) + EQ \F(1;sin1 + sin2) +…+ EQ \F(1;sin1 + sin2 + … +sinN)
№ 3 Дано натуральное число N. Вычислить произведение первых N сомножителей

 P = EQ \F(2;3) (EQ \F(4;5) (EQ \F(6;7) (… (EQ \F(2N;2N + 1)
 ,
№ 4 Дано натуральное число N. Вычислить:
 EQ \F(cos1;sin1) (EQ \F(cos1 + cos2;sin1 + sin2) (… (EQ \F(cos1 + cos2 + … + cosN;sin1 + sin2 + … + sinN)
№ 5 Дано действительное число х. Вычислить:
 x - EQ \F(x3;3!) + EQ \F(x5;5!) - EQ \F(x7;7!) + EQ \F(x9;9!) - EQ \F(x11;11!) + EQ \F(x13;13!)
№ 6 Даны натуральное n, действительное х. Вычислить:
 S = sinx + sinsinx + … sinsin…sinx

 n раз
№ 7 Даны действительное число а, натуральное число n. Вычис​лить:
 S = EQ \F(1;a) + EQ \F(1;a2) + EQ \F(1;a4) + … + EQ \F(1;a2n-2)
№ 8 Дано действительное х. Вычислить: EQ \F((x - 1)(x - 3)(x - 7)…(x - 63);(x - 2)(x - 4)(x - 8)…(x - 64))
№ 9 Вычислить: (1 + sin0,l)(l + sin0,2) х ... х (1 + sinl0).

№ 10 Дано натуральное число N. Вычислить:

 S = EQ \F(1;sin1) + EQ \F(1;sin1 + sin2) + … + EQ \F(1;sin1 + sin2 + … +sinN)
№ 11 Дано натуральное число N. Вычислить произведение первых N сомножителей

 P = EQ \F(2;3) (EQ \F(4;5) (EQ \F(6;7) (… (EQ \F(2N;2N + 1)

№ 12 Дано натуральное число N. Вычислить:
 EQ \F(cos1;sin1) (EQ \F(cos1 + cos2;sin1 + sin2) (… (EQ \F(cos1 + cos2 + … + cosN;sin1 + sin2 + … + sinN)
№ 13 Дано действительное число х. Вычислить:
 x - EQ \F(x3;3!) + EQ \F(x5;5!) - EQ \F(x7;7!) + EQ \F(x9;9!) - EQ \F(x11;11!) + EQ \F(x13;13!)
№ 14 Даны натуральное n, действительное х. Вычислить:

 S = sinx + sinsinx + … sinsin…sinx

 n раз
№ 15 Даны действительное число а, натуральное число n. Вычис​лить:

 Р = а (а + 1) х … х (а + n- 1)
№ 16 Даны действительное число а, натуральное число n. Вычис​лить:
 Р = а (а - n)(а – 2n) х ... х (а - n2).
№ 17 Даны действительное число а, натуральное число n. Вычис​лить:

 S = EQ \F(1;a) + EQ \F(1;a2) + EQ \F(1;a4) + … + EQ \F(1;a2n-2)
№ 18 Даны натуральное n действительное х. Вычислить:
 sinx + sinx2 +...+ sinn.
№ 19 Дано натуральное n. Вычислить:
 S - 1 • 2 +2 - 3 • 4 + ... + n •(n + 1) х ... х 2n.
№ 20 Дано натуральное число n. Вычислить:

 P = (1 - EQ \F(1;22))(1 - EQ \F(1;33))*…*(1 - EQ \F(1;nn)), где n>2
№ 21 Дано натуральное число n. Вычислить:
P = (1 - EQ \F(1;2))(1 - EQ \F(1;4))(1 - EQ \F(1;6))*…*(1 - EQ \F(1;2n))
№ 22 Дано натуральное число n. Вычислить:
 S= 1! + 2! + 3! + ... + n! (n>1).
№ 23 Дано натуральное число n. Вычислить:
 S = EQ \F(1;32) + EQ \F(1;52) + EQ \F(1;72) + … + EQ \F(1;(2n + 1)2)
№ 24 Дано натуральное n. Вычислить: у - 1 • 3 • 5 х ... х (2n - 1).
№ 25 Дано натуральное n. Вычислить: у - 2 • 4 • 6 x ... х (2n).
№ 26 Вычислить: у = cosx + cosx2 + cosx3 + ... + cosxn.
№ 27 Вычислить: у = sinl + sinl,l + sinl,2 + ... sin2.

Контрольные вопросы:

1. В каких случаях предпочтительнее использовать для организации циклов оператор повтора for? Что записывается в заголовке этого оператора?

2. Каким образом в операторе цикла for описывается направление изменения значения параметра цикла?

3. Какие ограничения налагаются на использование управляющей переменной (параметра цикла) в цикле for?

4. Какие операторы цикла вы знаете?
Лабораторная работа № 11-12
 «Программирование массивов»

Цель работы: ознакомиться с основными приемами действий над массивами.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования
Краткие теоретические и учебно-методические материалы по теме практической работы
Массив – это конечная упорядоченная совокупность однотипных данных, которая связана с упорядоченным набором целых чисел, называемых индексами. Массив характеризуется именем, размерностью и размером. Количество индексов определяет размерность массива: одномерный (вектор), двумерный (таблица) и т. д. Размер массива – это количество его элементов.

Для доступа к элементу одномерного массива следует указать имя массива и в квадратных скобках индекс (номер элемента в массиве). Для доступа к элементу двумерного массива через запятую указываются два индекса (номер строки и номер столбца). Индексами

могут быть – константы, переменные или выражения целого типа.

Для работы с элементами массива, как правило, используются операторы цикла, чаще всего цикл с параметром.
 При описании массива необходимо указать общее число входящих в массив эле​ментов и тип этих элементов. Например:
Var А : array [1..10] of Real; b : array [0..50] of Char; с : array [-3..4] of Boolean;
 При описании массива используются зарезервированные слова ARRAY и OF (массив, из). За словом ARRAY в квадратных скобках указывается тип-диапазон, с помощью которого компилятор определяет общее число элементов массива. Тип-диапазон задается левой и правой границами изменения индекса массива, так что массив А состоит из 10 элементов, массив В - из 51, а массив С - из 8 элементов. За словом ОF указывается тип элементов, образующих массив.

Пример. В массиве хранятся данные о выпавших осадках за последние 20 лет. Найти среднее значение и отклонения от среднего для каждого года.

Var А : array [1..20] of Real; I: integer; S: real;

 Begin
 {‘Ввод массива”}

 for I:=1 to 20 do read(A[I]);

 {‘Нахождение среднего значения”}

 for I:=1 to 20 do S:=S+A[I];

 S:=S/20;

 {‘Нахождение отклонения от среднего ”}

 for I:=1 to 20 do write(abs(A[I]-S));

 end.
Задания для практического занятия:
1. Найти значение переменной S:

For i:=1 to n do
Begin

A [i]:=i;

S:=S+A [i];

End;

	
	B1
	B2
	B3
	B4
	B5
	B6

	n
	5
	3
	4
	5
	8
	6

	i
	0
	5
	10
	5
	0
	1

	S
	
	
	
	
	
	

Задание 2. Разработать программу, выполняющую следующие действия и реализовать ее в программной среде:
№1. Дан массив из 100 целых чисел. Написать программу нахождения суммы положительных элементов массива.

 №2. Дан массив из 100 целых чисел. Написать программу нахождения произведения положительных элементов массива.

№3. Дан массив из 100 целых чисел. Написать программу нахождения суммы четных элементов массива.

№4. Дан массив из 100 целых чисел. Написать программу нахождения произведения четных элементов массива.

№5. Дан массив из 100 целых чисел. Написать программу нахождения абсолютного значения суммы отрицательных элементов массива.

№6. Дан массив из 100 целых чисел. Написать программу нахождения произведения отрицательных элементов массива

№7. Дан массив из 100 целых чисел. Написать программу нахождения количества положительных элементов массива.

№8. Дан массив из 100 целых чисел. Написать программу нахождения количества отрицательных элементов массива.

№9. Дан массив из 100 целых чисел. Написать программу нахождения количества четных элементов массива.

№10. Дан массив из 100 целых чисел. Написать программу замены всех отрицательных элементов средним значением массива.

№11. Дан массив из 100 целых чисел. Написать программу нахождения суммы нечетных элементов массива.

№12. Дан массив из 100 целых чисел. Написать программу нахождения произведения нечетных элементов массива.

№13. Дан массив из 100 целых чисел. Поменять местами наибольший и наименьший элементы массива.

№14. Дан массив из 100 целых чисел. Написать программу замены всех положительных элементов средним значением массива.

№15. Дан массив из 100 целых чисел. Написать программу нахождения суммы элементов массива с четными индексами.

№16. Дан массив из 100 целых чисел. Написать программу нахождения произведения элементов массива с четными индексами.

№17. Дан массив из 100 целых чисел. Написать программу нахождения суммы элементов массива с нечетными индексами.

№18. Дан массив из 100 целых чисел. Написать программу нахождения произведения элементов массива с нечетными индексами.

№19. Дан массив из 100 целых чисел. Написать программу нахождения среднего значения среди положительных элементов массива

№20. Дан массив из 100 целых чисел. Написать программу замены всех отрицательных элементов значением их произведения.

№21. Дан массив из 100 целых чисел. Заменить первые К элементов на противоположные по знаку.
№22. Дан массив из 100 целых чисел. Заменить максимальный по модулю отрицательный элемент нулем.

№23. Дан массив из 100 целых чисел. Заменить минимальный по модулю положительный элемент нулем.

№24. Дан массив из 100 целых чисел. Умножить все элементы, кратные трем, на третий элемент массива.

№25. Дан массив из 100 целых чисел. Заменить элементы между минимальным и максимальным нулем.

Контрольные вопросы:

1. Что такое массив?

2. Как определить местоположение элемента в массиве?

3. Что такое индекс? Каким требованиям он должен удовлетворять?

4. Особенности расположения элементов массива в памяти ЭВМ. Особенности расположения в памяти элементов многомерных массивов.

5. Каким образом задаётся описание массива, что в нём указывается?

Лабораторная работа № 13-14
 «Программирование матриц»

Цель работы: ознакомиться с основными приемами действий над двумерными массивами (матрицами).

Образовательные результаты, заявленные в ФГОС:

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Объектами обработки некоторых алгоритмов нередко являются прямоугольные таблицы данных, называемые иначе двумерными массивами. Примером такого массива может быть таблица Пифагора – квадратная таблица А из 10 строк и 10 столбцов, каждый элемент которой определяется формулой аij = i*j (i,j=1,2,…,10). Положение элемента аij в таблице задаётся двойным индексом: первый (i) обозначает номер строки элемента, а второй (j) – номер его столбца, на пересечении которых стоит элемент (нумерация строк производится сверху вниз, а столбцов –

слева на право). К двумерным массивам относятся также таблицы соревнований, коэффициенты систем уравнений, шахматные доски, таблицы распределения температур некоторого тела и т.д. Реже на практике встречаются массивы, содержащие три и более измерений.

Объявление двумерных массивов пишется аналогично одномерным, но для прямоугольной таблицы надо указать границы изменения индексов как по горизонтали, так и по вертикали. Например, объявим таблицу А, содержащую целые числа и состоящую из 9 строк и 10 столбцов. Вот это объявление:

Var А: array [1..9, 1..10] of integer;

Пример: Дана квадратная матрица размерностью 10х10, состоящая из целых чисел. Найти произведение элементов главной диагонали матрицы.

Var A: array[1..10,1..10] of integer; i,j,P: integer;

 Begin

 {‘Ввод матрицы’}

 for i:=1 to 10 do

 for j:=1 to 10 do read(A[i,j]);

 {‘ Нахождение произведения элементов главной диагонали матрицы’ }

 P:=1;

 for i:=1 to 10 do

 for j:=1 to 10 do

 if i=j then P:=P*A[i,j];

 write(P);

 end.
Задания для практического занятия:
Разработать программу, выполняющую следующие действия и реализовать ее в программной среде:
№1. В целочисленной матрице размерностью 10*10 найти наибольший элемент и номер строки, в которой он находится.

№2. В целочисленной матрице размерностью 10*10 найти наименьший элемент и номер столбца, в которой он находится.

№3. В целочисленной матрице размерностью 10*10 найти номер столбца содержащего максимальный элемент матрицы.

№4. В целочисленной матрице размерностью 10*10 найти номер строки, содержащей минимальный элемент матрицы.

№5. В целочисленной матрице размерностью 10*10 найти номер строки, содержащей наибольшее среднее значение.

№6. В целочисленной матрице размерностью 10*10 найти номер столбца, содержащего наибольшее среднее значение.

№7. В целочисленной матрице размерностью 10*10 найти номер строки, содержащей наименьшее среднее значение.

№8. В целочисленной матрице размерностью 10*10 найти номер столбца, содержащего наименьшее среднее значение.

№9. В целочисленной матрице размерностью 10*10 найти разность между наибольшим и наименьшим элементами матрицы.

№10. В целочисленной матрице размерностью 10*10 поменять местами наибольшие и наименьшие элементы матрицы.

№11. В целочисленной матрице размерностью 10*10 найти номер строки, содержащей наибольшее произведение её элементов.

№12. В целочисленной матрице размерностью 10*10 найти номер строки, содержащей наименьшее произведение её элементов.

№13. В целочисленной матрице размерностью 10*10 найти номер столбца, содержащего наибольшее произведение элементов.

№14. В целочисленной матрице размерностью 10*10 найти номер столбца, содержащего наибольшее произведение его элементов.

№15. В целочисленной матрице размерностью 10*10 найти сумму элементов четных строк.

№16. В целочисленной матрице размерностью 10*10 найти произведение элементов четных строк.

№17. В целочисленной матрице размерностью 10*10 найти сумму элементов нечетных строк.

№18. В целочисленной матрице размерностью 10*10 найти произведение элементов нечетных строк.

№19. В целочисленной матрице размерностью 10*10 найти произведение элементов нечетных столбцов.

№20. В целочисленной матрице размерностью 10*10 найти сумму элементов нечетных столбцов.

№21. В целочисленной матрице размерностью 10*10 найти сумму элементов четных столбцов.

№22. В целочисленной матрице размерностью 10*10 найти произведение элементов четных столбцов.

№23. В целочисленной матрице размерностью 10*10 найти сумму положительных элементов четных строк.

№24. В целочисленной матрице размерностью 10*10 найти сумму положительных элементов нечетных строк.

№25. В целочисленной матрице размерностью 10*10 найти сумму отрицательных элементов четных строк.

№26. В целочисленной матрице размерностью 10*10 найти сумму отрицательных элементов нечетных строк.

№27. В целочисленной матрице размерностью 10*10 найти произведение положительных элементов четных столбцов.

№28. В целочисленной матрице размерностью 10*10 найти произведение отрицательных элементов нечетных столбцов.

№29. В целочисленной матрице размерностью 10*10 определить, каких элементов: положительных или отрицательных больше.

№30. В целочисленной матрице размерностью 10*10 определить, каких элементов: четных или нечетных больше.

Контрольные вопросы:

 1.Что такое матрица?

 2.Как определить местоположение элемента в матрице?

 3.Что такое индекс? Каким требованиям он должен удовлетворять?

 4.Особенности расположения в памяти элементов многомерных массивов.

