	[image: image1.jpg]

	МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН

Государственное бюджетное профессиональное образовательное учреждение

Уфимский колледж радиоэлектроники, телекоммуникаций и безопасности

	
	УТВЕРЖДАЮ

Зам. директора

_____________ Л.Р. Туктарова

«29» августа 2017 г.

Контрольно-оценочные средства

МЕЖДИСЦИПЛИНАРНОГО КУРСА
	Системное программирование

наименование междисциплинарного курса
Специальность:

	 09.02.07 Информационные системы и программирование

	
	СОГЛАСОВАНО
Зав. кафедрой
_____________ М.Е. Бронштейн
РАЗРАБОТАЛ:

преподаватель
_____________ А.В. Казанцев

Уфа 2017 г.

СОДЕРЖАНИЕ

	
	стр.

	
	

	1. Пояснительная записка
	3

	
	

	2. Знания, умения по окончанию изучения междисциплинарного курса
	4

	
	

	3. Тестовые задания
	5

	
	

	4. Критерии по выставлению баллов
	16

1. пОЯСНИТЕЛЬНАЯ ЗАПИСКА
Тест предназначен для студентов 3 курса.
Вопросы подобраны таким образом, чтобы можно было проверить подготовку студентов по усвоению соответствующих знаний и умений междисциплинарного курса.
Предлагается пакет тестовых заданий по оценке качества подготовки студентов. Пакет содержит проверочные тесты, с помощью которых преподаватель может проверить качество усвоения пройденного материала:

· часть А – 60 заданий с кратким ответом – проверка теоретических знаний (задания закрытого типа);

· часть B – комплексный практический тест с 16-ю заданиями открытого типа;

· часть C – комплексный практический тест 6-ью заданиями открытого развернутого типа.

С целью проверки знаний и умений изученной дисциплины каждый студент получает следующий пакет:

Часть А (проверка теоретических знаний) - информационный тест, включающий в себя 20 заданий.

Часть А тестового задания включает в себя:

· выбор правильного ответа;

· множественный выбор;

· установление соответствия;

· установление правильной последовательности.
За каждый правильный ответ – 2 балла.

Максимальное количество баллов – 40.

Часть B (проверка практических знаний и умений) - комплексный практический тест, включающий в себя 8 заданий открытого типа со свободным ответом.

За каждый правильный ответ – 5 баллов.

Максимальное количество баллов – 40.

Часть C (проверка практических знаний и умений) - комплексный практический тест (письменное задание), включающий в себя 2 задания повышенного уровня сложности открытого типа с развернутым ответом.

За каждый правильный ответ – 10 баллов.

Максимальное количество баллов – 20.

2. Знания, умения по окончанию изучения МЕЖДИСЦИПЛИНАРНОГО КУРСА
В результате освоения междисциплинарного курса обучающийся должен уметь:
· формировать алгоритмы разработки программных модулей в соответствии с техническим заданием;
· оформлять документацию на программные средства;
· оценка сложности алгоритма;
· осуществлять дизассемблирование программ;
· оптимизировать программный код;
· осуществлять разработку программных модулей в соответствии с ООП на языке высокого уровня.
В результате освоения дисциплины обучающийся должен знать:

· основные этапы разработки программного обеспечения;
· основные принципы технологии структурного и объектно-ориентированного программирования;
· актуальная нормативно-правовая база в области документирования алгоритмов;
· основы работы с TASM;
· команды DEBUG;
· основные особенности работы DEBUG;
· виртуальные методы, свойства, индексаторы;
· абстрактные классы;
· основы обработки исключений;
· перехват, класс, конфигурирование состояния, операторы, ключевые слова.

3. Тестовые задания
Часть А
1. Символьная строка в языке Cи представляется в памяти как

1. компонент структуры

2. массив символов

3. бинарный код

4. ASCII код

2. Строку, как и любой другой массив можно обрабатывать

1. традиционным методом - как массив, с использованием операции индексации

2. с помощью рекурсии

3. через указатели, с использованием операций адресной арифметики

4. через классы, методы и функции

3. Src – это

1. строка, с которой выбираются символы

2. строка, в которую записываются символы

3. номер первого символа в строке src, с которого начинается подстрока

4. длина выходной строки

4. Len – это

1. строка, с которой выбираются символы

2. строка, в которую записываются символы

3. номер первого символа в строке src, с которого начинается подстрока

4. длина выходной строки

5. Dest – это
1. строка, с которой выбираются символы

2. строка, в которую записываются символы

3. номер первого символа в строке src, с которого начинается подстрока

4. длина выходной строки

6. Num– это
1. строка, с которой выбираются символы

2. строка, в которую записываются символы

3. номер первого символа в строке src, с которого начинается подстрока

4. длина выходной строки

7. Внешний доступ к программам и данным модуля возможен через вызов функций

1. чтения элементов матрицы

2. добавления в конец файла

3. чтение из файла

4. запись элементов матрицы

8. Дескриптор – это

1. массив, каждый элемент которого соответствует одному столбцу матрицы

2. отдельный массив, каждый элемент которого соответствует одному элементу матрицы

