	[image: image83.png]Linux-j8oy

YaST Control Center

SoTtarER | [ortine Update
i Software Management
Syeten ad-on products
e e Media Check

e S Softvare Repositories
Security and Users

support
i

Run] [Quit]

	МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БАШКОРТОСТАН

Государственное бюджетное профессиональное образовательное учреждение

Уфимский колледж радиоэлектроники, телекоммуникаций и безопасности

	
	УТВЕРЖДАЮ

Зам. директора

_____________ Л.Р. Туктарова

«29» августа 2017 г.

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ

ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ

ПРАКТИЧЕСКИХ РАБОТ

ДИСЦИПЛИНА «ОПЕРАЦИОННЫЕ СИСТЕМЫ И СРЕДЫ»

специальность 09.02.07 «Информационные системы программирование»
	
	 СОГЛАСОВАНО

 Зав. кафедрой

 __________ М.Е. Бронштейн
РАЗРАБОТЧИК
___________А.В. Казанцев

Уфа 2017 г.

СОДЕРЖАНИЕ

	
	Стр.

	Предисловие
	3

	Практическая работа № 1 «Изучение современных операционных систем»
	5

	Практическая работа № 2 «Работа с операционными системами. Использование виртуальной машины»
	11

	Практическая работа № 3 «Сравнение файловых систем Windows и UNIX»
	21

	Практическая работа № 4 «Управление параметрами загрузки ОС»
	28

	Практическая работа № 5 «Выполнение конфигурирования аппаратных устройств»
	38

	Практическая работа № 6 «Управление виртуальной памятью. Настройка файла подкачки»
	44

	Практическая работа № 7 «Установка операционной системы Windows 7»
	49

	Практическая работа № 8 «Установка операционной системы Linux дистрибутива openSUSE»
	53

	Практическая работа № 9 «Выполнение команд в среде ОС Linux и Windows»
	60

	Практическая работа № 10 «Функции файловой системы по обработке и управлению данными»
	65

	Практическая работа № 11-12 «Создание и выполнение командных файлов»
	69

	Практическая работа № 13 «Задание прав доступа к файлам и каталогам в Linux»
	75

	Практическая работа № 14 «Задание прав доступа к файлам и каталогам в Windows»
	78

	Практическая работа № 15 «Создание и делегирование прав пользователей в Windows»
	80

	Практическая работа № 16 «Создание и делегирование прав пользователей в Linux»
	83

	Практическая работа № 17 «Написание и компиляция программ в Windows»
	88

	Практическая работа № 18 «Написание и компиляция программ в UNIX»
	91

	Практическая работа № 19 «Системные вызовы для работы с сигналами в UNIX»
	95

	Практическая работа № 20 «Процессы и межпроцессное взаимодействие в Windows и UNIX»
	99

	Приложение
	106

ПРЕДИСЛОВИЕ

Методические указания для студентов по выполнению практических работ адресованы студентам очной формы обучения.

Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам, правильного составления отчетов.

Приступая к выполнению практической работы, необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами (ФГОС), краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы.

Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем.

Наличие положительной оценки по практическим работам необходимо для допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических работ

1. Студент должен прийти на практическое занятие подготовленным к выполнению практической работы.

2. После проведения практической работы студент должен представить отчет о проделанной работе.

3. Отчет о проделанной работе следует выполнять в журнале практических работ на листах формата А4 с одной стороны листа.

Оценку по практической работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.

Зачет по выполнению практических работ студент получает при условии выполнения всех предусмотренных программой работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий.

Обеспеченность занятия (средства обучения):

1. Учебно-методическая литература:

1. Батаев А.В. Операционные системы и среды: учебник для студ. учреждений сред. проф. образования / А.В. Батаев, Н.Ю. Налютин, С.В. Синицын. – М.: Издательский центр «Академия», 2014 – 272 с.

2. Операционные системы, среды и оболочки: Учебное пособие / Т.Л. Партыка, И.И. Попов. - 5-e изд., перераб. и доп. - М.: Форум: НИЦ ИНФРА-М, 2013. - 560 с.: ил.
3. Цветкова М.С. Информатика: учеб. для нач. и сред. проф. образования / М.С. Цветкова, Л.С. Великович. – М.: Издательский центр «Академия», 2013. – 352 с.

2. Справочная литература:

1. Вавренюк А.Б. Операционные системы. Основы UNIX: учеб. пособие / А.Б. Вавренюк, О.К. Курышева, С.В. Кутепов, В.В. Макаров. – М.: ИНФРА-М, 2016. – 160 с.

2. Панасюк К.А. Операционные системы: учебное пособие. / К.А. Панасюк, О.А. Капустина, И.В. Засидкевич; ФГБОУ ВО «ОГАУ», Типография «Экспермм-печать». – Оренбург, 2016. – 160 с.