 5.Каким образом задаётся описание матрицы, что в нём указывается?
Практическая работа № 15-16
«Программирование строк»

Цель работы: ознакомится с основными приемами действий со строками.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Строка представляет собой особую форму одномерного массива символов, которая имеет существенное отличие. Массив символов имеет фиксированную длину (количество элементов), которая определяется при описании. Строка имеет две разновидности длины:

· Общая длина строки, которая характеризует размер памяти, выделяемый строке при описании;

· Текущая длина строки (всегда меньше или равна общей длине), которая показывает количество смысловых символов строки в каждый конкретный момент времени.

Строка – упорядоченная последовательность символов. Количество символов в строке называется ее длиной. Длина строки может лежать в диапазоне от 0 до 255. Каждый символ строковой величины занимает 1 байт памяти и имеет числовой код в соответствии с таблицей кодов ASCII.

Для описания строковых переменных в Паскале существует предопределенный тип string.

В общем виде описание строковой переменной будет выглядеть следующим образом:

Пример описания строковой переменной:

Var <имя_переменной>: string[<максимальная длина строки>]

Например:
Var s1: string[10];
s2: string[20];
smax: string;

В приведенном выше описании строковая переменная s1 может содержать не более 10 символов, переменная s2 – не более 20 символов. Если же при описании строки ее максимальная длина не указывается, то по умолчанию принимается максимально допустимая длина, равная 255 символам (переменная smax)..

Символы в строке упорядочены, каждый из них имеет порядковый номер, начиная с первого. Имеется возможность обратиться к любому элементу строки, указав его номер, так же как это делается в одномерных массивах. Например, s1[2] позволяет обратиться ко второму символу в строке s1, при этом мы можем поменять это значение, выполнив оператор присваивания s1[2]:= ‘r’, можем вывести на экран это значение или присвоить его другой переменной.

Действия со строками

Операция слияния (сцепления, конкатенации) применяется для соединения нескольких строк в одну, обозначается знаком «+». Операция слияния применима для любых строковых выражений, как констант, так и переменных.

Операции отношения позволяют сравнивать строки на отношение равенства (=), неравенства (<>), больше (>), меньше (<), больше или равно (>=), меньше или равно (<=). В результате сравнения двух строк получается логическое значение (true или false). Сравнение строк производится слева направо посимвольно до первого несовпадающего символа, большей считается та строка, в которой первый несовпадающий символ имеет больший код в таблице кодировки. Если строки имеют различную длину, но в общей части символы совпадают, считается, что короткая строка меньше. Строки равны, если они имеют равную длину и соответствующие символы совпадают.

Пример действий со строками:

‘строка’<>’строки’ (верно, т.к. не совпадают последние символы);

‘Abc’<’abc’ (отношение истинно, т.к. код символа ‘A’ равен 65 в десятичной системе счисления, а код символа ‘a’ – 97);

‘год’>’век’ (отношение верно, т.к. буква ‘г’ в алфавите стоит после буквы ‘в’, а, следовательно, имеет больший код).

Стандартные функции для работы со строками

Copy (S, poz, n) выделяет из строки S, начиная с позиции poz, подстроку из n символов. Здесь S – любое строковое выражение, poz, n – целочисленные выражения.

	Значение S
	Выражение
	Результат

	‘строка символов’
	Copy(S,3,3)
	рок

Concat (s1, s2,...,sn) выполняет слияние строк s1, s2,...,sn в одну строку.

	Выражение
	Результат

	Concat(‘язык’, ‘’, ‘Pascal’)
	‘язык Pascal’

Length(S) определяет текущую длину строкового выражения S. Результат – значение целого типа.

	Значение S
	Выражение
	Результат

	‘(а+в)*с’
	Length(s)
	7

Pos(subS, S) определяет позицию первого вхождения подстроки subS в строку S. Результат – целое число, равное номеру позиции, где находится первый символ искомой подстроки. Если вхождение подстроки не обнаружено, то результат функции будет равен 0.

	Значение S
	Выражение
	Результат

	‘предложение’
	Pos(‘е’, S)
	3

	‘предложение’
	Pos(‘a’, S)
	0

Стандартные процедуры для работы со строками

Delete (S, poz, n) удаляет из строки S, начиная с позиции poz, подстроку из n символов. Здесь S – строковая переменная (в данном случае нельзя записать никакое другое строковое выражение, кроме имени строковой переменной, т.к. только с именем переменной связана область памяти, куда будет помещен результат выполнения процедуры); poz, n – любые целочисленные выражения.

	Исходное значение S
	Оператор процедуры
	Конечное зн-е S

	‘abcdefg’
	Delete(s, 2, 3)
	‘aefg’

Insert(subS, S, poz) вставляет в строку S, начиная с позиции poz, подстроку subS. Здесь subS – любое строковое выражение, S – строковая переменная (именно ей будет присвоен результат выполнения процедуры), poz – целочисленное выражение.

	Исходное значение S
	Оператор процедуры
	Конечное зн-е S

	‘рис. 2’
	Insert(‘№’, S, 6)
	‘рис. №2’

Процедуры преобразования типов

Str(x, S) преобразует число x в строковый формат. Здесь x – любое числовое выражение, S – строковая переменная. В процедуре есть возможность задавать формат числа x. Например, str(x: 8: 3, S), где 8 – общее число знаков в числе x, а 3 – число знаков после запятой.

	Оператор процедуры
	Значение S

	Str (sin(1):6:4, S)
	‘0.0175’

	Str (3456, S)
	‘3456’

Val(S, x, kod) преобразует строку символов S в число x. Здесь S – строковое выражение, x – числовая переменная (именно туда будет помещен результат), kod – целочисленная переменная (типа integer), которая равна номеру позиции в строке S, начиная с которой произошла ошибка преобразования, если преобразование прошло без ошибок, то переменная kod равна 0.

	Тип X
	Оператор процедуры
	Значение X
	Значение kod

	Real
	Val(’12.34’, x, kod)
	12.34
	0

	Integer
	Val(’12.34’, x, kod)
	12
	3

Примеры:
1.Написать программу, определяющую размер строки в битах.

Var i: integer; a: string;

 Begin

 Writeln(‘Vvedite stroku a’); Readln(a);

 Writeln (length(a)*8);

End.

2.Дана строка символов, состоящая только из цифр. Определить сумму всех цифр этой строки.

Var a: string; i, s, n, k: integer;

 Begin

 writeln(‘Vvedite stroku a’); readln(a);

 for i:=1 to length(a) do

 begin

 Val (a[i], n, k);

 If k=0 then s:=s+n;

 writeln(s);

 end;

 end.

3.Написать программу, которая выдает по названию недели его порядковый номер.
Const n=7;

A: array [1..n] of string= (‘Monday’, ‘Tuesday’, ‘Wednesday’, ‘Thursday’, ‘Friday’, ‘Saturday’, ‘Sunday’);

B: array [1..n] of integer=(1,2,3,4,5,6,7);

Var c: string; i: integer;

 Begin

 Writeln(‘Vvedite stroku c’); Readln(c);

 for i:=1 to 7 do

 if a[i]=c then writeln(b[i]);

 end.

Задания для практического занятия:
Разработать программу, выполняющую следующие действия и реализовать в среде программирования:

1. Дана строка символов, состоящая только из цифр. Определить, сколько раз среди них встречается цифра 5.

2. Написать программу, которая выдает по названию месяца название соответствующего времени года.

3. Определить сумму кодов символов, составляющих заданное слово.

4. Написать программу, подсчитывающую количество слогов по введенному с клавиатуры слову.

5. Оценки школьника за четверть заданы в виде строки символов. Подсчитать количество троек, четверок, пятёрок.

6. Написать программу, подсчитывающую количество знаков препинания в заданном предложении.

7. Оценки школьника за четверть заданы в виде строки символов. Подсчитать средний балл школьника.

8. Дана строка символов, состоящая из букв и цифр. Определить сумму всех цифр и количество прописных латинских букв.

9. Написать программу, подсчитывающую количество слов в заданном предложении. Слова разделены одним или несколькими пробелами.

10. В строке символов имеются буквы А и В. Определите, какая буква встретится раньше, если просматривать символы слева направо.

11. Поменяйте местами первый и последний символ заданной строки.

12. Вырежьте два первых символа и поместить их в конец заданной символьной строки.

13. Найдите позицию первой и последней буквы К, входящих в символьную строку.

14. Напишите программу, выбирающую из заданной строки все слова, длина которых равна длине первого слова. Слова разделены одним пробелом.

15. Даны две символьные строки А и В. Определите, в какой из них больше символов и на сколько.

16. Переменные D$, M$, G$ содержат числа, обозначающие текущие день, месяц, год. Сформировать из них строку DE$, содержащую дату в европейском стандарте дд.мм.гг.

17. Дана строка символов, состоящая только из цифр. Определить, сколько из них превышает 5.

18. В данной строке символов заменить все слоги NAD заменить на слоги POR.

19. В данной символьной строке содержится четное число символов. Поменяйте местами символы каждой пары.

20. Удалите из символьной строки первые четыре буквы латинского алфавита.

Контрольные вопросы:

1. Как описывается строка?
2. Какие действия над строками могут выполняться?

3. Какие функции могут выполняться над строками?
Практическая работа № 17-18
 «Программирование множеств»

Цель работы: ознакомится с основными приемами действий с множествами.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Множество – это совокупность объектов, рассматриваемая как одно целое.

Множественный тип данных Паскаля напоминает перечислимый тип данных. Вместе с тем множественный тип данных – набор элементов не организованных в порядке следования.

В математике множественный тип данных – любая совокупность элементов произвольной природы. Операции, которые производятся над множествами, по существу заключаются во включении и исключении элементов из множества.

Понятие множества в языке программирования значительно уже математического понятия.

Под множественным типом понимается конечная совокупность элементов, принадлежащих некоторому базовому типу данных.

В качестве базовых типов могут использоваться:

· перечислимые типы;

· символьный;

· байтовый;

· диапазонные на основе вышеперечисленных.

Такие ограничения связаны с формой представления множественного типа данных в Паскале и могут быть сведены к тому, чтобы функция ord() для используемого базового типа лежала в пределах от 0 до 255.

После того, как базовый тип задан, совокупность значений соответствующего множественного типа данных определяется автоматически. В нее входят все возможные множества, являющиеся произвольными комбинациями значений базового типа. Все эти множества являются отдельными значениями определенного множественного типа данных.

Описание множественного типа данных

Type <имя_типа>= set of <базовый_тип>

Пример множественного типа данных
Type symbol= set of char; {описан множественный тип symol из букв}
Var letter, digits, sign: symbol; {описаны три переменные множественного типа}

Для того чтобы придать переменной множественного типа значение, используют конструктор множества – перечисление элементов множества через запятую в квадратных скобках. Например,

sign:= [‘+’, ‘-‘];

Конструктор множества может содержать диапазон значений базового типа. Тогда во множества включаются все элементы диапазона. Например,

digits:= [‘0’ .. ‘9’];
letter:= [‘a’ .. ‘z’];

Обе формы конструирования множеств могут сочетаться. Например,

letter:= [‘a’ .. ‘z’, ‘A’ .. ‘Z’];

Конструктор вида [] обозначает пустые множества.

В программе можно использовать множественны тип как константы, в этом случае их определяют следующим способом:

Const YesOrNo= [‘Y’, ‘y’, ‘N’, ‘n’];

Можно множественный тип определить как типизированную константу:

Const digits: set of char= [‘0’ .. ‘9’];

При описании множественного тип как констант допускается использование знака “+” (слияние множеств). Например,

Const Yes= [‘Y’, ‘y’]; No= [‘N’, ‘n’];
YesOrNo= Yes+ No;
Операции над множественными типами Паскаля

С множественными типами можно выполнять действия объединения, исключения и пересечения.

Объединение множественных типов содержит элементы, которые принадлежат хотя бы одному множеству, при этом каждый элемент входит в объединение только один раз. Операция объединения множеств обозначается знаком ‘+’.

Пример множественных типов
Type symbol= set of char;
Var small, capital, latin: symbol;
………………
small:= [‘a’ .. ‘z’];
capital:= [‘A’ .. ‘Z’];
latin:= small + capital; {образованы множества латинских букв путем объединения множеств small и capital}

Возможно объединять множественные типы и отдельные элементы. Например,

small:= [‘c’ .. ‘z’];
small:= small + [‘a’] +[‘b’];

Исключение (разность, дополенение) определяется как разность множественных типов, в котором из уменьшаемого исключаются элементы, входящие в вычитаемое. Если в вычитаемом есть элементы, отсутствующие в уменьшаемом, то они никак не влияют на результат. Операция исключения обозначается знаком ‘-‘.

Пример исключения множественных типов Паскаля

letter:= [‘a’ .. ‘z’]; {множества букв латинского алфавита}
glasn:= [‘a’, ‘e’, ‘o’, ‘u’, ‘i’, ‘y’]; {множества гласных букв}
soglasn:= letter-glasn; {образовано множества согласных букв путем исключения из множества всех букв множества гласных букв}

Пресечение множественных типов – множества, содержащие элементы, одновременно входящие в оба множества. Операция пересечения множеств обозначается знаком ‘*’.

Пример пересечения множественных типов

Type chisla= set of byte;
Var z,x,y: chisla;
………..
x:= [0..150];
y:= [100..255];
z:= x*y {получено множества чисел из диапазона 100..150 в результате пересечения двух множеств}

Операции отношения множественных типов

Наряду с рассмотренными выше операциями, над значениями множественного типа определены и некоторые операции отношения. Операндами операций над множественными значениями в общем случае являются множественные выражения. Среди операций отношения над значениями множественного типа особое место занимает специальная операция проверки вхождения элемента во множества, обозначаемая служебным словом in. В отличие от остальных операций отношения, в которых значения обоих операндов относятся к одному и тому же множественному типу значений, в операции in первый операнд должен принадлежать базовому типу, а второй – множественному типу значений, построенному на основе этого базового типа. Результатом операции отношения, как обычно, является логическое значение (true или false).

‘a’ in glasn значение операции true;
‘o’ in soglasn значение операции false;

Операция сравнения на равенство множественных типов Паскаля. Множества считаются равными (эквивалентными), если все элементы одного множества присутствуют в другом и наоборот. Для операции сравнения на равенство или неравенство используются символы ‘=’ и ‘<>’.

A:= [2,1,3];
D:= [1,3,2];

Тогда операция A=D имеет значение true, а операция A<>D имеет значение false.

Проверка включения. Одно множество считается включенным в другое (одно множество является подмножеством другого), если все его элементы содержатся во втором множестве. Обратное утверждение может быть и несправедливым. Операции проверки включения обозначаются ‘<=’ и ‘>=’.

letter >= glasn;
soglan <= letter;

Следует отметить, что применение операций < и > над операндами множественного типа недопустимо.

Задания для практического занятия:
A-множество букв имени студента

B-множество букв фамилии студента
C-множество букв отчества студента
Написать программы нахождения объединения А и С, пересечения А и В, разности В и С, симметричной разности С и А.

Контрольные вопросы:

1. Что такое множество? Каким требованиям должны удовлетворять все элементы множества?

2. Как задается описание множественного типа?

3. Что называется объединением множеств?
4. Что называется пересечением множеств?
5. Что называется разностью множеств?

Практическая работа № 19-20
 «Программирование записей»

Цель работы: ознакомится с основными приемами действий с комбинированными типами.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования
Краткие теоретические и учебно-методические материалы по теме практической работы
Понятие комбинированного типа (для чего нужен?).