3. отдельный массив, каждый элемент которого соответствует одной строке матрицы

4. массив, каждый элемент которого соответствует первому элементу строки матрицы

9. Линейная координата подсчитывается

1.методом итерации как сумма полезных длин всех столбцов

2. методом итерации как сумма полезных длин всех строк

3. методом итерации как произведение полезных длин всех столбцов

4. методом итерации как произведение полезных длин всех строк

10. Какой список существует?

1. кольцевой

2. двунаправленный

3. разнонаправленный

4. линейный

11. Размерность матрицы

1. int NN

2. int SIZE

3. int *m_addr

4. int L2_RESULT

12. Флаг ошибки

1. int NN

2. int SIZE

3. int *m_addr

4. int L2_RESULT

13. Функция close_matr предназначена для

1. освобождения памяти при завершении работы с матрицей

2. чтения элемента матрицы

3. проверки корректности задания координат.

4. записи элемента в матрицу

14. Функция read_matr предназначена для

1. освобождения памяти при завершении работы с матрицей

2. чтения элемента матрицы

3. проверки корректности задания координат.

4. записи элемента в матрицу

15. Функция write_matr предназначена для

1. освобождения памяти при завершении работы с матрицей

2. чтения элемента матрицы

3. проверки корректности задания координат.

4. записи элемента в матрицу

16 . Функция ch_coord предназначена для

1. освобождения памяти при завершении работы с матрицей

2. чтения элемента матрицы

3. проверки корректности задания координат.

4. записи элемента в матрицу

17. Функция печати списка f_print

 1. осуществляет ввод элементов базы
 2. вносит новый элемент в базу

3. производит форматированный вывод всех элементов базы данных на экран

4. измененяет значения полей элемента списка

18. Какая функция сортирует список по методу «Пузырька»?

1. f_change

2. f_sort

3. f_save

4. f_delete
19. Функция readvect:

 1. читает вектор заданного прерывания
 2. устанавливает старый вектор прерывания по заданному адресу
3. устанавливает новый вектор прерывания по заданному адресу
4. удаляет старый вектор заданного прерывания

20. Функция writevect:

 1. читает вектор заданного прерывания
2. устанавливает старый вектор прерывания по заданному адресу
3. устанавливает новый вектор прерывания по заданному адресу
4. удаляет старый вектор заданного прерывания

21. Какая из перечисленных функций читает непосредственно из видеопамяти дисплея символ?

1. GetSym
2. GetAtr
3. PutAtr

4. Invert

22. Какая из перечисленных функций читает атрибут непосредственно из видеопамяти дисплея?

 1. GetSym
2. GetAtr
 3. PutAtr

 4. Invert

23. Какая из перечисленных функций выводит символ непосредственно в видеопамять дисплея?

 1. GetSym
2. GetAtr
3. PutAtr

 4. PutSym

24. Заголовок модуля начинается словом:

 1. INTERFACE
 2. UNIT
 3. IMPLEMENTATION
 4. USES
25. В качестве базового типа множества не могут использоваться:
1. вещественный тип
2. интервальный тип
3. логический тип

 4. целочисленный тип

26. Какая из перечисленных функций выводит атрибут непосредственно в видеопамять дисплея?

 1. GetSym
 2. GetAtr
 3. PutAtr

 4. PutSym

27. Содержимое какого участка заменяет функция Change с содержимым левого верхнего участка путем последовательного побайтного обмену атрибутов и символов:

 1. среднего
 2. правого
 3. текущего

 4. конечного

28. Какие функции использует функция Change

 1. GetSym

 2. GetAtr
 3. PutSym

 4. PutAtr

Ответ: 1,2,3,4

29. Функция RandText(void)
 1. псевдослучайным образом перетасовывает все участки на экране
 2. обменивает содержимое текущего участка с содержимым левого верхнего участка путем последовательного побайтного обмену атрибутов и символов
 3. использует функции GetAtr и PutAtr для инверсии прямоугольника