3. Таненбаум Э., Бос Х. Современные операционные системы. 4-е изд. – СПб.: Питер, 2015 – 1120 с.: ил.

3. Технические средства обучения:

- компьютер SIS 650 GX iC 1700 128DR/20Gb/int vid aud/CD52x/lan/key/mousNet/CM570/G06 – 19 шт;

- комплекты компьютерных комплектующих – 15 комп.

4. Программное обеспечение: Microsoft Windows XP/7/8/10, Microsoft Office, Oracle VM Virtual Box, дистрибутив OpenSUSE 13.1.
5. Отчет по выполнению практических работ.
Порядок выполнения отчета по практической работе

1. Ознакомиться с теоретическим материалом по практической работе.

2. Записать краткий конспект теоретической части.

3. Выполнить предложенное задание согласно варианту по списку группы.

4. Продемонстрировать результаты выполнения предложенных заданий преподавателю.

5. Записать код программы в отчет.

6. Ответить на контрольные вопросы.

7. Записать выводы о проделанной работе.

Практическая работа № 1
«Изучение современных операционных систем»

Цель работы: изучить наиболее популярные современные операционные системы для компьютеров.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:
- управлять параметрами загрузки операционной системы;

- выполнять конфигурирование аппаратных устройств.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- архитектуры современных операционных систем.

Краткие теоретические и учебно-методические материалы по теме практической работы

Операционная система – это комплекс взаимосвязанных системных программ, назначением которого является – организовать взаимодействие пользователя с компьютером и выполнение всех других программ.
Современные операционные системы используют графический интерфейс пользователя (от англ. GUI – Graphical User Interface). GUI позволяет использовать мышь, клавиатуру и джойстик для управления экранными объектами (иконки, кнопки, значки, меню), которые представлены пользователю на дисплее, в виде сочетании графики и текста. GUI каждой операционной системы имеет свой внешний вид, но все они разработаны так, чтобы быть максимально простым в использовании.

Наиболее популярные операционные системы для компьютера

Наиболее популярными являются операционные системы:

- Microsoft Windows;

- Apple Mac OS X;

- Linux.

Microsoft Windows

Компания Microsoft создала операционную систему Windows в начале 1980-х годов
Семейство операционных систем Windows представляется следующими версиями:

- Windows 95;

- Windows 98;

- Windows 2000;

- Windows ME;

- Windows XP;

- Windows Vista;

- Windows 7;

- Windows 8;

- Windows 10.

История Windows началась в 1985 году. Билл Гейтс сделал графическое окружение для операционной системы того времени. Он назвал свое детище – Windows 1.0.

В 1995 году компания Microsoft выпустила операционную систему, названную Windows 95 (рис. 1).
[image: image2.jpg]

Рис. 1. Логотип Windows 95

В Windows 98 уже были учтены и исправлены все ошибки предыдущей версии, логотип которой показан на рисунке 2.

[image: image3.jpg]

Рис. 2. Логотип Windows 98

Версия Windows 2000 позиционировалась как система для дома и офиса (рис. 3).
[image: image4.jpg]Professional

Built on NT Technology

Starting up.
Copyright © 1985-1999 Microsoft Corporation

Рис. 3. Логотип Windows 2000
ОС Windows ME была выпущена как обновление Windows 2000 (Рис. 4).

[image: image5.jpg]

Рис. 4. Логотип Windows ME
Одна из самых удачных версий операционной системы по мнению пользователей – Windows XP (рис. 5). У системы появились поразительные мультимедийные способности, повысились стабильность и безопасность. Windows XP была выпущена 25 октября 2001 года.
[image: image6.jpg]Ny

1L 5

Wlndowsxp

Рис. 5. Логотип Windows XP
Windows Vista — операционная система семейства Windows NT корпорации Microsoft. Была выпущена 30 января 2007 года.
[image: image7.jpg]

Рис. 6. Логотип Windows Vista
Windows 7 — пользовательская операционная система семейства Windows NT (рис.7). Операционная система поступила в продажу 22 октября 2009 года.
[image: image8.jpg]‘.ﬁ. Windows /

Рис. 7. Логотип Windows 7

Windows 8 предназначена для рабочих станций, персональных компьютеров и портативных устройств (рис. 8). Была выпущена 17 октября 2013 года.
[image: image9.jpg]Windows 8 B

Рис. 8. Логотип Windows 8

Windows 10 — операционная система для персональных компьютеров и рабочих станций (рис. 10). Была выпущена 1 октября 2014 года.
[image: image10.jpg]== Windows 10

Рис. 10. Логотип Windows 10
Apple Mac OS X
OS X – проприетарная (англ. proprietary software; от proprietary — частное, патентованное, в составе собственности) операционная система производства Apple (рис. 11).
[image: image11.png]

Рис. 11. Логотип macOS

Операционная система OS X значительно отличается от предыдущих, «классических» версий Mac OS. Основа этой системы – POSIX-совместимая операционная система Darwin, являющаяся свободным программным обеспечением.