Рассмотрим следующую ситуацию: необходимо хранить сведенья о группе учащихся. Нас будет интересовать: Ф. И. О., год рождения, номер группы, пол и т.д.

Каждая из характеристик имеет свой тип:

Ф. И. О. – строки, - string (array [] of char);

год рождения – число – integer;

номер группы – строка – string;

пол – логически (boolean), мужской – true, женский – false.

Ни один из рассмотренных ранее типов не позволяет манипулировать с такой

совокупностью данных. В частности, такие структуры необходимы при создании базы данных.

В Паскале реализован такой тип данных, который позволяет работать с такой

совокупностью, он называется комбинированным типом, значения которого называются

записями.

Записи состоят из полей. Каждое поле имеет уникальное имя и тип.

Пример: Создать комбинированный тип student, полями которого являются: фамилия, имя,

номер группы, год рождения, пол студента.

Type STUDENT = record

Name: string [10];

Full name: string [15];

Gr_Num: string [3];

Year: integer;

Sex: char;

End;

Задания для практического занятия:
1.
Вариант 1.

Создать комбинированный тип LIBRARY (библиотека), полями которого являются: фамилия писателя, его инициалы, название книги, год ее издания.

Вариант 2.

Создать комбинированный тип SESSION (сессия), полями которого являются: фамилия студента, его инициалы, название дисциплин, оценки за экзамены.

Вариант 3.

Создать комбинированный тип VIDEO, полями которого являются: название фильма, год его выхода, фамилия режиссера.

Вариант 4.

Создать комбинированный тип PERSONAL, полями которого являются: фамилия

сотрудника, его инициалы, название должности, номер отдела, размер оклада.

Вариант 5.

Создать комбинированный тип HOSPITAL (больница), полями которого являются:

фамилия больного, его инициалы, его возраст, диагноз, фамилия лечащего врача.

Вариант 6.

Создать комбинированный тип SUPERMARKET, полями которого являются: наименование товара, дата его поставки, цена, наименование поставщика.

 Задания для практического занятия:
1. Создать комбинированный тип, ввести данные и вывести на экран:
Вариант 1.

LIBRARY (библиотека), полями которого являются: фамилия писателя, его инициалы, название книги, год ее издания.

Вариант 2.

SESSION (сессия), полями которого являются: фамилия студента, его инициалы, название дисциплин, оценки за экзамены.

Вариант 3.

VIDEO, полями которого являются: название фильма, год его выхода, фамилия режиссера.

Вариант 4.

PERSONAL, полями которого являются: фамилия

сотрудника, его инициалы, название должности, номер отдела, размер оклада.

Вариант 5.

HOSPITAL (больница), полями которого являются:

фамилия больного, его инициалы, его возраст, диагноз, фамилия лечащего врача.

Вариант 6.

SUPERMARKET, полями которого являются: наименование товара, дата его поставки, цена, наименование поставщика.

2. Разработать программу, выполняющую следующие действия и реализовать в среде программирования:
№1. Найти количество и вывести на экран фамилии, имена и номера групп студентов, подлежащих отчислению по итогам сессии, состоящей из трех экзаменов.

№2. Вывести на экран названия экзаменационных дисциплин и средний балл за экзамен по каждой из дисциплин.

№3. Найти количество и вывести на экран фамилии, имена и номера групп студентов, имеющих средний балл > 4.2 по итогам сессии, состоящей из трех экзаменов.

 №4. Найти и вывести на экран фамилию преподавателя и название дисциплины, по которой больше всего хороших и отличных оценок за экзамен.

№5. Найти и вывести на экран средний балл по итогам сессии по каждой группе.

 №6. Найти и вывести на экран фамилию преподавателя и название дисциплины, по которой больше всего неудовлетворительных оценок за экзамен.

№7. Найти среди сотрудников предприятия количество мужчин призывного возраста и вывести на экран их фамилии, имена и должности.

№8. Найти среди сотрудников предприятия количество мужчин и женщин пенсионного возраста и вывести на экран их фамилии, имена и должности (сначала мужчин, затем женщин).

№9. Найти среди сотрудников предприятия фамилию, имя, отчество и должность самого старшего.

№10. Найти среди сотрудников предприятия фамилию, имя, отчество и должность самого младшего.

№11. Найти среди сотрудников предприятия количество человек, проработавших на этом предприятии более 10 лет и вывести на экран их фамилии, имена и должности.

№12. Найти среди сотрудников предприятия количество ветеранов, проработавших на этом предприятии более 20 лет и вывести на экран их фамилии, имена и должности.

№13. Найти и вывести на экран фамилии, имена и номера групп студентов, имеющих наибольший средний балл по итогам сессии.

№14. Найти и вывести на экран фамилии, имена и номера групп студентов, имеющих наименьший средний балл по итогам сессии.

№15. Вывести на экран данные о днях рождения студентов по месяцам.

№16. Среди студентов группы найти имя и фамилию самого старшего.

№17. Среди студентов группы найти имя и фамилию самого младшего.

№18. Вывести на экран фамилии, имена, отчества сотрудников предприятия, имеющих детей младше 15 лет. Найти их количество.

№19. Вывести на экран фамилии, имена, отчества и должности незамужних женщин в возрасте старше 18 лет. Найти их количество.

№20. Вывести на экран фамилии, имена, отчества и должности холостых мужчин в возрасте старше 18 лет. Найти их количество.

№21. Вывести на экран фамилии, имена, номера групп студентов, проживающих в Уфе. Найти их количество.

№22. Вывести на экран фамилии, имена, номера групп студентов, имеющих право по возрасту принять участие в выборах. Найти их количество.

№23. Вывести на экран фамилии, имена, номера групп иногородних студентов (не проживающих в Уфе). Найти их количество.

№24. Вывести на экран список старост групп колледжа: указать фамилию, имя, номер группы.

№25. Найти процент мужчин и процент женщин, работающих на предприятии. Сделать вывод о том, кого больше.

№26. Найти количество и вывести на экран фамилии, имена и номера групп студентов, имеющих задолженность хотя бы по одной дисциплине.

№27. Среди студентов колледжа найти процент студентов, имеющих «хорошие» и «отличные» оценки по итогам сессии.

№28. Среди студентов колледжа найти процент студентов мужского пола призывного возраста.

№29. Среди студентов колледжа найти процент иногородних и «уфимских» студентов. Сделать выводы о том, кого больше.
 №30. Среди сотрудников предприятия найти фамилию, имя, должность
 сотрудника, имеющего максимальный стаж.
Контрольные вопросы:

1. Почему запись называют комбинированным типом данных?

2. Как определяется тип записи? Что называется полем записи?

3. Чем определяется объем памяти, требуемый для размещения записи?

4. Что такое составное имя поля записи? Из каких частей оно состоит и как записывается.

Практическая работа № 21-22
 «Программирование подпрограмм»

Цель работы: научиться составлять программы с использованием подпрограмм.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Подпрограмма — программа, реализующая вспомогательный алгоритм. Основная программа — программа, реализующая основной алгоритм решения задачи и содержащая в себе обращения к подпрограммам. В Паскале существуют два типа подпрограмм: подпрограммы-функции и подпрограммы-процедуры. Используемые в программе нестандартные подпрограммы должны быть описаны в разделе описания подпрограмм.

Подпрограмма-функция имеет следующий формат описания:

 Function <имя функции>(<параметры-аргументы>):<тип функции> ;

 <блок>;

Тип функции может быть только простым типом (в Турбо-Паскале исключением из этого правила является тип string). Блок содержит локальные для функции описания и раздел

операторов. Обращение к функции является операндом в выражении.

Подпрограмма-процедура имеет следующий формат описания:

 Procedure <имя процедуры> (<параметры>); <блок>;

В качестве результата процедура может возвращать в вызывающую программу множество простых или структурированных величин или не возвращать никаких значений. Среди параметров процедуры указываются как аргументы, так и результаты. Параметры-результаты должны быть обязательно параметрами-переменными (описанными после служебного слова Var). Обращение к процедуре — отдельный оператор.

Обмен данными между вызывающей программой и подпрограммой может происходить не только через параметры, но и через глобальные переменные.

Пример:
Вычислить разность двух простых дробей:

 EQ \F(a;b) - EQ \F(c;d) (а, b, c, d – натуральные числа). Результат получить в виде простой несократимой дроби е/f.

 Решение. Следует вычислить числитель и знаменатель по правилам вычитания дробей, и сократить их на наибольший общий делитель (НОД). Вычисление НОД двух чисел оформим

в виде подпрограммы, используя известный в математике алгоритм Евклида.

 Составим два варианта программы решения этой задачи: с подпрограммой-функцией и подпрограммой-процедурой.

 Решение 1

 Program subl;

 Var А,В,С,D,G,E,F: integer;

 Function Nod (М,N: integer):integer; {Описание функции }

 begin { вычисления НОД

 while M<>N do { двух натуральных чисел по }

 if М>N then М: = М-N {алгоритму Евклида }

 else N: = N-М;

 Nod := М
 еnd;

 begin write (' Введите числители и знаменатели дробей:') ;

 rеаdln (А,В,С,D);

 Е:=А*D-В*С; {основная программа вычитания }

 F:=B*D; {дробей и сокращения результата }

 If Е=0 then writeln (Е) {Обращение к функции }

 Else begin {производится дважды }

 Е:=Е div Nod (Abs (Е) , F) ;

 F:=F div Nod (Abs (Е) ,F);

 writeln ('Ответ: ' , Е ,' /', F)

 end
 еnd.

 Решение 2

 Program Sub2;

 Var А, В, С, D, G, F, E: integer;

 Procedure Nod(М, N: integer; Vаг К : integer);

 begin while M<>N do { процедура вычисления НОД }

 if М>N then М: = М-N {двух натуральных чисел }

 else N: = N-М; {по алгоритму Евклида }

 К:=M

end;

begin write (' Введите числители и знаменатели дробей:') ;

 rеаdln (А,В,С,D); {Основная программа }

 Е:=А*D-В*С; {Обращение к процедуре }

 F:=B*D; { происходит один раз }

 If Е=0 then writeln (Е) { Результат получается }

 else begin { в переменной G }

 Nod (abs (Е) , F, G) ;

 Е:=Е div G;

 F:=F div G;

 writeln ('Ответ: ' , Е ,' /', F)

 end
 еnd.

Задания для практического занятия:
 № 1 Треугольник задан координатами своих вершин. Составить программу вычисления его площади.

№2 Составить программу нахождения наибольшего общего делителя и наименьшего общего кратного двух натуральных чисел

 (НОК(А, В) = EQ \F(А*В;НОД(А,В))
 № 3 Составить программу нахождения наибольшего общего делителя четырех натуральных чисел.

 № 4 Составить программу нахождения наименьшего общего кратного трех натуральных чисел.

 № 5 Написать программу нахождения суммы большего и меньшего из 3 чисел.

 № 6 Вычислить площадь правильного шестиугольника со стороной а, используя подпрограмму вычисления площади треугольника.

 № 7 На плоскости заданы своими координатами га точек Составить программу, определяющую между какими из пар точек самое большое расстояние.

Указание. Координаты точек занести в массив.

№ 8 Проверить, являются ли данные три числа взаимно простыми.

 № 9 Написать программу вычисления суммы факториалов всех нечетных чисел от 1 до 9.

 № 10 Даны две дроби EQ \F(А;В) и EQ \F(С;D) (А, В, С, D — натуральные числа). Составить программу:

· деления дроби на дробь;

· умножения дроби на дробь;

· сложения этих дробей.

 Ответ должен быть несократимой дробью.

 № 11 На плоскости заданы своими координатами л точек. Создать матрицу, элементами которой являются расстояние между каждой парой точек.

 № 12 Даны числа X, Y, Z, Т — длины сторон четырехугольника. Вычислить его площадь, если угол между сторонами длиной Х и Y — прямой.

 № 13 Сформировать массив X(N), N-й член которого определяется формулой Х(N)= EQ \F(1;N)
 № 14 Составить программу вычисления суммы факториалов всех четных чисел от m до n.

№ 15 Заменить отрицательные элементы линейного массива их модулями, не пользуясь стандартной функцией вычисления модуля. Подсчитать количество произведенных замен.

№ 16 Дан массив А(N). Сформировать массив В(М), элементами которого являются большие из двух рядом стоящих в массиве А чисел. (Например, массив А состоит из элементов 1, 3, 5, -2, 0, 4, 0. Элементами массива В будут 3, 5, 4.)

 № 17 Дан массив А(N) (N - четное). Сформировать массив В(М), элементами которого являются средние арифметические соседних пар рядом стоящих в массиве А чисел. (Например, массив А состоит из элементов 1, 3, 5, -2, 0, 4, 0, 3. Элементами массива В будут 2; 1,5; 2; 1,5.)

 № 18 Дано простое число. Составить функцию, которая будет находить следующее за ним простое число.

 № 19 Составить функцию для нахождения наименьшего нечетного натурального делителя k (k≠1) любого заданного натурального числа n.

 № 20 Дано натуральное число N. Составить программу формирования массива, элементами которого являются цифры числа N.

 №21 Составить программу, определяющую, в каком из данных двух чисел больше цифр.

 № 22 Заменить данное натуральное число на число, которое получается из исходного записью его цифр в обратном порядке (например, дано число 156, нужно получить 651).

 № 23 Даны натуральные числа К и N. Составить программу формирования массива А, элементами которого являются числа, сумма цифр которых равна К и которые не больше N.

 № 24 Даны три квадратных матрицы А, В, С n-го порядка. Вывести на печать ту из них, норма которой наименьшая. Нормой матрицы считать максимум из абсолютных величин ее элементов.

№ 25 Два натуральных числа называются «дружественными», если каждое из них равно сумме другого (например, числа 220 и 284). Найти все пары «дружественных чисел», которые не больше данного числа N.

№ 26 Два простых числа называются «близнецами», если они отличаются друг от друга на 2 (например, 41 и 43). Напечатать все пары «близнецов» из отрезка [n, 2n], где n - заданное натуральное число больше 2.

№ 27 Написать программу вычисления суммы EQ \F(p;q) = 1 - EQ \F(1;2) + EQ \F(1;3) - ... + EQ \F((-1)n+1;n)
 для заданного числа n. Дробь EQ \F(p;q) должна быть несократимой {р, q - натуральные)

№ 28 Написать программу вычисления суммы 1 + EQ \F(1;2) + EQ \F(1;3) + ... + EQ \F(1;n) для заданного числа n.

Результат представить в виде несократимой дроби EQ \F(p;q) (р, q - натуральные).

№ 29 Натуральное число, в записи которого л цифр, называется числом Амстронга, если сумма его цифр, возведенная в степень n, равна самому числу. Найти все эти числа от 1 до k.

 № 30 Написать программу, которая находит и выводит на печать все четырехзначные числа вида abcd, для которых выполняется: а, b, с, d - разные цифры; б) ab - cd = а + b + с + d.

Контрольные вопросы:

1. . Что понимают под структурным программированием? Зачем оно применяется?

2. В чем заключается метод нисходящего программирования?

3. Что называется подпрограммой?

4. В чем состоит сходство и различие подпрограмм-процедур и подпрограмм-функций в языке Турбо Паскаль?

5. В чем различие между стандартными и определенными пользователем подпрограммами?

Практическая работа № 23-24
«Работа с файлами»
Цель работы: научиться составлять программы с использованием файлов.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Файл – это набор данных, который хранится на внешнем запоминающем устройстве (например на жестком диске). Файл имеет имя и расширение. Расширение позволяет идентифицировать, какие данные и в каком формате хранятся в файле.