 4. выводит непосредственно в видеопамять дисплея символ

30. Какая переменная отвечает за номеp логического диска

 1. head
 2. ndrive=0

 3. EndList
 4. Sect_Trk
31. В качестве базового типа множества не может использоваться:
 1. вещественный тип
 2. интервальный тип
 3. логический тип

 4. символьный тип

32. Нетипизированные файлы описываются служебным словом:
 1. file
 2. text
 3. file of тип

 4. procedure
33. Какая из последовательностей символов не может служить идентификатором переменной:

 1. y5

 2. 9z
 3. zero
 4. ABC
34. Какой раздел программы необходим для применения оператора безусловного перехода goto:

 1. var
 2. type
 3. label
 4. const
35. Интерфейсная часть модуля начинается со слова:

 1. INTERFACE

 2. UNIT

 3. IMPLEMENTATION

 4. USES

36. Комбинированный тип описывается:

 1. в разделе переменных

 2. в разделе типов

 3. в разделе констант

 4. в разделе переменных

37. Манипуляции, которые обеспечивают распаковку номера дорожки и сектора, описываются макросами

 1. DOS

 2. SECT

 3. SysCode

 4. TRK

38.Какая функция в программе главная?

 1. main

 2. void

 3. goto

 3. var

39. Функция main:

 1. выполняет выборку элемента таблицы разделов для заданного диска

 2. считывает boot-сектор логического диска

 3. запрашивает имя файла, потом обрабатывает его и, если все нормально, то запускает вспомогательные функции необходимые для просмотра FAT заданного файла
 4. определяет абсолютный номер начального сектора логического диска
40. Функция Read_Mbr:

 1. выполняет выборку элемента таблицы разделов для заданного диска

 2. считывает boot-сектор логического диска

 3. запрашивает имя файла, потом обрабатывает его и, если все нормально, то запускает вспомогательные функции необходимые для просмотра FAT заданного файла
 4. определяет абсолютный номер начального сектора логического диска
41. Функция Read_Boot:

 1. выполняет выборку элемента таблицы разделов для заданного диска

 2. считывает boot-сектор логического диска

 3. запрашивает имя файла, потом обрабатывает его и, если все нормально, то запускает вспомогательные функции необходимые для просмотра FAT заданного файла
 4. определяет абсолютный номер начального сектора логического диска
42. Функция Get_First:

 1. выполняет выборку элемента таблицы разделов для заданного диска

 2. считывает boot-сектор логического диска

 3. запрашивает имя файла, потом обрабатывает его и, если все нормально, то запускает вспомогательные функции необходимые для просмотра FAT заданного файла
 4. определяет абсолютный номер начального сектора логического диска
43. Функция Read_Fat:

 1. выполняет выборку элемента таблицы разделов для заданного диска

 2. читает один сектор с помощью прерывания BIOS
 3. считывает boot-сектор логического диска

 4. считывает в память FAT целиком, адрес начала FAT на диске и ее размер определяются из ранее прочитанного boot-сектора

44. Исполняемая часть модуля начинается со слова:

 1. INTERFACE

 2. UNIT

 3. IMPLEMENTATION

 4. USES

45. Функция Read_13:

 1. выполняет выборку элемента таблицы разделов для заданного диска

 2. читает один сектор с помощью прерывания BIOS
 3. считывает boot-сектор логического диска

 4. считывает в память FAT целиком, адрес начала FAT на диске и ее размер определяются из ранее прочитанного boot-сектора

46. Функция Sect_to_Daddr:

 1. преобразует номер логического сектора в физический адрес

 2. читает один сектор с помощью прерывания BIOS
 3. считывает boot-сектор логического диска

 4. преобразует номер кластера в номер сектора

47. Функция Clust_to_Sect:

 1. преобразует номер логического сектора в физический адрес

 2. читает один сектор с помощью прерывания BIOS
 3. считывает boot-сектор логического диска

 4. преобразует номер кластера в номер сектора

48. Функция Get_Name:

 1. преобразует номер логического сектора в физический адрес

 2. читает один сектор с помощью прерывания BIOS
 3. предназначена для лексического разбора задания, она выделяет из задания очередное слово и переназначает jobptr

 4. преобразует номер кластера в номер сектора

49. Функция Next_Clust:

 1. предназначена для лексического разбора задания

 2. выполняет поиск имени в каталоге
 3. определяет номер следующего кластера, анализируя FAT

 4. выполняет выдачу на экран различных сообщений при ошибках или при завершении программы

50. Функция Find_Name:

 1. предназначена для лексического разбора задания

 2. выполняет поиск имени в каталоге
 3. определяет номер следующего кластера, анализируя FAT