Также OS X отличается высокой устойчивостью. В этой операционной системе используется вытесняющая многозадачность и защита памяти, позволяющие запускать несколько изолированных друг от друга процессоров, каждый из которых не может прервать или модифицировать все остальные.

Наиболее заметно здесь изменился графический интерфейс, который получил название Aqua.

Основами OS X являются:

· Подсистема с открытым кодом – Darwin (ядро Mach и набор утилит BSD)

· Среда программирования Core Foundation (Carbon API, Cocoa API и Java API)

· Графическая среда Aqua (Quick Time, Quartz Extreme и Open GL)

· Технологии Core Image, Core Animation, CoreAudio и CoreData

Linux

Linux – общее название UNIX подобных операционных систем на основе одноименного ядра и собранных для него библиотек и системных программ, разработанных в рамках проекта GNU.

Ядро Linux создается и распространяется в соответствии с моделью разработки свободного и открытого программного обеспечения. Они распространяются в основном бесплатно в виде различных готовых дистрибутивов, имеющих свой набор прикладных программ и настроенных под конкретные нужды пользователя.

Первый релиз ядра состоялся 5 октября 1991 года.

Есть много различных версий Linux и каждая из них имеет свой внешний вид. Наиболее популярные из них: Ubuntu, Mint, Fedora и OpenSUSE.
[image: image12.jpg]ubuntu

 [image: image13.png]

[image: image14.png]

 [image: image15.png]openSUSE

Рис. 12. Логотипы дистрибутивов Linux

В большей степени дизайн Linux систем базируется на принципах, заложенных вUnix в течение 1970-х и 1980-х годов. Такая система использует монолитное ядро Linux, которое управляет процессами, сетевыми функциями, периферией и доступом к файловой системе.

Драйверы устройств либо интегрированы непосредственно в ядро, либо добавлены в виде модулей, загружаемых во время работы системы. Пользовательские компоненты GNU являются важной частью большинства Linux систем, которые включают в себя наиболее распространенные реализации библиотеки языка Си, популярных оболочек операционной системы, и многих других общих инструментов Unix, которые выполняют многие основные задачи операционной системы. Графический интерфейс пользователя в большинстве систем Linux построен на основе X Windows System.
Задания для практического занятия

1. Изучить теоретическую часть.
2. Дать определение операционной системе.

3. Заполнить таблицу для Windows
	Операция система Windows
	Год выпуска
	Предназначение

	Windows 95
	
	

	Windows 98
	
	

	…
	
	

4. Записать особенности и основы ОС Apple Mac OS X.
5. Записать когда был первый релиз ядра Linux.
6. Заполнить таблицу для Linux для 5 различных версий
	Операционная система Linux*
	Год выпуска*
	Предназначение*

	Ubuntu
	
	

	Mint
	
	

	Fedora
	
	

	OpenSUSE
	
	

	Из таблицы**
	
	

* информацию о различных версиях Linux необходимо найти в Интернете

** из таблицы ниже по вариантам

	Вариант №
	Версия Linux

	1
	Kubuntu

	2
	Lubuntu

	3
	Xubuntu

	4
	CentOS

	5
	Red Hat Linux

	6
	ALT Linux

	7
	Mandrake Linux

	8
	Debian

	9
	Arch Linux

	10
	ChaletOS

7. Сделать вывод по работе.
Контрольные вопросы

1. Какие наиболее популярные операционные системы?
2. Что такое GUI? Что он позволяет?

3. Что такое Linux?

Практическая работа № 2

«Работа с операционными системами. Использование виртуальной машины»

Цель работы: ознакомление с преимуществами и недостатками виртуальных машин, а также изучение возможностей менеджера виртуальных машин Oracle VirtualBox.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять параметрами загрузки операционной системы;

- выполнять конфигурирование аппаратных устройств.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- архитектуры современных операционных систем.

Краткие теоретические и учебно-методические материалы по теме практической работы

Виртуальная машина - это полностью изолированный программный контейнер, способный выполнять собственную операционную систему и приложения, как физический компьютер. Виртуальная машина работает абсолютно так же, как физический компьютер, и содержит собственные виртуальные (т.е. программные) ЦП, ОЗУ, жесткий диск и сетевую интерфейсную карту.

По сути, виртуальная машина – это программа, которая запускается из операционной системы. Программа эмулирует реальную машину. На виртуальные машины, как и на реальные, можно ставить операционные системы. У неё есть BIOS, отведенное место на жестком диске, сетевые адаптеры для соединения с реальной машиной, сетевыми ресурсами или другими виртуальными машинами.