Под работой с файлами подразумевается:

- cоздание файлов;
- удаление файлов;
- чтение данных;
- запись данных;
- изменение параметров файла (имя, расширение…);
- другое.

В большинстве случаев файлы состоят из текстовых строк, или записей. Для описания файла используется сочетание file of:

 Для доступа к файлу описывается специальная файловая переменная и обозначается как F, если файл состоит из записей, то описывается ещё переменная для доступа к полям записи R.

 type

<имя типа> = <тип компонентов>;

 var

<F>: file of <имя типа>;

<R>: <имя типа>;

Каждому файлу в языке ставится в соответствии файловая переменная определенного типа, поэтому для работы с файлом надо установить данное соответствие. Для этого используется процедура Assign (var F; Name: string); F – переменная любого типа.

 Способы открытия файла:

 Reset(var F: file); - открывает существующий файл;

 Rewrite(var F: file); - создает и открывает новый файл.

 Для нетипизированных файлов добавляется параметр RecSize типа Word, который устанавливает длину записи для функций обмена с файлом:

 Reset(var F: file; RecSize: word);

 Закрытие файла: Close (var F);

 Переименование неоткрытого файла: Rename (var F; NewName: string);

 Удаление неоткрытого файла: Erase (var F);

Типы файлов:

Текстовый файл – последовательность символов, разбитую на строки длиной от 0 до 256 символов.
 Описание var F: text; {F – файловая переменная}

Процедуры:

 Append(var F: text); открывает уже существующий файл и ставит указатель на конец файла;

 Readln – то же, что и Read, и дополнительно – чтение маркера конца строки и переход к новой строке; Readln(var F: text; V1 [,V2,…Vn]; V1…Vn – переменные разных типов.

 Writeln – запись всех величин с установкой маркера конца строки в файл;

 Writeln(var F: text; V1 [,V2,…Vn]; V1…Vn – переменные разных типов.

Функции:

 Eoln(var F: text) возвращает булевское значение True, если текущая файловая позиция находится на маркере конца строки или вызов Eof(F) возвратил значение Truе. Во всех других случаях значение функции будет False.

 Eof(var F:text) возвращает булевское значение True, если указатель конца файла находится сразу за последним компонентом, и False – в противном случае.

Типизированные файлы – файлы строго определенного типа. Применяются для создания баз данных.

 type

 FileRec=record

 …

 end;

 var

 F: file of FileRec

Нетипизированные файлы – эти файлы не имеют определенного типа (UntypedFile: File;)
 Для таких файлов самым важным параметром служит длина записи в байтах. Открытие нетипизированного файла с длиной записи в 1 байт можно выполнить следующим образом: Rewrite(UntypedFile, 1); или Reset(UntypedFile, 1);

 Для более быстрого ввода-вывода: BlockRead(var F: file ; var Buf ; Count : word
 BlockWrite(var F: file ; var Buf ; Count : word

Buf – любая переменная, используемая для накопления информации из файла F.

Count – число считываемых блоков.

Пример: Дан файл f, компоненты которого являются действительными числами. Найти сумму компонент файла.

Var f: file of real; i, n: integer; s, m: real; a: string;

 Begin

 a:= ‘назв.файла.txt’;

{связываем переменную f с внешним файлом и открываем файл для записи}

 assign(f,a); rewrite(f);

 randomize;

 write(‘Vvedite n’); readln(n);

 for i:=1 to n do

 begin

{получаем случайные числа, выводим их на экран и записываем их в файл}

 m:=random(45);

 Write(m:5:2,’ ‘);

 Write(f,m);

 end;

{закрываем файл}

 Close(f); Writeln;

{связываем переменную f с внешним файлом и открываем файл для чтения}

 Assign(f,a); reset(f);

 S:=0;

{пока не достигнут конец файла, считываем поочередно числа из файла, выводим их на печать и находим сумму элементов}

 While not eof(f) do

 Begin

 Read(f,m); Write(m:5:2,’ ‘);

 S:=S+m;

 End;

{закрываем файл, выводим результаты на экран}
 Close(f);

 Write(s:5:2,’ ‘);

 End.

Задания для практического занятия:
1. Дан файл f, компоненты которого являются действительными числами. Найти произведение компонент файла.
2. Дан файл f, компоненты которого являются действительными числами. Найти наименьшее из значений компонент с четными номерами.

3. Дан символьный файл f. Записать в файл Н с сохранением порядка следования те символы файла F, которым в этом файле предшествует буква “a”.
4. Дан файл f, компоненты которого являются действительными числами. Найти сумму квадратов компонент файла.
5. Дан файл f, компоненты которого являются действительными числами. Найти сумму наименьшего и наибольшего из значений компонент с четными номерами.

6. Дан символьный файл f. Записать в файл Н с сохранением порядка следования те символы файла F, в след за которыми в этом файле идет буква “a”.
7. Дан файл f, компоненты которого являются действительными числами. Найти модуль суммы и квадрат произведения компонент файла.
8. Определить количество слогов в символьном файле.

9. Дан файл f, компоненты которого являются действительными числами. Найти последнюю компоненту файла.

10. Дан файл f, компоненты которого являются действительными числами. Найти среднее арифметическое элементов.

11. Дан файл f, компоненты которого являются действительными числами. Найти разность первой и последней компонент файла.

12. Дан файл f, компоненты которого являются действительными числами. Найти сумму чисел, находящихся в диапазоне от М до N.
13. Дан файл f, компоненты которого являются целыми числами. Найти количество чётных чисел среди компонент.

14. Дан файл f, компоненты которого являются целыми числами. Найти количество удвоенных нечётных чисел среди компонент.

15. Дан файл f, компоненты которого являются целыми числами. Найти количество квадратов нечётных чисел среди компонент.

16. Дан файл f, компоненты которого являются целыми числами. Найти минимальное среди чисел кратных трём.

17. Дан файл f, компоненты которого являются целыми числами. Найти количество простых чисел в файле.

18. Дан файл f, компоненты которого являются целыми числами. Определить каких чисел в файле больше, чётных или нечётных.

19. Дан файл f, компоненты которого являются целыми числами. Найти произведение чисел кратных трём и не превосходящих числа В.

20. Дан символьный файл. Добавить в файл символы Е, N, D.

21. Дан символьный файл. Подсчитать число вхождений в файл сочетаний АВ.

22. Дан символьный файл. Определить, входит ли в файл сочетание abcdef.

Контрольные вопросы:

1. Что такое файл? Для каких целей используются файлы?

2. Каковы требования к именам файлов?

3. Назовите общие и отличительные черты текстовых, типизированных и нетипизированных файлов.

4. Что общего у процедуры Reset и Rewrite и чем они отличаются?

5. Какие отличия существуют в использовании процедуры Reset при открытии различных типов файлов (текстовых, нетипизированных)?

Практическая работа № 25-26
«Программирование рекурсивных алгоритмов»

Цель работы: научиться составлять программы с использованием рекурсии.
Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Понятие рекурсии. В математике рекурсией называется способ описания функций или процессов через самих себя. Пользуясь рекурсией, мы избавляемся от необходимости утомительного последовательного описания конструкции и ограничиваемся выявлением взаимосвязей между различными уровнями этой конструкции.
В последнее время в связи с широким распространением прикладных программ, не связанных с проведением расчетов, бытует взгляд на рекурсию как на интересное, но необязательное украшение системы программирования. Даже в некоторых последних книгах по Турбо Паскалю не находится места для описания рекурсии.

Программирование с использованием рекурсии.
Если процедура или функция в ходе выполнения вызывает саму себя, то мы имеем дело с рекурсией. Такой вызов процедур или функций может возникнуть либо вследствие рекурсивного описания, либо вследствие рекурсивного обращения. Рекурсивное описание предполагает, что в исполняемой части блока процедуры или функции присутствует обращение к ней самой.

Пример 1 Рекурсивное и нерекурсивное вычисление факториала натурального числа n.

PROGRAM Fact (Input,Output); {$N+ $E+} { Рекурсивное вычисление факториала }

var n: Integer;
{ -- }
FUNCTION RecursiveFact (n: Integer): Integer;
BEGIN { Рекурсивное вычисление факториала }

If n=0

then RecursiveFact:=1
else RecursiveFact:=n*RecursiveFact(n-1)
END;
{ -- }
FUNCTION NonRecursiveFact (n: Integer): Integer;
var P: Integer;

BEGIN { Вычисление факториала с использованием вместо рекурсии повторения }

P:=1;
While n>1 do begin P:=n*P; n:=n-1 end;
NonRecursiveFact:=P
END;
{ ---- }
BEGIN
Write ('Введите натуральное число: '); ReadLn (n);
Write ('Результат, вычисленный рекурсивно: '); WriteLn (RecursiveFact(n));
Write ('Результат, вычисленный нерекурсивно: ');

WriteLn (NonRecursiveFact(n))

END.

Пример 2 Рекурсивный и нерекурсивный поиск наибольшего общего делителя двух чисел.

PROGRAM NOD (Input,Output);
var X,Y: Integer;
{ -- }
FUNCTION RecursiveNOD (n,m: Integer): Integer;
BEGIN { Рекурсивное вычисление НОД чисел n и m }

If n=m
then RecursiveNOD:=n
else If n>m
then RecursiveNOD:=RecursiveNOD (n-m,m)
else RecursiveNOD:=RecursiveNOD (n,m-n)
END;
{ -- }
FUNCTION NonRecursiveNOD (n,m: Integer): Integer;
BEGIN { Алгоритм, использующий вместо рекурсии повторение }

While n<>m do
If n>m
then n:=n-m
else m:=m-n;
NonRecursiveNOD:=n
END;
{ ---- }
BEGIN
Write ('Введите два целых числа, отличных от 0: '); Read (X); ReadLn (Y);
Write ('Результат, полученный рекурсивно: ');

WriteLn (RecursiveNOD(Abs(X),Abs(Y)));
Write ('Результат, полученный нерекурсивно: ');

WriteLn (NonRecursiveNOD(Abs(X),Abs(Y)))
END.

Для того чтобы выполнение рекурсивной программы завершалось, необходимо существование в наиболее простых случаях нерекурсивного решения. В противном случае не исключено зацикливание.
Некоторые алгоритмы гораздо проще описать, используя рекурсию, нежели итерацию. Это относится в первую очередь к алгоритмам, работающим с разного рода списковыми структурами.

Использование рекурсивных процедур и функций делает программу в целом более гибкой и наглядной, но не всегда эффективной, так как работает такая программа, как правило, медленнее и требуют больше памяти. Дело в том, что при каждом вызове рекурсивной процедуры или функции отводится память под локальные переменные.
При сравнении итерационных методов решения и методов, использующих рекурсию, часто эффективными оказываются первые. Таким образом, рекурсию следует применять только там, где нет очевидного итерационного решения. Уровень вложенности рекурсий может быть ограничен в конкретных реализациях языка.
Различают прямую и косвенную рекурсию. Функция HighFactor является характерным примером прямой рекурсии. Косвенная рекурсия возникает тогда, когда один блок вызывает второй, а второй, в свою очередь, первый.
 Задания для практического занятия:
1. Написать программу вычисления P по формуле: [image: image7.png]{ (n+4)? ecmn <5

nl, ecnun > 5,

где n - заданное натуральное число.

2. Написать программу вычисления [image: image8.png]G
J (1F kN

, где [image: image9.png]

3. Дано натуральное число n. Найти (2n)! и 2n!. Использовать рекурсивную функцию вычисления факториала.

4. Даны натуральные числа n,m. Найти НОД(n,m). Использовать рекурсивную функцию вычисления НОД, основанную на соотношении НОД (n,m)=НОД (m,r), где r - остаток от деления n на m.

5. Числа Фибоначчи [image: image10.png]UD, ULy U2, .-

определяются следующим образом: [image: image11.png]up=0,u1 =1
Un = Un-1 + Un-2,n = 2,34,

Проверить на нескольких примерах, будет ли [image: image12.png]usk, k=1,2,...

делиться на 5.

6. Даны неотрицательные целые числа n и m. Вычислить функцию Аккермана: [image: image13.png]m+1, ecmn =0
Afnym) =4 Al —1,1), ecman #0,m
Al =1, Alnym— 1), ecmnd,m >

Приведем некоторые тестовые примеры:[image: image14.png]A(L,b) = b+2,A(2,b) = 2° 43, A(3,b) = 2"+ - 3.

7. Описать рекурсивную функцию Stepen(x,n) от вещественного x и натурального n, вычисляющую (через умножение) величину [image: image15.png]

, и использовать ee для вычисления [image: image16.png]2k +
k2

Величину [image: image17.png]

вычислять по формуле: [image: image18.png]

8. Описать рекурсивную функцию C(m,n)[image: image19.png]

 для вычисления биноминального коэффициента по формуле: [image: image20.png]

9. Описать рекурсивную функцию, позволяющую вычислить [image: image21.png]Fy={ "~ 10 ecun > 100
T | F(F(n +4), ecmn < 100

Какие возможные значения принимает эта функция?

10. Описать рекурсивную функцию, позволяющую вычислить [image: image22.png]n-3, ecmun > 23
F(n)= { F(F(n +4)), ecmn < 23

11. Описать рекурсивную функцию Strannost, определенную на множестве положительных целых чисел следующим образом: [image: image23.png]1, ecmun =1
Strannost(n) ={ Strannost(%), ecmn = 2k
Strannost(2L), ecmn = 2k + 1.

12. Написать рекурсивную процедуру, при выполнении которой на экран будет выводиться отрезок натурального ряда чисел.

13. Найти все трехзначные числа, представимые в виде сумм факториалов своих цифр. Использовать рекурсивную функцию вычисления n!.

14. Числа Фибоначчи [image: image24.png]UD, ULy U2, .-

определяются следующим образом: [image: image25.png]up=0,u1 =1
Un = Un-1 + Un-2,n = 2,34,

Написать программу вычисления первого числа Фибоначчи, большего m (m>1), включающую рекурсивную функцию, которая основана на непосредственном использовании соотношения [image: image26.png]Un

15. Определить число, получаемое выписыванием в обратном порядке цифр заданного натурального числа (использовать рекурсивную функцию).

16. Числа Фибоначчи второго порядка [image: image27.png]UD, ULy U2, .-

определяются следующим образом: [image: image28.png]+uncg,n=3,4,5,...

Написать программу вычисления [image: image29.png]

для данного неотрицательного целого n.

17. Установить назначение следующей функции:

FUNCTION SumOfDigits (n: Integer): Integer;

BEGIN
If n=0
then SumOfDigits:=0
else SumOfDigits:=(n MOD 10)+SumOfDigits (n DIV 10)
END;

18. Установить назначение следующей функции:

FUNCTION HiDigit (n: Integer): Integer;
BEGIN
If n<10
then HiDigit:=n
else HiDigit:=HiDigit (n DIV 10)
END;

19. Пусть [image: image30.png]X1+ 6,k =1,2,...

Вычислить для заданного натурального n.

20. Среди первых n+1 элементов последовательности [image: image31.png]X1+ 6,k =1,2,...

найти количество тех элементов, которые принадлежат интервалу (с,d). Предполагается, что [image: image32.png]g #0

.

21. Задана рекуррентная последовательность [image: image33.png]Xt 47 Xeo+bk=12,3,...

Вычислить [image: image34.png]Xn(n > 0)

. Считать [image: image35.png]r#0

.