 4. выполняет выдачу на экран различных сообщений при ошибках или при завершении программы

51. Функция End_of_Job:

 1. предназначена для лексического разбора задания

 2. выполняет поиск имени в каталоге
 3. определяет номер следующего кластера, анализируя FAT

 4. выполняет выдачу на экран различных сообщений при ошибках или при завершении программы

52. Какое поле содержит сегментный адрес конца доступной памяти в системе:

 1. ret_op

 2. old_call_dos
 3. end_of_mem

 4. new_call_dos

53. Какое поле используется для возможного завершения программы по команде RET 0:

 1. ret_op

 2. old_call_dos
 3. end_of_mem

 4. new_call_dos

54. Объявления всех глобальных объектов модуля содержит:

 1. исполняемая часть

 2. интерфейсная часть

 3. инициирующая часть

 4. заголовок модуля

55. Какое поле содержит команду вызова диспетчера функций DOS:

 1. ret_op

 2. old_call_dos
 3. end_of_mem

 4. new_call_dos

56. Какое поле содержит сегментный адрес конца доступной памяти в системе:

 1. ret_op

 2. old_call_dos
 3. end_of_mem

 4. new_call_dos

57. Поле JFT (Job File Table - Таблица Файлов Задачи) представляет собой:

 1. массив из 40 однобайтных элементов

 2. массив из 20 однобайтных элементов

 3. матрицу элементов

 4. строку данных

58. При обработке JFT DOS использует:
 1. прямое обращение к полю JFT PSP
 2. косвенное обращение - через поле JFT_ptr
 3. мандатное обращение к полю JFT PSP
 4. нелинейное обращение к полю JFT PSP
59. Функция addr_PSP():

 1. определяет старшее число номера версии DOS
 2. определяет номер следующего кластера, анализируя FAT

 3. возвращает сегментный адрес PSP путем использования функции DOS 62h

 4. предназначена для лексического разбора задания

60. Функция get_DOS_version_h():

 1. определяет старшее число номера версии DOS
 2. определяет номер следующего кластера, анализируя FAT

 3. возвращает сегментный адрес PSP путем использования функции DOS 62h

 4. предназначена для лексического разбора задания

Часть В

1. По какому адресу в BIOS формируется список оборудования.
2. Для чего используется программа DEBUG.

3. На чем физически расположена видеопамять:

4. Первые 16 байт области данных BIOS содержат адреса
5. В области данных BIOS по адресу 417Н хранится
6. Сведения об авторском праве BIOS системы встроены в
7. Типом чего является EGA:
8. Как называются переменные, которые предопределены по умолчанию именами, например: _AL, _AH, _BX, _BL:
9. Что является минимальной адресуемой единицей при обращениях к внешней памяти:
10. Как называется самый первый сектор жесткого диска:
11. Можно также просматривать содержимое регистров после выполнения каждой инструкции с помощью команд:
12. Команда А приказывает DEBUG начать воспринимать ввод символьных инструкций и преобразовывать их в:
13. Что позволяет делать TASM?
14. В каком виде представлены адреса:

[image: image2.png]FFO0EFF

M3V BIOS
FE0:0000
Jonommremmse I13Y
conn0n0
Bugeonanats
Av00:0000
DOS u rpammuTHEe mporpavms
oos0:0000
Ofnaca gamsrx BIOS n DOS
o040:0000
Tafmma eexTopor mpepsIzanmit
0000:0000

15. Текстовой режим обеспечивает работу с полным набором ASCII кодов. Какое количество символов в наборе.

16. Какая комбинация определяет номер одного из шестнадцати возможных цветов отображения символов:

Часть С

1. Напишите понятие системного программирования.
2. Опишите структуру памяти.

3. Какие регистры содержатся в современном компьютере.

4. Опишите директивы процессора.

5. Опишите алгоритм операции умножения.

6. Что такое ассемблерная вставка и зачем она нужна.

4. Критерии по выставлению баллов
	Определение количества тестовых вопросов (заданий)

	Количество часов учебной дисциплины согласно учебному плану
	Всего
	Часть А
	Часть В
	Часть С

	74
	82
	60
	16
	6

	Сводная таблица с критериями баллов

	Части
	Баллы

	А
	40

	B
	40

	C
	20

	Итого (макс. баллы)
	100

	Критерии оценок

	Баллы
	Оценки

	86-100
	5

	71-85
	4

	49-70
	3

	Менее 48 баллов
	перезачет

Время выполнения тестовых заданий: 60 минут астрономического ко
6