Эмуляция (англ. emulation) – комплекс программных и аппаратных средств, предназначенных для копирования (или эмулирования) функций одной вычислительной системы (гостя) на другой, отличной от первой, вычислительной системы (хосте), таким образом, чтобы эмулированное поведение как можно ближе соответствовало поведению оригинальной системы.

Преимущества виртуальных машин

Перед возможностью установки нескольких хостовых операционных систем на один компьютер с их раздельной загрузкой, виртуальные машины имеют следующие неоспоримые преимущества:

· возможность работать одновременно в нескольких системах, осуществлять сетевое взаимодействие между ними;

· возможность сделать «снимок» текущего состояния системы и содержимого дисков одним кликом мыши, а затем в течение очень короткого промежутка времени вернуться в исходное состояние;

· простота создания резервной копии операционной системы (не надо создавать никаких образов диска, всего лишь требуется скопировать папку с файлами виртуальной машины);

· возможность иметь на одном компьютере неограниченное число виртуальных машин с совершенно разными операционными системами и их состояниями;

· отсутствие необходимости перезагрузки для переключения в другую операционную систему.

Недостатки виртуальных машин

Несмотря на все преимущества, виртуальные машины также имеют и свои недостатки:

· потребность в наличии достаточных аппаратных ресурсов для функционирования нескольких операционных систем одновременно;

· операционная система работает несколько медленнее в виртуальной машине;

· существуют методы определения того, что программа запущена в виртуальной машине (в большинстве случаев, производители систем виртуализации сами предоставляют такую возможность). Вирусописатели и распространители вредоносного программного обеспечения, конечно же, в курсе этих методов и в последнее время включают в свои программы функции обнаружения факта запуска в виртуальной машине, при этом никакого ущерба вредоносное ПО гостевой системе не причиняет;

· различные платформы виртуализации пока не поддерживают полную виртуализацию всего аппаратного обеспечения и интерфейсов (USB, CR-ROM и т.п.).

Виртуальная машина Oracle VirtualBox

VirtualBox - очень простой, мощный и бесплатный инструмент для виртуализации, развивающийся благодаря поддержке корпорации Oracle. Он распространяется бесплатно, с открытым исходным кодом. VirtualBox позволяет устанавливать в качестве гостевой практически любую современную операционную систему, такие как Windows, MacOS или любой из многочисленных представителей семейства Linux.

Преимуществом VirtualBox является простой и понятный пользовательский интерфейс (рис. 1) . Все основные функции вынесены в виде кнопок под меню (Создать, Настроить, Запустить, Сбросить).

[image: image16.png]) Oracle VM VirtualBox Mexeaxep -8

@ & 9

Coagate Hacrpouts Samyrite Chpoais

Y- Blicer Bl

Vi Opensuse13.
Onepauortan crcreva: openSUSE (32bit)

o Orepameannavare: 102415
G\or Popaaor sapysort . COIOVD, Kecro ave Opensusel3

P— 20

Cepees yuanssoro s Susinones

fraons Sornoun

Hooren

Korponnep: SATA
‘SATA nop 0: Kdenlive-disk 1.vmdk (OB, 50,00 I6)
SATA nopr 1: Kdenlive-disk2.vmdk (OB, 5,00 16)
SATA iopT 2: [Mpusoa CD/DVD] Mycto

B Avawo

s ——

Ayavo-xorTponnep: | ICH ACS7

Рис. 1. Oracle VirtualBox Менеджер

Создание виртуальных машин выполняется с помощью пошагового мастера. Для того чтобы создать виртуальную машину необходимо нажать кнопку «Создать» и откроется мастер настройки новой виртуальной машины (рис. 2).

[image: image17.png]Cosgars supTyansHyto MaLHy.

YkaxuTe ums 1 Tun OC

Tlaanyicra Sseame i Hos0l BDTyRILHOA Nk BSGEpITE T
ONepa0r O AT, KOTODYO Bl COBVpaETECS YCTaromTS o gartpo
oy, 2208 Bt i B/RET HENON30SaToCA A7 WAL B

e |

o Moot Windows
Bepons: |Windows XP (32bit)

Рис. 2. Мастер настройки новой виртуальной машины

После задания имени виртуальной машины в поле «Имя», выбора типа операционной системы (Windows, Linux, Solaris, Mac OS и т.п.) и версии (Windows XP, openSUSE, Oracle Solaris, Mac OS), далее следует выбрать объём оперативной памяти, который будет доступен для виртуальной машины (следует знать, что объём оперативной памяти виртуальной машины не должен превышать половины объёма оперативной памяти основной операционной системы).

После того как объём оперативной памяти установлен, необходимо выбрать или создать виртуальный жесткий диск (рис. 3).