22. Числа Фибоначчи определяются следующим образом: [image: image36.png]N1 + Nieo, k=3,4,5,..

Найти номер первого числа Фибоначчи, которое больше h.

23. Пусть [image: image37.png]Xe= (1) EILE=1,2,...

Вычислить [image: image38.png]

для заданного натурального k.

24. Найти (в выражении присутствуют ровно n радикалов): [image: image39.png]Ve var v
=2+

25. Вычислить, используя рекурсию [image: image40.png]y1+2 /‘1+3x/1+4v1+

Ответ: 3

26. Вычислить, используя рекурсию [image: image41.png]

где знаки перед корнями периодически повторяются группами по три: "-","+","-".Вывести уравнение, корнем которого является X.
Ответ: [image: image42.png]X =1+2V3sin20°

27. Вычислить, используя рекурсию (результат принадлежит Сринивазу Рамануджану) [image: image43.png]

где знаки перед корнями периодически повторяются группами по три: "-","+","-". Вывести уравнение, корнем которого является X.
Ответ:[image: image44.png]X =1+4sin10°

28. Вычислить, используя рекурсию [image: image45.png][
3 —2V"2a+2\(

-2Vt
24223

где знаки перед корнями периодически повторяются группами по три: "-","+","+".Вывести уравнение, корнем которого является X.
Ответ: [image: image46.png]X =1+4V3sin20°

29. Вычислить, используя рекурсию: [image: image47.png]-
W“W” /
Ve 4/t

Ответ:4

30. Вычислить, используя рекурсию (результат принадлежит Сринивазу Рамануджану): [image: image48.png]i 7 ——
l+(n+l)v/l+(n+2)\(/l+(n+3)v

Ответ:n+2

Контрольные вопросы:

1.Что такое рекурсия?

2.Какими особенностями обладают алгоритмы с использованием рекурсии?
3.Для каких алгоритмов целесообразно использовать рекурсию?
Практическая работа № 27-28
«Определение сложности алгоритмов»

Цель работы: Научиться оценивать временную сложность алгоритмов

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- определять сложность работы алгоритмов

знать:

- понятие алгоритмизации, свойства алгоритмов, общие принципы построения алгоритмов, основные алгоритмические конструкции

Краткие теоретические и учебно-методические материалы по теме практической работы

Традиционно принято оценивать степень сложности алгоритма по объему используемых им основных ресурсов компьютера: процессорного времени и оперативной памяти. В связи с этим вводятся такие понятия, как временная сложность алгоритма и объем-сложность алгоритма.

Параметр временной сложности становится особенно важным для задач, предусматривающих интерактивный режим работы программы, или для задач управления в режиме реального времени. Часто программисту, составляющему программу управления каким-нибудь техническим устройством, приходится искать компромисс между точностью вычислений и временем работы программы. Как правило, повышение точности ведет к увеличению времени.

Объемная сложность программы становится критической, когда объем обрабатываемых данных оказывается на пределе объема оперативной памяти ЭВМ. На современных компьютерах острота этой проблемы снижается благодаря как росту объема ОЗУ, так и эффективному использованию многоуровневой системы запоминающих устройств. Программе оказывается доступной очень большая, практически неограниченная область памяти (виртуальная память). Недостаток основной памяти приводит лишь к некоторому замедлению работы из-за обменов с диском. Используются приемы, позволяющие минимизировать потери времени при таком обмене. Это использование кэш-памяти и аппаратного просмотра команд программы на требуемое число ходов вперед, что позволяет заблаговременно переносить с диска в основную память нужные значения. Исходя из сказанного можно заключить, что минимизация емкостной сложности не является первоочередной задачей. Поэтому в дальнейшем мы будем интересоваться в основном временной сложностью алгоритмов.

Время выполнения программы пропорционально числу исполняемых операций. Разумеется, в размерных единицах времени (секундах) оно зависит еще и от скорости работы процессора (тактовой частоты). Для того чтобы показатель временной сложности алгоритма был инвариантен относительно технических характе​ристик компьютера, его измеряют в относительных единицах. Обычно временная сложность оценивается числом выполняемых операций.

Как правило, временная сложность алгоритма зависит от исход​ных данных. Это может быть зависимость как от величины исход​ных данных, так и от их объема. Если обозначить значение пара​метра временной сложности алгоритма (символом T(, а буквой V обозначить некоторый числовой параметр, характеризующий ис​ходные данные, то временную сложность можно представить как функцию T((V). Выбор параметра V зависит от решаемой задачи или от вида используемого алгоритма для решения данной задачи.

С параметром временной сложности алгоритма обычно связывают две теоретические проблемы. Первая состоит в поиске ответа на вопрос: до какого предела значения временной сложности можно дойти, совершенствуя алгоритм решения задачи? Этот предел зависит от самой задачи и, следовательно, является ее собственной характеристикой.

Вторая проблема связана с классификацией алгоритмов по временной сложности. Функция T((V) обычно растет с ростом V. Как быстро она растет? Существуют алгоритмы с линейной зависимостью T(от V, с квадратичной зависимостью и с зависимостью более высоких степеней. Такие алгоритмы называются полиномиальными. А существуют алгоритмы, сложность которых растет быстрее любого полинома.

Пример 1. Оценить временную сложность алгоритма вычисле​ния факториала целого положительного числа.
Function Factorial(x:Integer): Integer;
Var m, i: Intger;
 Begin m:=l;
For i:=2 To x Do m:=m*i;
Factorial:=m

End;
Подсчитаем общее число операций, выполняемых программой при данном значении х:

· один раз выполняется оператор m:=1;

· тело цикла (в котором две операции: умножение и присваивание) выполняется (х-1) раз;

· один раз выполняется присваивание Factorial:=m.

Если каждую из операций принять за единицу сложности, то временная сложность всего алгоритма будет 1+2(x-1) +1 = 2x. Отсюда понятно, что в качестве параметра V следует принять значе​ние х. Функция временной сложности получилась следующей: T((V)=2V
В этом случае можно сказать, что временная сложность зависит линейно от параметра данных - величины аргумента функции факториал.
Пример 2. Оценить временную сложность алгоритма вычисле​ния скалярного произведения двух векторов A=(a1, a2, …, ak), B=(b1, b2, …, bk).
S:=0;

For i:=l To k Do S:=S+A[i]*B[i];
В этой задаче объем входных данных п=2k. Количество выполняемых операций 1+3k=1+3(n/2). Здесь можно взять V = k= n/2. Зависимости сложности алгоритма от значений элементов векторов A и В нет. Как и в предыдущем примере, здесь можно говорить о линейной зависимости временной сложности от параметра данных.
Задания для практического занятия:

1. Оцените сложность следующих алгоритмов сортировки и сделайте сравнительный анализ:

1. сортировка пузырьковым методом

2. сортировка вставкой

3. сортировка посредством выбора

4. сортировка Хоара

5. сортировка Шелл.

Контрольные вопросы:

1. Как оценивается сложность алгоритма?

2. Что называют временной сложностью алгоритма?

3. Что подразумевают под объемом-сложностью алгоритма?

4. Каким образом оценивается временная сложность алгоритма?

Практическая работа № 29
«Выполнение работ в интегрированной среде разработчика»

Цель работы: Освоить приемы работы в интегрированной среде разработчика Visual Studio.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных
- использовать программы для графического отображения алгоритмов

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Среда Visual Studio визуально реализуется в виде одного окна с несколькими панелями инструментов. Количество, расположение, размери вид панелей может меняться программистом или самой средой разработки в зависимости от текущего режима работы среды или пожеланий программиста, что значительно повышает производительность работы.

При запуске Visual Studio появляется начальная страница со списком последних проектов, а также командами Создать проект и Открыть проект. Нажмите ссылку Создать проект или выберите в меню Файл команду Создать проект, на экране появится диалог для создания нового проекта

[image: image49.png]Cosaars npoexr SR

e rrr—

Yeranosnenmsie wabnons

o e
s L —
R
o E R,

Konconswoe npunoxenne Visual C#

Yeranosnentivie wabnons: nonck L

BubAmoTeka knaccos. Visual C#

Mpunoxcesne o6ospesatens... Visual C#

Mycroi npoexr Visual C#

Windows Forms 20 Visual C#

ol ol] &l

WindowsFormsApplication1.

Слева в списке шаблонов приведены языки программирования, которые поддерживает данная версия Visual Studio: убедитесь, что там выделен раздел Visual C#. В средней части приведены типы проектов, которые можно создать. В наших лабораторных работах будут использоваться два типа проектов:

1 Приложение Windows Forms – данный тип проекта позволяет создать полноценное приложение с окнами и элементами управления (кнопками, полями ввода и пр.) Такой вид приложения наиболее привычен большинству пользователей.

2 Консольное приложение – в этом типе проекта окно представляет собой текстовую консоль, в которую приложение может выводить тексты или ожидать ввода информации пользователя. Консольные приложения часто используются для вычислительных задач, для которых не требуется сложный или красивый пользовательский интерфейс.

Выберите в списке тип проекта «Приложение Windows Forms», в поле «имя» внизу окна введите желаемое имя проекта (например, MyFirstApp) и нажмите кнопку ОК. Через несколько секунд Visual Studio создаст проект и Вы сможете увидеть на экране картинку, подобную представленной на рис.

[image: image50.png]0
Fembainte Seme
Hessaon e
“ 8 oo
Kopreren i
Lgage Do)
Moty e

L

FeNB Nl

= :

® s
B oeater

Oty o
b oouo B
ot Mo ! S Cometer
[ry R —
‘ o
.
= o 4
B tometstom

В главном окне Visual Studio присутствует несколько основных элементов, которые будут помогать нам в работе. Прежде всего, это форма (1) – будущее окно нашего приложения, на котором будут размещаться элементы управления. При выполнении программы помещенные элементы управления будут иметь тот же вид, что и на этапе проектирования.

Второй по важности объект – это окно свойств (2), в котором приведены все основные свойства выделенного элемента управления или окна. С помощью кнопки управления, а кнопка переключает окно в режим просмотра событий.

Чтобы было удобнее искать нужные свойства, можно отсортировать их по алфавиту с помощью кнопки можно активировать в меню Вид → Окно свойств (иногда этот пункт

вложен в подпункт Другие окна).

Сами элементы управления можно брать на панели элементов (3).

Все элементы управления разбиты на логические группы, что облегчает поиск нужных элементов. Если панели нет на экране, ее нужно активировать командой Вид → Панель элементов.

Наконец, обозреватель решений (4) содержит список всех файлов, входящих в проект, включая добавленные изображения и служебные файлы. Активируется командой Вид → Обозреватель решений.

Указанные панели могут уже присутствовать на экране, но быть скрытыми за другими панелями или свернуты к боковой стороне окна.

В этом случае достаточно щелкнуть на соответствующем ярлычке, чтобы вывести панель на передний план.

Окно текста программы предназначено для просмотра, написания и редактирования текста программы. Переключаться между формой и текстом программы можно с помощью команд Вид → Код и Вид → Конструктор. При первоначальной загрузке в окне текста программы находится текст, содержащий минимальный набор операторов для нор-

мального функционирования пустой формы в качестве Windows-окна.

При помещении элемента управления в окно формы, текст программы автоматически дополняется описанием необходимых для его работы библиотек стандартных программ (раздел using) и переменных для доступа к элементу управления (в скрытой части класса формы).

Программа на языке C# составляется как описание алгоритмов, которые необходимо выполнить, если возникает определенное событие, связанное с формой (например, щелчок «мыши» на кнопке – событие Click, загрузка формы – Load). Для каждого обрабатываемого в форме события, с помощью окна свойств, в тексте программы организуется метод, в котором программист записывает на языке C# требуемый алгоритм.

Задания для практического занятия:

Выполнить основные действия в интегрированной среде разработки Visual Studio.
Практическая работа № 30
«Создание консольного приложения»
Цель работы: Научится создавать консольные приложения.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных
- использовать программы для графического отображения алгоритмов

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования

Краткие теоретические и учебно-методические материалы по теме практической работы
Традиционно первой программой в большинстве учебников по программированию является программа, которая выводит на печать строку: «Hello, world!». Не будем отказываться от традиций и создадим наше первое приложение – HelloWorld.

Для этого запустите MS Visual Studio, после чего создайте новый проект, используя пункты меню File – New – Project.

[image: image51.png]Start Page - Mi ual St

Edit View Tools NETReflector Window Help
New > |[& Project.. Ctrl+ShiftsN | @ ena: -2
Open » | @ | WebsSite.. Shift+Alt+N ~ X |Solution Explorer ~ 1 x
Close T | File.. Ctrl+N A=)
& | Close Solution Project From Existing Code...
Il | Save Selected Items ~ Ctrl+S
Save Selected Items As... . -
Get News from Microsoft
i | Save All Ctrl+Shift+S.
Download the latest information for deve|
Export Template.
—— | | Clickhere to enable an RSS feed that provid
) | Page Setup.. regularly updated articles about new technc|
4 | Prin Ctrl+P product tips and tricks, and upcoming event|
recenmtFies p | | reedaiso includes information about serviee
tecentfiles community technology previews, and Beta r| | [Grgperties S x
Recent Projects »
Exit
Create: Project.

Getting Started

Whats new in Visual C#7
Create Your First Application
HowDol..?

Learn Visual C#

<

|3 Error List]

Ready

Выберите проекты Visual C#, в шаблонах отметьте Console Application (консольное приложение) и введите имя для нашего проекта: HelloWorld. По умолчанию все проекты сохраняются в папке «Мои документы\Visual Studio\Projects», но можно указать свой каталог. [image: image52.png]Templates: \NET Framework 35 v | (5

Visual C# Visual Studio installed templates
Windows
Web
Reporting
WCF

(FWindows Forms Application FClass Library
[&HWPF Application P& WPF Browser Application
(P console Application [Empty Project

Workflow & WPF Custom Control Library [€#WPF User Control Library
Other Languages Fwindows Forms Control Library
Other Project Types My Templates
(search Online Templates...

A project for creating a command-line application (NET Framework 3.5)

Name: HelloWorld

Location: HAC# Projects\

Solution Name: Helloworld [¥] Create directory for solution

В открывшемся окне редактора будет код шаблона простейшего приложения .Net на языке C#.

В него необходимо добавить 2 строки кода: первая будет выводить на экран сообщение «Hello World», вторая будет ожидать символ, введенный пользователем, только после этого программа завершится. Ожидание ввода необходимо, чтобы прочитать вывод строки программой, иначе мы просто не успеем его увидеть – программа выполнит код и завершится.

[image: image53.png]L >
@ HelloWorld - Microsoft Visual Studio (Administrator) B

file Edit View Refactor Project Build Debug Data Tools NETReflector Window Help
H-E-G @ %GB0 - B0 b Debug ¥ Ay CPU v | @ End; =
2 0$Q3838BR
% ~ X |Solution Explorer v I X
1
8 || S Helloworld.Program ~ S Main(stringl] args) Y BeEE&
g Clusing System; —1|| [3 Solution ‘HelloWorld' (1 project)
using System.Collections.Generic; * ||| & @ HelloWorld
using System.Ling; 4 Properties
using System.Text; 1 References
4 Program.cs
[namespace HelloWorld E
{
class Program
{
static void Main(string[] args) Properties v X
{
N l
} =]
}
< il J 5
Output v IX
Show output from: Debug MEIEEEYE A=
|3 Error List]
Ready 11 Col 10 Ch10 INS

namespace HelloWorld

{

 class Program

 {

 static void Main(string[] args)

 {

 // выводим текст в консоль
 Console.WriteLine("Hello world!!!");

 // ждем нажатия клавиши пользователем...