Виртуальный жесткий диск – это аналог реального жесткого диска, куда следует устанавливать операционную систему и хранить данные. При создании нового виртуального жесткого диска будет создан файл с определенным расширением, которое соответствует виртуальной машине.

[image: image18.png]0 Emommmemey

BuiBepyTe Xk Anck
Y X281 K HOBOT BVTYSIoHOT MaLYAAE HOXKHO TORKTIOHT VPTG
NGO, ot NOKETE Co325T KOS A SRR 13 YK€ LIS,

Eci Ban HeoB0aa Gonee CroNHas KOADHTPaLLS Bl HOXETE MpOMYCTHTS
STOT War 1 BHECTH MSHErHeH5 5 HACTPOTiK aLHSIMOCTE 8 CosRaHE.

"PexonenayeNsii 0FiEH HOSOTO SUPTYaNHOr0 XECTKONO A1k pasen 25,00 6.
O He noaKmouaTs BUPTYaNbHSIH KECTIUNT AUCK

) Co3naTs HOBbii BUPTYaNbHSIH KECTIUNT AMCK

O Venonssosat cyuecTayouui sHpT YA KECTION KoK

VD2.vdi (Obtrta, 10,54 15) R

Рис. 3. Настройка виртуального жесткого диска

Для создания нового жестокого диска нужно выбрать пункт «Создать новый виртуальный жесткий диск» и нажать кнопку «Создать». Затем необходимо выбрать тип жесткого диска, по умолчанию это «VDI – VirtualBox Disk Image».

Далее необходимо выбрать формат хранения: динамический или фиксированный (рис. 4). Динамический формат – занимает место на диске хостовой операционной системы по мере заполнения, однако не сможет уменьшиться в размере если место, занятое его содержимым, освободится. Фиксированный формат – занимает сразу определенное количество места, и имеет преимущество в том, что быстрее работает (скорость чтения/записи информации).

Для компьютеров с жестким диском малого размера лучше выбирать – динамический формат.

[image: image1.jpg]

Рис. 4. Формат хранения

Далее выбирается место хранение виртуального жесткого диска (рис. 5) и указывается его имя.

[image: image19.png]© G

YaxwTe umis v pasmep Gaiina

TIOXANWICTa YKEKMTE UMS HOBOTO BUPT YaNIbHONO KECTKOTD ANCKa.
Tecrosan =

YaNUTE PaSHED BADTYNoHOr HECTKOND MUCKa. 3T BENUHA OTPaHIISaET pasHep Gaiinossix
RaHHIX KOTOPSE SHDTYaIoHaR HALIHE CHOXET JPaHTS Ha STOM TUCKE.

U - wm

40015 20078

Рис. 5. Имя и место сохранения виртуального жесткого диска

После нажатия кнопки «Создать» и в менеджере станет доступной новая виртуальная машина (рис. 6).

[image: image20.png]Y- Blicer Bl

2008 Onepawonas cnctema: Windows 7 (32 bit)
@ Bercnosera

Tecroman
© Boxnoera

P— P
Cepees yuamssoro s Sowinones
fraons Sornoun
Hooren

Konrponnep: IDE
Bropuuii wactep IDE: [puson CD/DVD] Mycro
Korrponnep: SATA

SATA nopr 0 Tecrosas. v (OB, 25,00 5)
B Avano
Ayavonpaiieep: Windows DirectSound

Ayavo~<orTponnep: Intel HD Audio

Рис. 6. Созданная виртуальная машина

Настройка виртуальной машины

После того как виртуальная машина создана, необходимо её настроить для корректной работы. Для этого выбирается нужная виртуальная машина, и нажимается кнопка «Настроить», где далее откроется окно, показанное на рисунке 7.

[image: image21.png]Tectosas - HacTpoiiki

Vo [Tecrossn

T Moot Windows

Bepons: | Windows 7 (32bit)

Рис. 7. Настройки виртуальной машины

В разделе «Общие» настраиваются: имя виртуальной машины, тип и версия ОС (рис. 7).

В разделе «Система» настриваются: порядок загрузки, объем оперативной памяти, манипулятор курсора (рис. 8).

В разделе «Дисплей» настраивается объём выделяемой видеопамяти и количество используемых мониторов.

В разделе «Носители» настраиваются носители информации, такие как виртуальный жесткий диск, привод оптических дисков (CD-ROM, DVD-ROM и т.п.), флоппи диски и т.п.

В разделе «Аудио» настраивается драйвер для звука.

В разделе «Сеть» выбирается сетевой адаптер и тип подключения к сети.

В разделе «USB» выбираются USB-устройства, которые будут отображаться в гостевой операционной системе.

В разделе «Общие папки» настраиваются папки, которые будут доступны и в хостовой, и в гостевой операционных системах.

[image: image22.png]D Tectoeas - Hactpoiikn

Ocvomman nanas:
[—c]= T
@cwow |
B Kecrenii e
O & cem
o]

Jrem——

Rononwumensrsie soswoxciocrn: [] Bravows 1/0 APIC
[Bimouwms EFI (onsko cewianstisie OC)
[Hacsi 8 cucreme UTC

[oc][omes | [cwama |

Рис. 8. Настройки: система

При настройке виртуальной системы следует уделить внимание, разделу «Носители», так как необходимо правильно настроить виртуальный жесткий диск и привод оптических дисков. В разделе «Носители» следует удалить все контроллеры, для этого необходимо выбрать контроллер и щелкнуть кнопку «Удалить контроллер» (рис. 9).

[image: image23.png]

Рис. 9. Кнопка «Удалить контроллер»

Далее создается нужный контроллер, нажимается кнопка «Создать котроллер» и из выпадающего меню выбирается, например «Добавить IDE контроллер» (рис. 10).

[image: image24.png]Hoamen wiopraum Vigoprawn

epeso HowTenei xbopraLm HOXeT conepaTs
HECKOMSKO KOHTRONEpOE a3 Tunos. faras
M2 He HEET MORKIOHEAHEX KONTPOTERDS.

surs IDE ko
Lobasurs SATA korTponnep.
LoBasurs SCS| kontponnep

5666

LoBasurs SAS xorTponnep.

Lobasurs Floppy korTponnep.

&

Рис. 10. Добавление контроллера

После того как контроллер добавлен, необходимо добавить созданный виртуальный жесткий диск. Для этого выбирается контроллер, и нажимается кнопка «Добавить жесткий диск» (рис. 11).

[image: image25.png]HocuTem sgopnatm ATpByTS!

O Kompomepi e (@ o [10E
T [P0
[¥] Keunposare onepauii ssonafessona

@ VirtualBox - Bonpoc ?

B cobpaeTecs R0BEHTS BUPTYaRLHSIA XECTION AUCK K
KorTponnepy IDE.

Kensere cosaars Hoswii mCToR alin ans ke
ConepAOr0 BHGKa Wk SHEpaT CRLECTE O

oo st] [o] | ones

BEee

Рис. 11. Добавление жесткого диска

Если жесткий диск был сформирован на этапе создания виртуальной машины, то следует выбрать пункт «Выбрать существующий диск», в противном случае создается новый виртуальный диск.

После того как жесткий диск добавлен, необходимо добавить источник откуда будет установлена операционная система, т.е. виртуальный CD-ROM (привод оптических дисков), либо Floppy-дисковод.

На сегодняшний день многие операционные системы поставляются в виде образа оптического диска с расширение ISO, т.е. это файл который монтируется в виртуальный привод (CD-ROM). Для монтирования необходимо в разделе «Носители» нажать кнопку «Добавить привод оптических дисков» (рис.12) и далее выбрать образ оптического диска с установщиком операционной системы.

[image: image26.png]@ VirtualBox - Bonpoc

B cobpaeTecs A0GaBUTS OB WSO
OTIn4ECuK AUCKO K KoHTponnepy DE.

enaere separs ofipas ommieckoro anaka

W noMeCTITS €r0 & A MPVE0R W
ocrasuTs npason nycTm?

L
Eee

Рис. 12. Монтирование образа операционной системы

После того как виртуальный жесткий диск и виртуальный привод настроены, необходимо перейти к запуску виртуальной машины с целью установки ОС, либо непосредственно загрузки ОС.

Запуск виртуальной машины представляет собой работу программы, где в отдельном окне будет отображаться загруженная операционная система (рис. 13).

[image: image27.png]starting HS-DOS

IMEM is testing extended memory...dome.
:\>C:\DOS\SHARTDRY .EXE /X

ODE prepare code page function completed
IS

Рис. 13. Виртуальная машина MS-DOS
В верхней части окна находится главное меню, которое позволяет настраивать рабочее окно и добавлять устройства во время работы виртуальной машины. В нижней части окна находится дополнительное меню, необходимое для просмотра состояния машины, быстрой смены оптических и Floppy дисков, быстрой смены USB устройств и отображение хост-клавишы (переключает состояние захвата клавиатуры и мыши).
Задания для практического занятия

1. Запустить Oracle VirtualBox.

2. Создать виртуальные машины для указанных операционных систем в таблице 1 с заданными параметрами.

3. Выполнить установку MS-DOS (поставляет в виде 5-ти Floppy дисков), следуя инструкциям на экране.

4. Перезагрузить MS-DOS.

5. Выполнить запуск MS-DOS.

6. Выполнить запуск ReactOS или Altlinux, в соответствии с заданием в таблице 1.

7. Завершить работу операционных систем.

8. Завершить работу Oracle VirtualBox.