 Console.ReadKey();

 }

 }

}

После набора данного код, достаточно нажать F5 и программа будет запущена, после чего можно увидеть результат ее работы. Запуск программы можно произвести и через пункты меню Debug – Start Debugging.

Разберем код программы. Большая его часть была сформирована автоматически. Начальные четыре строчки кода, каждая из которых начинается со слова using, сообщают о том, какие библиотеки подключены к проекту по умолчанию.

Далее открывается собственное пространство имен, его имя совпадает с именем созданного проекта.

Пространство имен нужно прежде всего для больших программных проектов, оно служит для логической группировки идентификаторов. Один и тот же идентификатор может быть независимо определён в нескольких пространствах.

Воспользуемся аналогией. Предположим, существуют две фирмы А и Б. Сотрудник Иванов фирмы А имеет табельный номер 123. Сотрудник Иванов фирмы Б также имеет табельный номер 123. Единственное (с точки зрения некоей системы учета), благодаря чему Ивановы могут быть различимы при совпадающих табельных номерах, это их принадлежность к разным фирмам. Различие фирм в этом случае представляет собой систему различных пространств имён.

Следующая строка кода: class Program. Напомним, что C# прежде всего язык объектно ориентированного программирования (ООП). В ООП все данные (переменные) и обрабатывающие их процедуры и функции (методы) объединяются в классы. Метод с именем Main является точкой входа в программу, то есть исполнение программы начинается именно с инструкций, записанных в методе Main.

Рассмотрим остальные строки кода. Понятно, что Console.WriteLine – это метод вывода на печать, Console.ReadKey – метод, ждущий нажатия на любую клавишу, а комментарии в C# начинаются с //.

Задания для практического занятия:

Реализовать программу вывода строки «Hello World» на экран.

Практическая работа № 31-32
«Создание проекта с использованием компонентов для работы с текстом»
Цель работы: Научится размешать и настраивать внешний вид элементов управления на форме.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных
- использовать программы для графического отображения алгоритмов

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования
Краткие теоретические и учебно-методические материалы по теме практической работы
Интегрированная среда разработчика Visual Studio Среда Visual Studio визуально реализуется в виде одного окна с несколькими панелями инструментов. Количество, расположение, размер и вид панелей может меняться программистом или самой средой разработки в зависимости от текущего режима работы среды или пожеланий программиста, что значительно повышает производительность работы. При запуске Visual Studio появляется начальная страница со списком последних проектов, а также командами «Создать проект…» и «Открыть проект…». Нажмите ссылку «Создать проект…» или выберите в меню Файл команду «Создать проект…», на экране появится диалог для создания нового проекта

[image: image54.png]Cosaars npoexr SR

e rrr—

Yeranosnenmsie wabnons

o e
s L —
R
o E R,

Konconswoe npunoxenne Visual C#

Yeranosnentivie wabnons: nonck L

BubAmoTeka knaccos. Visual C#

Mpunoxcesne o6ospesatens... Visual C#

Mycroi npoexr Visual C#

Windows Forms 20 Visual C#

ol ol] &l

WindowsFormsApplication1.

Слева в списке шаблонов приведены языки программирования, которые поддерживает данная версия Visual Studio: убедитесь, что там выделен раздел Visual C#. В средней части приведены типы проектов, которые можно создать. В наших лабораторных работах будут использоваться два типа проектов: Приложение Windows Forms – данный тип проекта позволяет создать полноценное приложение с окнами и элементами управления (кнопками, полями ввода и пр.) Такой вид приложения наиболее привычен большинству пользователей. Консольное приложение – в этом типе проекта окно представляет собой текстовую консоль, в которую приложение может выводить тексты или ожидать ввода информации пользователя. Консольные приложения часто используются для вычислительных задач, для которых не требуется сложный или красивый пользовательский интерфейс. Выберите в списке тип проекта «Приложение Windows Forms», в поле «имя» внизу окна введите желаемое имя проекта (например, MyFirstApp) и нажмите кнопку ОК. Через несколько секунд Visual Studio создаст проект и Вы сможете увидеть на экране картинку, подобную представленной.

[image: image55.png]T D

o
o

W W

 В главном окне Visual Studio присутствует несколько основных элементов, которые будут помогать нам в работе. Прежде всего, это форма (1) – будущее окно нашего приложения, на котором будут размещаться элементы управления. При выполнении программы помещенные элементы управления будут иметь тот же вид, что и на этапе проектирования. Второй по важности объект – это окно свойств (2), в котором приведены все основные свойства выделенного элемента управления или окна. С помощью кнопки можно просматривать свойства элемента управления, а кнопка переключает окно в режим просмотра событий. Если этого окна на экране нет, его можно активировать в меню Вид -> Окно свойств. Сами элементы управления можно брать на панели элементов (3). Все элементы управления разбиты на логические группы, что облегчает поиск нужных элементов. Если панели нет на экране, её нужно активировать командой Вид -> Панель элементов. Наконец, обозреватель решений (4) содержит список всех файлов, входящих в проект, включая добавленные изображения и служебные файлы. Активируется командой Вид -> Обозреватель решений. Окно текста программы предназначено для просмотра, написания и редактирования текста программы. Переключаться между формой и текстом программы можно с помощью команд Вид -> Код (F7) и Вид -> Конструктор (Shift+F7). При первоначальной загрузке в окне текста программы находится текст, содержащий минимальный набор операторов для нормального функционирования пустой формы в качестве Windows-окна. При помещении элемента управления в окно формы, текст программы автоматически дополняется описанием необходимых для его работы библиотек стандартных программ (раздел using) и переменных для доступа к элементу управления (в скрытой части класса формы). Программа на языке C# составляется как описание алгоритмов, которые необходимо выполнить, если возникает определенное событие, связанное с формой (например щелчок «мыши» на кнопке – событие Click, загрузка формы – Load). Для каждого обрабатываемого в форме события, с помощью окна свойств, в тексте программы организуется метод, в котором программист записывает на языке C# требуемый алгоритм.
Настройка формы
Настройка формы начинается с настройки размера формы. С помощью мыши, «захватывая» одну из кромок формы или выделенную строку заголовка отрегулируйте нужные размеры формы. Для настройки будущего окна приложения задаются свойства формы. Для задания любых свойств формы и элементов управления на форме используется окно свойств. Новая форма имеет одинаковые имя (Name) и заголовок (Text) - Form1. Для изменения заголовка перейдите в окно свойств и щелкните кнопкой мыши на форме. В форме инспектора объектов найдите и щелкните мышью на строчке с названием Text. В выделенном окне наберите название проекта. Для задания цвета окна используйте свойство BackColor.
Размещение элементов управления на форме
Для размещения различных элементов управления на форме используется панель элементов. Панель элементов содержит элементы управления, сгруппированные по типу. Каждую группу элементов управления можно свернуть, если она в настоящий момент не нужна. Для выполнения лабораторных работ потребуются элементы управления из группы Стандартные элементы управления.

[image: image56.png](e e 1o ——

4 Crangapmhiie anemenro ynpaenerun |~
Yrasarens

Button

CheckBox

CheckedlistBox

ComboBox

DateTimePicker

Label

Label

MaskedTextBox
MonthCalendar
Notifylcon
NumericUpDown
PictureBox

i

ProgressBar
RadioButton
RichTextBox
TextBox
ToolTip
TreeView

WebBrowser

Щёлкните на нужном элементе управления, а затем щёлкните в нужном месте формы – элемент появится на форме. Элемент можно перемещать по форме схватившись за него левой кнопкой мышки (иногда это можно сделать лишь за появляющийся при нажатии на элемент квадрат со стрелками). Если элемент управления позволяет изменять размеры, то на соответствующих его сторонах появятся белые кружки, ухватившись за которые и можно изменить размер. После размещения элемента управления на форме, его можно выделить щелчком мыши и при этом получить доступ к его свойствам в окне свойств.
Размещение строки ввода (TextBox)
Если необходимо ввести из формы в программу или вывести на форму информацию, которая вмещается в одну строку, используют окно однострочного редактора текста, представляемого элементом управления TextBox. В данной программе с помощью однострочного редактора будут вводиться переменные x, y, z типа double или int. Выберите на панели элементов пиктограмму , щелкните мышью в том месте формы, где вы хотите ее поставить. Вставьте три элемента TextBox в форму. Захватывая их “мышью” отрегулируйте размеры окон и их положение. Обратите внимание на то, что теперь в тексте программы можно использовать переменные textBox1, textBox2 и textBox3, которые соответствуют каждому добавленному элементу управления. В каждой из этих переменных в свойстве .Text будет содержаться строка символов (тип string) и отображаться в соответствующем окне TextBox. С помощью инспектора объектов установите шрифт и размер символов отражаемых в строке TextBox (свойство Font).
Размещение надписей (Label)
На форме могут размещаться пояснительные надписи. Для нанесения таких надписей на форму используется элемент управления Label. Выберите на панели элементов пиктограмму , щелкните на ней мышью. После этого в нужном месте формы щелкните мышью, появится надпись label1. Проделайте это для четырех надписей. Для каждой надписи, щелкнув на ней мышью, отрегулируйте размер и, изменив свойство Text в окне свойств, введите строку, например “Введите значение X:”, а также выберите размер символов (свойство Font). Обратите внимание, что в тексте программы теперь можно обращаться к четырём новым переменным типа Label. В них хранятся пояснительные строки, которые можно изменять в процессе работы программы.
Написание программы обработки события
С каждым элементом управления на форме и с самой формой могут происходить события во время работы программы. Например, с кнопкой может произойти событие – нажатие кнопки, а с окном, которое проектируется с помощью формы, может произойти ряд событий: создание окна, изменение размера окна, щелчок мыши на окне и т.п. Эти события могут быть обрабатываться в программе. Для обработки таких событий необходимо создать обработчики события – специальный метод. Для создания обработчика события существует два способа. Первый способ – создать обработчик для события по умолчанию (обычно это самое часто используемое событие данного элемента управления). Например, для кнопки таким образом создаётся обработчик события нажатия.
Написание программы обработки события нажатия кнопки (Click)
Поместите на форму кнопку, которая описывается элементом управления Button, для чего выберем пиктограмму. С помощью окна свойств измените заголовок (Text) на слово “Выполнить” или другое по вашему желанию. Отрегулируйте положение и размер кнопки. После этого два раза щелкните мышью на кнопке, появится текст программы: private void button1_Click(object sender, EventArgs e) { } Это и есть обработчики события нажатия кнопки. Вы можете добавлять свой код между скобками { }. Например, наберите: MessageBox.Show("Привет!");
Написание программы обработки события загрузки формы (Load)
Второй способ создания обработчика события заключается в выборе соответствующего события для выделенного элемента на форме. При этом используется окно свойств и его закладка . Рассмотрим этот способ. Перейдите на форму, в окне свойств найдите событие Load. Щелкнете по данной строчке дважды мышкой. Появится метод: private void Form1_Load(object sender, EventArgs e) { } Между скобками { } вставим текст программы: BackColor = Color. AntiqueWhite; Каждый элемент управления имеет свой набор обработчиков событий, однако некоторые из них присуши большинству элементов управления. Наиболее часто применяемые события:

 Activated Форма получает это событие при активации
 Load Возникает при загрузке формы. В обработчике данного события следует задавать действия, которые должны происходить в момент создания формы, например установка начальных значений
KeyPress Возникает при нажатии кнопки на клавиатуре. Параметр e.KeyChar имеет тип char и содержит код нажатой клавиши (клавиша Enter клавиатуры имеет код #13, клавиша Esc - #27 и т.д.). Обычно это событие используется в том случае, когда необходима реакция на нажатие одной из клавиш
KeyDown Возникает при нажатии клавиши на клавиатуре. Обработчик этого события получает информацию о нажатой клавише и состоянии клавиш Shift, Alt и Ctrl, а также о нажатой кнопке мыши. Информация о клавише передается параметром e.KeyCode, который представляет собой перечисление Keys с кодами всех клавиш, а информацию о клавишах-модификаторах Shift и др. можно узнать из параметра e.Modifiers
KeyUp Является парным событием для OnKeyDown и возникает при отпускании ранее нажатой клавиши
Click Возникает при нажатии кнопки мыши в области элемента управления
DoubleClick Возникает при двойном нажатии кнопки мыши в области элемента управления

Запуск и работа с программой

Запустить программу можно выбрав в меню Отладка команду Начать отладку. При этом происходит трансляция и, если нет ошибок, компоновка программы и создание единого загружаемого файла с расширением .exe. На экране появляется активное окно программы. Для завершения работы программы и возвращения в режим проектирования формы не забудьте закрыть окно программы!
Динамическое изменение свойств
Свойства элементов на окне могут быть изменены динамически во время выполнения программы. Например, можно изменить текст надписи или цвет формы. Изменение свойств происходит внутри обработчика события (например, обработчика события нажатия на кнопку). Для этого используют оператор присвоения вида: <имя элемента>.<свойство> = <значение>; Например: label1.Text = "Привет"; <Имя элемента> определяется на этапе проектирования формы, при размещении элемента управления на форме. Например, при размещении на форме ряда элементов TextBox, эти элементы получают имена textBox1, textBox2, textBox3 и т.д. Эти имена могут быть замены в окне свойств в свойстве (Name) для текущего элемента. Допускается использование латинских или русских символов, знака подчеркивания и цифр (цифра не должна стоять в начале идентификатора). Список свойств для конкретного элемента можно посмотреть в окне свойств, а также в приложении к данным методическим указаниям.
Задания для практического занятия:

Уточните условие задания, количество, наименование, типы исходных данных. Прочтите в приложении описание свойств и описание элементов управления Form, Label, TextBox, Button. С помощью окна свойств установите первоначальный цвет формы, шрифт выводимых символов.
1.Разместите на форме четыре кнопки (Button). Сделайте на кнопках следующие надписи: красны, зеленый, синий, желтый.
2.Создайте четыре обработчика события нажатия на данные кнопки, которые буду менять цвет формы в соответствии с текстом на кнопках. Разместите на форме две кнопки (Button) и одну метку (Label). Сделайте на кнопках следующие надписи: привет, до свидания. Создайте обработчики события нажатия на данные кнопки, которые буду менять текст метки, на слова: привет, до свидания. Создайте обработчик события создания формы (Load), который будет устанавливать цвет формы и менять текст метки на строку «Начало работы».
3.Разместите на форме две кнопки (Button) и одну метку (Label). Сделайте на кнопках следующие надписи: скрыть, показать. Создайте обработчики события нажатия на данные кнопки, которые буду срывать или показывать метку. Создайте обработчик события создания формы (Load), который будет устанавливать цвет формы и менять текст метки на строку «Начало работы».
4.Разместите на форме три кнопки (Button) и одно поле ввода (TextBox). Сделайте на кнопках следующие надписи: скрыть, показать, очистить. Создайте обработчики события нажатия на данные кнопки, которые буду скрывать или показывать поле ввода. При нажатии на кнопку «очистить» текст из поля ввода должен быть удален.
5.Разместите на форме две кнопки (Button) и одно поле ввода (TextBox). Сделайте на кнопках следующие надписи: заполнить, очистить. Создайте обработчики события нажатия на данные кнопки, которые будут очищать или заполнять поле ввода знаками «******». Создайте обработчик события создания формы (Load), который будет устанавливать цвет формы и менять текст в поле ввода на строку «+++++».
6.Разработайте игру, которая заключается в следующем. На форме размещены пять кнопок (Button). При нажатии на кнопку какие то кнопки становятся видимыми, а какие то невидимыми. Цель игры скрыть все кнопки.
7.Разработайте игру, которая заключается в следующем. На форме размещены четыре кнопки (Button) и четыре метки (Label). При нажатии на кнопку часть надписей становится невидимыми, а часть наоборот становятся видимыми. Цель игры скрыть все надписи.
8.Разместите на форме ряд кнопок (Button). Создайте обработчики события нажатия на данные кнопки, которые будут делать неактивными текущую кнопку. Создайте обработчик события изменение размера формы (Resize), который будет устанавливать все кнопки в активный режим.
9.Разместите на форме ряд кнопок (Button). Создайте обработчики события нажатия на данные кнопки, которые будут делать неактивными следующую кнопку. Создайте обработчик события нажатия кнопки мыши на форме (Click), который будет устанавливать все кнопки в активный режим.
10.Разместите на форме три кнопки (Button) и одно поле ввода (TextBox). Сделайте на кнопках следующие надписи: *****, +++++, 00000. Создайте обработчики события нажатия на данные кнопки, которые будут выводить текст, написанный на кнопках, в поле ввода. Создайте обработчик события создания формы (Load), который будет устанавливать цвет формы и менять текст в поле ввода на строку «Готов к работе». 11.Разместите на форме ряд полей ввода (TextBox). Создайте обработчики события нажатия кнопкой мыши на данные поля ввода, которые будут выводить в текущее поле ввода его номер. Создайте обработчик события изменение размера формы (Resize), который будет очищать все поля ввода.
12.Разместите на форме поле ввода (TextBox), метку (Label) и кнопку (Button). Создайте обработчик события нажатия на кнопку, который будет копировать текст из поля ввода в метку. Создайте обработчик события нажатия кнопки мышки на форме (Click), который будет устанавливать цвет формы и менять текст метки на строку «Начало работы» и очищать поле ввода.
13.Разместите на форме поле ввода (TextBox), и две кнопки (Button) с надписями: блокировать, разблокировать. Создайте обработчики события нажатия на кнопки, которые будут делать активным или неактивным поле ввода. Создайте обработчик события нажатия кнопки мышки на форме (Click), который будет устанавливать цвет формы и делать невидимыми все элементы.
14.Реализуйте игру минер на поле 3x3 из кнопок (Button). Первоначально все кнопки не содержат надписей. При попытке нажатия на кнопку на ней либо показывается количество мин, либо надпись «мина!» и меняется цвет окна. Разместите на форме четыре кнопки (Button). Напишите для каждой обработчик события, который будет менять размеры и местоположение на окне других кнопок.
Практическая работа № 33-34
«Создание проекта с использованием дат и времени»
Цель работы: Научится создавать проекты с использованием дат и времени.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных
- использовать программы для графического отображения алгоритмов

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования
Краткие теоретические и учебно-методические материалы по теме практической работы
Для начала создаётся форма.

Всё, что тут есть – это два Label’a + Timer.

Настраиваем Label’ы, переименовываем, увеличиваем шрифт – всё по усмотрению программиста.

Теперь переходим к коду, щёлкнув правой кнопкой мыши по форме и выбрав соответствующую команду.

Сразу после строки public partial class Form1 : Form объявим таймер.
Делается это так:

[image: image58.wmf]

public partial class Form1 : Form

 {

 Timer timer = new Timer();

	1

2

3
	public partial class Form1 : Form
 {
 Timer timer = new Timer();

Объявляем его в самом начале, чтобы все функции, которые будут внутри, принимали его в расчёт (если он будет объявлен в какой-то одной отдельной функции, то вторая функция не будет его видеть).

Теперь надо включить таймер. Для этого возвращаемся в форму и дважды щёлкаем на неё левой кнопкой мыши.

Переносимся в код, который будет срабатывать при загрузке формы (то есть, с самого начала работы программы). Здесь пишется следующее:

[image: image59.wmf]

private void Form1_Load(object

 {

 timer.Interval = 1000;

 timer.Tick += new EventHand

	1

2

3

4

5

6
	private void Form1_Load(object sender, EventArgs e)
{
 timer.Interval = 1000;
 timer.Tick += new EventHandler(timer1_Tick);
 timer.Start();
}

Первая строка устанавливает интервал обновления таймера. Число 1000 означает, что таймер будет обновляться каждые 1000 миллисекунд, т.е. каждую секунду.

Вторая строка очень важна – она срабатывает при каком-либо событии “Tick” в таймере. Здесь она будет срабатывать каждые 1000 миллисекунд, пока включен таймер. Именно благодаря этому, пользователь будет видеть смену часов, минут и секунд на циферблате. Само событие опишем ниже в функции timer1_Tick.

Третьей строкой запускаем таймер.

Теперь возвращаемся в форму и дважды кликаем на значке таймера (
) внизу.

Вот и открылась функция timer1_Tick. Запишем в неё определённый код, и каждые 1000 миллисекунд этот код будет исполняться заново.

Внутри функции сначала объявим некоторые переменные:

[image: image61.wmf]

int h = DateTime.Now.Hour;

int m = DateTime.Now.Minute;

int s = DateTime.Now.Second;

	1

2

3

4

5
	int h = DateTime.Now.Hour;
int m = DateTime.Now.Minute;
int s = DateTime.Now.Second;

string time = "";

В переменную h будем записывать часы, в переменную m – минуты, в s – секунды.

Переменная строкового типа time нужна, чтобы записать первые три переменные в строку для вывода в форму.

Теперь сделаем один “трюк”, предназначенный скорее для красоты вида, нежели для функционала и качества работы.

Дело в том, что мы привыкли видеть форму времени в виде, грубо говоря, 00:00:00, то есть две цифры на вывод часов, две цифры на минуты и две цифры на секунды (например, 06:03:09 или 12:01:05). Время же из свойства DateTime.Now не имеет нулей перед цифрами, которые меньше десяти (иначе говоря, время будет выглядеть так: 6:3:9 или 12:1:5). Согласитесь, это не очень удобно и привычно видеть. Поэтому мы исправим благодаря оператору условия if.

[image: image62.wmf]

 if (h < 10)

 {

 time += "0" + h;

 }

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
	if (h < 10)
{
 time += "0" + h;
}
else
{
 time += h;
}

time += ":";

if (m < 10)
{
 time += "0" + m;
}
else
{
 time += m;
}

time += ":";

if (s < 10)
{
 time += "0" + s;
}
else
{
 time += s;
}

Сначала задаём условие, что если h<10, то есть если часы показывают время от 0 до 9 часов, то в таком случае в строку time мы добавляем перед h ноль, чтобы получилось не просто время 5 часов, а 05 часов. Иначе (else) просто добавляем в time переменную h без нулей.

То же самое проделываем с минутами и секундами, не забывая при этом между часами и минутами, а также минутами и секундами поставить двоеточие.

Теперь давайте, для большего понимания, поговорим о работе строки time. Поочерёдно записываем в неё часы (с нулём или без), минуты (аналогично) и секунды (аналогично). Между ними ставится двоеточие. Именно поэтому после первых двух условий имеются строки

[image: image63.wmf]

 time += ":";

	1
	time += ":";

Итак, в самом начале работы программы строка time пустая (выше объявили её такой, с правой стороны поставив пустые кавычки: string time = “”). Как только запускается таймер, в строку сначала записываются часы, принимая во внимание, больше ли 10 это время или меньше.

То есть вместо пустого пространства в строке теперь что-то типа “12”, если у нас в данный момент 12 часов. После этого в строку записывается двоеточие, теперь строка выглядит так: “12:”. Затем мы записываем минуты, опять учитывая, сколько знаков в них. Получится, например, так:”12:06″. Опять ставим двоеточие: “12:06:”. Заканчивается запись секундами: “12:06:34″. И перезаписываться строка от пустоты до полной формы времени будет каждые 1000 миллисекунд, то есть каждую секунду, чтобы мы видели, как меняется циферблат секунд, а впоследствии и минут с часами.

Однако пока что строка просто существует, но пользователь не видит её, не видит, сколько время в данный момент.

Поэтому выводим нашу строку в форму через Label. У нас это label2, с наиболее крупным шрифтом.

[image: image64.wmf]

label2.Text = time;

	1
	label2.Text = time;

Часы готовы. Уже можно наблюдать за ходом времени, запустив проект. Но мы ещё решили выставить дату. Делается это аналогичным образом. Поэтому ниже мы пишем:

[image: image65.wmf]

string data = "";

int day = DateTime.Now.Day;

int month = DateTime.Now.Mont

	1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26
	string data = "";

int day = DateTime.Now.Day;
int month = DateTime.Now.Month;
int year = DateTime.Now.Year;

if (day < 10)
{
 data += "0" + day;
}
else
{
 data += day;
}
data += ".";
if(month<10)
{
 data += "0" + month;
}
else
{
 data += month;
}
data += ".";
data += year;
label1.Text = data;

Разница лишь в том, что добавляем нули только перед днями и месяцами, года и так четырёхзначные, а вместо двоеточий ставим просто точки. В итоге получается примерно такой вид: 16.02.2015.

И мы так же записываем это всё в Label, но уже в другой.

В итоге получается вот такая программа:

Задания для практического занятия:

1.Напишите программу Время, в окне которой отображается текущее время.

[image: image67.emf]
2.Усовершенствуйте программу Время так, чтобы в ее окне отображалось не только время, но и дата

[image: image68.emf]
3.Измените программу Время так, чтобы в ее окне секунды не отображались. Вместе с тем, чтобы пользователь видел, что часы идут, двоеточие, разделяющее часы и минуты, должно мигать. В окне программы также должна отображаться дата и день недели.

[image: image69.emf]
4.Напишите программу Таймер.

[image: image70.emf]
Форма программы Таймер

[image: image71.emf]
Окно программы Таймер во время установки интервала

[image: image72.emf]
Окно программы Таймер в процессе отсчета времени

5.Усовершенствуйте программу Таймер так, чтобы по истечении установленного интервала программа привлекала внимание пользователя звуковым сигналом, например одним из звуков Windows.
Практическая работа № 35-36
«Разработка оконного приложения с несколькими формами»
Цель работы: Изучить методы построения форм Windows и получение навыков по

настройке форм, созданию непрямоугольных и наследуемых (производных) форм.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных
- использовать программы для графического отображения алгоритмов

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования
Краткие теоретические и учебно-методические материалы по теме практической работы
Пример 1. Настройка прямоугольной формы Windows Формы Windows — это основной компонент пользовательского интерфейса. Формы предоставляют контейнер, который содержит элементы управления, меню и позволяет отображать приложение в уже

привычной и единообразной модели. Формы могут реагировать на события мыши и клавиатуры, поступающие от пользователя, и выводить на экран данные для пользователя с помощью элементов управления, которые содержатся в форме.

Формы Windows содержат множество свойств, позволяющих настраивать их внешний вид и поведение. Просматривать и изменять эти свойства можно в окне Properties конструктора при разработке, а также программно во время выполнения приложения.

В следующей таблице перечислены некоторые свойства форм Windows, отвечающие за внешний вид и поведение приложения:

Свойство Описание

Name Задает имя классу Form, показанному в конструкторе.

Данное свойство задается исключительно во время разработки

BackColor Указывает цвет фона формы

Enabled Указывает, может ли форма принимать ввод от пользователя. Если свойству Enabled задано значение False, все элементы управления формы также

блокируются

ForeColor Указывает цвет переднего плана формы, то есть цвет выводимого текста. Если отдельно не указать значение свойства ForeColor элементов управления формы, они

примут то же значение
Указывает вид и поведение границы и строки заголовка формы

Значения свойства:

None - Форма не имеет границы, не может быть минимизирована или развернута до максимальных размеров и у нее нет экранной кнопки управления окном и кнопки справки

FormBorderStyle

FixedSingle - Форма имеет тонкую границу, и размеры формы нельзя изменить во время выполнения.
Форма Свойство Описание может быть минимизирована, развернута до максимальных размеров, и иметь кнопку справки или кнопку управления окном, что определяется остальными свойствами

Fixed3D - Форма имеет объемную границу, и размеры формы нельзя изменить во время выполнения. Форма может быть минимизирована, развернута до максимальных размеров,

и иметь кнопку справки или кнопку управления окном, что определяется остальными свойствами

FixedDialog - Форма имеет тонкую границу, и размеры формы нельзя изменить во время выполнения. У формы нет экранной кнопки управления окном, но может быть кнопка справки, что определяется остальными свойствами. Форму можно минимизировать и развернуть до максимальных размеров

Sizable - Форма имеет настройки по умолчанию, но они могут изменяться пользователем. Форма может быть минимизирована, развернута до максимальных размеров, и иметь кнопку справки, что определяется остальными свойствами

FixedToolWindow - Форма имеет тонкую границу, и размеры формы нельзя изменить во время выполнения.

Форма содержит только кнопку закрытия

SizableToolWindow - Форма имеет тонкую границу, и размеры формы могут быть изменены пользователем.

Форма содержит только кнопку закрытия

Location Когда свойству StartPosition задано значение Manual, это свойство указывает исходное положение формы относительно верхнего левого угла экрана MaximizeBox Указывает, есть ли у формы кнопка MaximizeBox

MaximumSize Устанавливает максимальный размер формы. Если задать этому свойству размер 0; 0, у формы не будет верхнего ограничения размера

MinimizeBox Указывает, есть ли у формы кнопка MinimizeBox MinimumSize Устанавливает минимальный размер формы, который пользователь может задать

Opacity Устанавливает уровень непрозрачности или прозрачности формы от 0 до 100%. Форма, непрозрачность которой составляет 100%, полностью непрозрачна, а форма, имеющая 0 % непрозрачности, наоборот, полностью прозрачна

Свойство Описание

Size Принимает и устанавливает исходный размер формы

StartPosition Указывает положение формы в момент ее первого

выведения на экран

Text Указывает заголовок формы

TopMost Указывает, всегда ли форма отображается поверх всех остальных форм,

свойству TopMost которых не задано значение True

Visible Указывает, видима ли форма во время работы

WindowState Указывает, является ли форма минимизированной, развернутой до максимальных размеров, или же при первом появлении ей задан размер, указанный в свойстве Size

Создание нового проекта

1. Откройте Visual Studio и создайте новый проект Windows Forms.

Проект откроется с формой по умолчанию с именем Form1 в конструкторе.

2. Выберите форму в конструкторе. Свойства формы отображаются в

окне Properties.

3. В окне Properties задайте свойствам значения, как указано ниже:

Свойство Значение
Text Trey Research

FormBorderStyle Fixed3D

StartPosition Manual

Location 100; 200

Opacity 75%

4. Перетащите три кнопки из Toolbox в форму и разместите их так, как вам будет удобно.

5. Поочередно выберите каждую кнопку и в окне Properties задайте свойству кнопок Text значения Border Style, Resize и Opacity.

6. Для кнопки Border Style задайте свойство Anchor – Top, Left.