Таблица 1

Варианты заданий

	№
	Операционные системы
	Объем оперативной
памяти
	Формат хранения, объем виртуального жесткого диска

	1
	ReactOS-LiveCD
MS-DOS
	128Мб

8Мб
	динамический – 2Гб

фиксированный – 100Мб

	2
	altlinux-live-cd

MS-DOS
	128Мб

8Мб
	динамический – 2Гб

фиксированный – 110Мб

	3
	ReactOS-LiveCD
MS-DOS
	256Мб

16Мб
	динамический – 4Гб

фиксированный – 120Мб

	4
	altlinux-live-cd

MS-DOS
	256Мб

16б
	динамический – 4Гб

фиксированный – 130Мб

	5
	ReactOS-LiveCD
MS-DOS
	512Мб

24Мб
	динамический – 6Гб

фиксированный – 140Мб

	6
	altlinux-live-cd

MS-DOS
	512Мб

24Мб
	динамический – 6Гб

фиксированный – 150Мб

	7
	ReactOS-LiveCD
MS-DOS
	192Мб

32Мб
	динамический – 8Гб

фиксированный – 160Мб

	8
	altlinux-live-cd

MS-DOS
	192Мб

32Мб
	динамический – 8Гб

фиксированный – 170Мб

	9
	ReactOS-LiveCD
MS-DOS
	320Мб

64Мб
	динамический – 10Гб

фиксированный – 180Мб

	10
	altlinux-live-cd

MS-DOS
	320Мб

64Мб
	динамический – 10Гб

фиксированный – 190Мб

Контрольные вопросы

1. Что такое виртуальная машина?

2. Есть ли у виртуальной машины свой BIOS?

3. Можно управлять ресурсами виртуальной машины? Какими?

Практическая работа № 3

«Сравнение файловых систем Windows и UNIX»

Цель работы:

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- принципы управления ресурсами в операционной системе;

- архитектуры современных операционных систем.

Краткие теоретические и учебно-методические материалы по теме практической работы

Файловая система — это базовая структура, которую компьютер использует для упорядочивания данных на жестком диске или в разделе. При установке на компьютере нового жесткого диска необходимо отформатировать его в файловой системе до начала работы.

Файловые системы Windows
В операционной системе Windows 2000, Windows XP; и семействе Windows Server 2003 используется новая версия файловой системы NTFS (New Technology File System). В предыдущих версия Windows использовались файловые системы FAT16 и FAT32 (File Allocation Table).

Системы FAT и FAT32 похожи друг на друга, за исключением того что система FAT32 позволяет работать с дисками большего объема, чем FAT. Наибольшими возможностями по работе с дисками большого объема обладает файловая система NTFS.

Файловые системы UNIX
Файловая структура операционной системы Linux (UNIX-подобная система) кардинально отличается от Windows – это произошло из-за того, что системы писались разными разработчиками с использованием различного кода. Вы не найдете папку «Мои документы» в Ubuntu и не найдете «Program Files» в Fedora. Там нет даже C: или D: дисков.

Вместо этого, существует дерево файлов (рис.1), и все ваши диски монтируются в этом дереве. Ваш домашний каталог и директория рабочего стола являются двумя частями одного дерева файлов.
[image: image28.jpg]

Рис. 1. Структура файловой системы UNIX
Файловая система по умолчанию для многих UNIX-подобных систем Ext4 (четвертая расширенная файловая система), но также можно выбрать типы Btrfs, Ext2, Ext3, FAT, XFS, Swap. Последняя относится к тому подкачки.
При создании разделов существуют следующие точки монтирования (каталоги корневой файловой системы, показанные на рисунке 1):

/home – каталог для размещения начальных каталогов пользователей;

/var – используется для хранения файлов различных сервисных программ;

/opt – каталог для дополнительного коммерческого программного обеспечения;

/boot – каталог, где хранится загрузчик операционной системы;

/srv – каталог для хранения данных сервисных служб;

/tmp – каталог для временных файлов;

/usr/local – каталог для дополнительного свободно распространяемого программного обеспечения.

Особенности файловых систем Windows
1) Поиск данных файла (скорость доступа к произвольному фрагменту файла).

Этот параметр показывает, насколько сильно сама файловая система страдает от фрагментации файлов. • Абсолютный лидер — FAT16, он никогда не заставит систему делать лишние дисковые операции для данной цели. Затем идет NTFS — эта система также не требует чтения лишней информации, по крайней мере, до того момента, пока файл имеет разумное число фрагментов. <B.FAT32< B>испытывает огромные трудности, вплоть до чтения лишних сотен килобайт из области FAT, если файл разбросан разным областям диска. Если файл фрагментирован, но лежит компактной кучей фрагментов — FAT32 всё же не испытывает больших трудностей, так как физический доступ к области FAT будет также компактен и буферизован.

2) Поиск свободного места.