Реализация обработчиков событий

7. В конструкторе дважды щелкните кнопку Border Style, чтобы открыть окно с кодом обработчика события Buttonl Click. Добавьте в этот метод следующую строку кода:

this.FormBorderStyle = FormBorderStyle.Sizable;

8. Возвратитесь в окно конструктора, дважды щелкните кнопку Resize и добавьте следующую строку: this.Size = new Size(300, 500);

9. Возвратитесь в окно конструктора, дважды щелкните кнопку Opacity и добавьте следующую строку:

this.Opacity = 1;

Запуск готового решения

10. Для построения решения выберите меню Build (Построение), далее команду Build Solution (Построить решение). При наличии ошибок исправьте их и снова постройте решение. В дальнейшем принеобходимости выбора последовательности действий очередность команд будет описываться, например, так: Build | Build Solution.

11. Нажмите Ctrl + F5 или выберите Debug (Отладка) | Start Without Debugging (Запуск без отладки), чтобы запустить приложение. Щелкайте каждую кнопку и наблюдайте, как изменяется вид формы.

12. Измените поочередно расположение левой и верхней границ формы и сравните поведение кнопок внутри формы. Обратите внимание, что расстояние до этих границ от кнопки Border Style остается постоянным.

Пример 2. Создание непрямоугольной формы Windows

В этом упражнении вы создадите треугольную форму Windows.

1. Откройте Visual Studio и создайте новый проект Windows Forms.

Проект откроется с формой по умолчанию с именем Form1 в конструкторе.

2. В окне Properties задайте свойству FormBorderStyle значение None, а свойству BackColor значение Red. В этом случае форму легче будет увидеть при тестировании приложения.

3. Перетащите кнопку из Toolbox в левый верхний угол формы.

Задайте свойству Text кнопки значение Close Form.

4. Дважды щелкните кнопку Close Form и добавьте в обработчик события Button1 Click следующий код:

this.Close();

5. В конструкторе дважды щелкните форму, чтобы открыть обработчик события Form1 Load. Добавьте в этот метод следующий код (он задает области формы треугольную форму указанием многоугольника с тремя углами):

System.Drawing.Drawing2D.GraphicsPath myPath =

new System.Drawing.Drawing2D.GraphicsPath();

myPath.AddPolygon(new Point[] { new Point(0, 0),

new Point(0, this.Height),

new Point(this.Width, 0) });

Region myRegion = new Region(myPath);

this.Region = myRegion;

6. Постройте и запустите приложение. Появится треугольная форма.

Пример 3. Создание наследуемой формы

Если у вас имеется уже готовая форма, которую вы собираетесь использовать в нескольких приложениях, удобно создать наследуемую (производную) форму. В этом упражнении вы создадите новую форму и унаследуете ее от существующей базовой формы, а затем измените производную форму, настроив ее для конкретной работы.

1. Откройте проект из предыдущего упражнения. Базовой формой для создания производной будет треугольная форма.

2. Для кнопки Close Form задайте свойство Modifiers как protected.

3. Добавьте производную форму: меню Project (Проект) | Add Windows Form…(Добавить форму Windows), в окне Categories (Категории) укажите Windows Form, в окне Templates (Шаблоны) выберите Inherited Form (Наследуемая форма).

4. В окне Add New Item в поле Name укажите название формы:

nForm.cs и нажмите Add для добавления формы.

5. В появившемся окне Inheritance Picker, в котором отображаютсявсе формы текущего проекта, выберите базовую форму Form1 и нажмите OK.

6. Постройте проект.

7. Откройте форму nForm в режиме конструктора. Проверьте, что она имеет треугольную форму и свойства базовой формы и элемента управления наследованы.

8. Настройте свойства производной формы:

a. для кнопки:

i. свойство Text – Hello!!!

ii. свойство BackColor – Brown

b. для формы: свойство BackColor – Blue

9. Постройте проект.

10. Задайте производную форму в качестве стартовой, указав в функции Main следующий код:

Application.Run(new nForm());

11. Постройте и запустите приложение. Должна открыться производная форма со своими свойствами. Проверьте, наследуется ли закрытие формы кнопкой.

Пример 4. Создание MDI-приложения

Термин MDI (Multiple Document Interface) дословно означает многодокументный интерфейс и описывает приложения, способные загрузить и использовать одновременно несколько документов или объектов.

В этом упражнении Вы создадите MDI-приложение с родительской формой, загружающей и организующей дочерние формы. Также Вы познакомитесь с элементом управления MenuStrip, который позволяет создать меню формы.

Создание нового проекта с базовой формой

1. Создайте новый проект Windows Forms, укажите имя MdiApplication.

2. Переименуйте файл Form1.cs на ParentForm.cs.

3. Для формы задайте следующие свойства:

Name ParentForm

Size 420; 320

Text Parent Form

4. Проверьте, что произошли изменения в функции Main так, чтобы форма ParentForm стала стартовой.

5. Откройте файл ParentForm.cs в режиме конструктора.

6. Для свойства формы IsMdiContainer задайте значение True.

Таким способом эта форма будет определена как родительская форма MDI.

Создание меню для работы с формами

7. Создайте пункт меню File:

a. Откройте ПИ Toolbox, добавьте на форму ЭУ MenuStrip и задайте для его свойства Name значение MdiMenu.

b. Выделите меню в верхней части формы и задайте имя первого пункта меню &File.

c. Для свойства Name пункта меню File задайте значение FileMenuItem.

d. Раскройте меню File.

e. Выделите элемент, появившейся под элементом File, и задайте его как &New.

f. Для свойства Name пункта меню New задайте значение

NewMenuItem.

g. Выделите элемент, появившийся под элементом New, и задайте его как &Exit.

h. Для свойства Name пункта меню Exit задайте значение ExitMenuItem.

i. Дважды кликните левой кнопкой мыши по пункту меню Exit для создания обработчика события Click.

j. В обработчик события Click для пункта меню Exit добавьте следующий код:

this.Close();

8. Создайте пункт меню Window:

a. Переключитесь в режим конструктора.

b. Выделите второй пункт меню справа от File и задайте его значением &Window.

c. Для свойства Name пункта меню Window задайте значение WindowMenuItem.

d. Раскройте меню Window.

e. Выделите элемент, появившейся под элементом Window, и задайте для его свойства Text значение &Cascade.

f. Для свойства Name пункта меню Cascade задайте значение WindowCascadeMenuItem.

g. Выделите элемент, появившийся под элементом Cascade, и задайте для его свойства Text значение &Tile.

h. Для свойства Name пункта меню Tile задайте значение WindowTileMenuItem.

i. Дважды кликните левой кнопкой мыши по пункту меню Cascade для создания обработчика события Click:

this.LayoutMdi (System.Windows.Forms.MdiLayout.Cascade);

j. Вернитесь в режим конструктора и дважды кликните левой кнопкой мыши по пункту меню Tile.

k. В обработчик события Click для пункта меню Tile добавьте следующий код:

this.LayoutMdi(System.Windows.Forms.MdiLayout.TileHorizontal);

9. Реализуйте список открытых окон в меню Window:

a. В конструкторе выберите компонент Mdimenu. Укажите в свойстве MdiWindowListItem имя пункта, созданного для этого – WindowMenuItem.

Создание дочерней формы

10. Создайте дочернюю форму:

a. Выберите пункт меню Project | Add Windows Form.

b. Задайте имя формы ChildForm.cs.

c. Для свойства Text формы задайте значение Child Form.

d. На ПИ Toolbox дважды кликните левой кнопкой мыши по ЭУ RichTextBox и задайте для его свойства Name значение

ChildTextBox.

e. Для свойства Dock ЭУ RichTextBox задайте значение Fill.

f. Удалите существующий текст (если он есть) для свойства Text ЭУ RichTextBox и оставьте его пустым.

g. На ПИ Toolbox дважды кликните левой кнопкой мыши по ЭУ

MenuStrip.

h. Для свойства Name ЭУ MenuStrip задайте значение ChildWindowMenu.

i. Выделите меню в верхней части формы и наберите текст F&ormat.

j. Для свойства Name пункта меню Format задайте значение FormatMenuItem, для свойства MergeAction установите значение Insert, а свойству MergeIndex – 1. В этом случае меню Format будет располагаться после File при объединении

базового и дочерних меню.

k. Выделите элемент, появившийся под элементом Format, и наберите текст &Toggle Foreground.

l. Для свойства Name пункта меню Toggle Foreground задайте значение ToggleMenuItem.

m. Дважды кликните левой кнопкой мыши по пункту меню Toggle Foreground и добавьте следующий код в обработчик события Click:

if (ToggleMenuItem.Checked)

{

ToggleMenuItem.Checked = false;

ChildTextBox.ForeColor = System.Drawing.Color.Black;

}

else

{

ToggleMenuItem.Checked = true;

ChildTextBox.ForeColor = System.Drawing.Color.Blue;

}

Отображение дочерней формы

11. Отобразите дочернюю форму в родительской форме:

a. Откройте ParentForm.cs в режиме конструктора.

b. Дважды кликните левой кнопкой мыши по кнопке New в меню File для создания обработчика события Click.

c. Добавьте следующий код для обработчика события Click для пункта меню New:

ChildForm newChild = new ChildForm();

newChild.MdiParent = this;

newChild.Show();

Работа с приложением

12. Проверьте работу приложения:

a. Постройте и запустите приложение.

b. Когда появится родительская форма, выберите пункт меню File | New.

c. В родительском окне появится новая дочерняя форма.

Обратите внимание на то, дочернее меню сливается с

родительским и пункты меню упорядочиваются в соответствие со свойством MergeIndex, установленным ранее.

d. Наберите какой-нибудь текст в дочернем окне и воспользуйтесь пунктом меню Format для изменения цвета шрифта текста.

e. Откройте еще несколько дочерних окон.

f. Выберите пункт меню Window | Tile. Обратите внимание на то, что дочерние окна выстраиваются в упорядоченном порядке.

g. Закройте все дочерние окна.

h. Обратите внимание на то, что, когда закроется последнее дочернее окно, меню родительской формы изменится, и оттуда исчезнет пункт Format.

i. Для закрытия приложения выберите пункт меню File | Exit.

13. Обратите внимание, что заголовок у дочерних окон одинаковый.

При создании нескольких документов, например в Microsoft Word, они называются ДокументN, где N — номер документа. Реализуйте эту возможность:

a. Откройте код родительской формы и в классе ParentForm объявите переменную openDocuments:

private int openDocuments = 0;

b. К свойству Text дочерней формы добавьте счетчик числа

открываемых документов (в коде обработчика события Click для пункта меню New):

newChild.Text = newChild.Text+" "+ ++openDocuments;

14. Запустите приложение. Теперь заголовки новых документов содержат порядковый номер.

Задания для практического занятия:

Для углубления знаний о добавлении и настройке форм Windows выполните следующие задания.

Задание 1. Создайте пользовательскую форму, которая во время выполнения будет иметь овальное очертание. Данная форма должна содержать функциональность, дающую возможность пользователю закрывать ее во время выполнения.

Рекомендация: при разработке формы в виде эллипса используйте следующий код:

// Добавление эллипса, вписанного в прямоугольную форму

// заданной ширины и высоты

myPath.AddEllipse(0, 0, this.Width, this.Height);

Задание 2. Создайте приложение с двумя формами и установите вторую форму как стартовую. Сделайте так, чтобы при запуске стартовая форма разворачивалась до максимальных размеров и содержала функциональность, дающую возможность пользователю открыть первую форму, отображающуюся в виде ромба зеленого цвета с кнопкой (в центре ромба) закрытия формы с надписью GREENPEACE.

Практическая работа № 37-38
«Создание интерфейса»
Цель работы: познакомиться с принципами визуального программирования, научиться создавать интерфейсы.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- разрабатывать алгоритмы для конкретных задач

- работать в среде программирования

- реализовывать построенные алгоритмы в виде программ на конкретном языке программирования

- оформлять код программы в соответствии со стандартом кодирования

- выполнять проверку, отладку кода программы

- применять базовые конструкции изучаемых языков программирования

- использовать стандартные типы данных
- использовать программы для графического отображения алгоритмов

знать:

- основные элементы языка, структуру программы, операторы и операции, управляющие структуры, структуры данных, файлы, классы памяти

- типы данных

- базовые конструкции изучаемых языков программирования
Краткие теоретические и учебно-методические материалы по теме практической работы
Для создания интерфейса необходимо создать:

− Выбрать по очереди во вкладке Файл – Создать – Проект;

− Выбрать тип проекта Visual C#, Windows – приложение Windows Forms;

− Определить местонахождение нового проекта (Расположение) и дать ему имя.

Появиться поле с заголовком Form1. Нажав на нем два раза левой кнопкой мышки, мы сможем увидеть листинг программы, относящийся к нашему интерфейсу. Чтобы добавлять элементы на наше поле необходимо во вкладке «Вид» выбрать пункт «Панель элементов».

Из данного списка добавим несколько элементов: Label (4 шт.) метка – предназначена для на=

несения на форму пояснительных текстов и для вывода результатов; Text-Box (2 шт.) строка редактирования – предназначена для ввода/вывода, тип данных (всегда String); Button (2 шт.) командная кнопка – можно ставить в соответствие функцию, которая будет выполнена при нажатии на кнопку (в нашем примере это кнопка «Вычисление» и «Выход»); RadioButton (4 шт.) радиокнопка – радиокнопки обычно объединяют в радиогруппы и из

каждой группы может быть выбрана одна и только одна радиокнопка. Для создания радиогруппы необходимо занести на форму компонент рамка GroupBox и лишь после этого на него требуемое количество (в нашем случае 4) радиокнопок.

Чтобы связать с программный код с добавляемым компонентом необходимо также щелкнуть два раза левой кнопкой мыши на данном компоненте, в результате появиться поле в которое необходимо будет заполнить соответствующими для данного элемента командами.

Чтобы изменять свойства элементов необходимо во вкладке «Вид» выбрать «Окно свойств», которое дает информацию об

элементе при нажатии на него.
Пример:

 создать интерфейс для программы калькулятор.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace Lab8

{ public partial class Form1 : Form

 { public Form1()

 {

 InitializeComponent();

 }

 private void button1_Click(object sender, E

ventArgs e)

 {

 double x, y, a=0;

 bool ok;

 ok = false;

 x = Convert.ToInt32(textBox1.Text); /*

присвоение переменной

"x" значение первого числа */

 y = Convert.ToInt32(textBox2.Text);

 if (radioButton1.Checked) // описание р

адиокнопки (сложение)

 {

 a = x + y;

 ok = true;

 }

 if (radioButton2.Checked) /* описание р
адиокнопки

(вычитание)*/

 {

 a = x = y;

 ok = true;

 }

 if (radioButton3.Checked) /* описание р
адиокнопки

(умножение) */

 {

 a = x * y;

 ok = true;

 }

 if (radioButton4.Checked) // описание р
адиокнопки (деление)

 {

 a = x/y;

 ok = true;

 }

 if (ok) // вывод результата вычисления

 label4.Text = Convert.ToString(a);

 else // проверка нажатия радиокнопки

 label4.Text = "ВЫБЕРЕТЕ ОПЕРАЦИЮ!";

 }

 private void button2_Click(object sender, E

ventArgs e)

 { // завершение работы приложения

 Close();

 }

 }

}
Задания для практического занятия:

1. Добавить в интерфейс калькулятора ещё 3 действия: возводить в указанную степень, вычислять квадратный корень, вычислять проценты.
2. Создать интерфейс для решения квадратного уравнения

[image: image73.png]a-x*+b-x+c=0

ТИП

of

file

PAGE
80

_1598528819.unknown

_1598528820.unknown

_1598528817.unknown

_1598528818.unknown

_1598528815.unknown

_1598528816.unknown

_1598528814.unknown