Данная операция производится в том случае, если файл нужно создать с нуля или скопировать на диск. Поиск места под физические данные файла зависит от того, как хранится информация о занятых участках диска. Этот параметр показывает, насколько быстро система сможет найти место для записи на диск новых данных, и какие операции

ей придется для этого проделать.

3) Работа с каталогами и файлами. Влияет на скорость осуществления любых операций с файлом, в том числе — на скорость любой операции доступа к файлу, особенно — в каталогах с большим числом файлов (тысячи).

Структура каталогов на NTFS теоретически гораздо эффективнее, но при размере каталога в несколько сотен файлов это практически не имеет значения. Для малых и средних каталогов NTFS имеет на практике меньшее быстродействие

Преимущества каталогов NTFS становятся реальными и неоспоримыми только в том случае, если в одно каталоге присутствуют тысячи файлов — в этом случае быстродействие компенсирует фрагментацию самого каталога и трудности с физическим обращением к данным (в первый раз — далее каталог кэшируется). Напряженная работа с каталогами, содержащими порядка тысячи и более файлов, проходит на NTFS буквально в несколько раз быстрее, а иногда выигрыш в скорости по сравнению с FAT и FAT32 достигает десятков раз.

Ниже оценивается быстродействие файловых систем FAT (FAT32) и NTFS, но существуют и другие, не менее важные причины, побуждающие пользователя использовать ту или иную файловую систему и в частности файловую систему NTFS:

· она обеспечивает, в отличие от FAT, возможность гибкой настройки ограничения доступа к конкретным файлам и каталогам, как на локальном компьютере, так и на сетевом. То есть она позволяет указать, какие пользователи и группы имеют доступ к файлу или папке и указать тип доступа.

· она имеет встроенные средства восстановления данных. В случае краха системы, установленной на диске с файловой системой NTFS, имеется возможность автоматически восстановить данные, используя информацию контрольных точек и журнала транзакций.

· Оригинальная структура папок файловой системы NTFS позволяет существенно ускорить доступ к файлам в папкам большого объема по сравнению со скоростью доступа к папкам такого же объема на томах FAT. Кроме того NTFS позволяет осуществлять сжатие отдельных папок и файлов, и обращаться к ним, не вызывая программы, производящей декомпрессию.

· Имеется возможность шифрования данных.

Каждая версия Windows имеет второе название NT (new technology) и указывается номер (Рис. 2).
[image: image29.png]Windows 95

Windows NT 4.0

Windows 98

Windows Millenium

‘Windows 2000 (NT 5.0)

(NT5.1)

Windows Vista (NT 6.0)

Windows 7 (NT 6.1)

Windows 8 (NT 6.2)

Windows 8.1 (NT 6.3)

Wi

10 (NT 10)

1995

1996

1998

2000

2000

2001

2006

2009

2012

2013

2015

Рис. 2. Версии для настольных компьютеров
Windows 9X, NT 4 поддерживают FAT16, Windows 98, NT5 поддерживают систему FAT32. NTFS поддерживают операционные системы начиная с NT4 и до NT10.
Обратим внимание на основные процессы, осуществляемые системой для доступа к файлам:

 Поиск свободного места

Данная операция производится в том случае, если файл нужно создать с нуля или скопировать на диск. Поиск места под физические данные файла зависит от того, как хранится информация о занятых участках диска.

На что влияет этот параметр: на скорость создания файлов, особенно больших. Сохранение или создание в реальном времени больших мультимедийных файлов (.wav, к примеру), копирование больших объемов информации, т.д. Этот параметр показывает, насколько быстро система сможет найти место для записи на диск новых данных, и какие операции ей придется для этого проделать.

· Для определения того, свободен ли данный кластер или нет, системы на основе FAT должны просмотреть одну запись FAT, соответствующую этому кластеру. Размер одной записи FAT16 составляет 16 бит, одной записи FAT32 — 32 бита. Для поиска свободного места на диске может потребоваться просмотреть почти всего FAT — это 128 Кбайт (максимум) для FAT16 и до нескольких мегабайт (!) — в FAT32. Для того, чтобы не превращать поиск свободного места в катастрофу (для FAT32), операционной системе приходится идти на различные ухищрения.

· NTFS имеет битовую карту свободного места, одному кластеру соответствует 1 бит. Для поиска свободного места на диске приходится оценивать объемы в десятки раз меньшие, чем в системах FAT и FAT32.

Вывод: NTFS имеет наиболее эффективную систему нахождения свободного места. Стоит отметить, что действовать "в лоб" на FAT16 или FAT32 очень медленно, поэтому для нахождения свободного места в этих системах применяются различные методы оптимизации, в результате чего и там достигается приемлемая скорость. (Одно можно сказать наверняка — поиск свободного места при работе в DOS на FAT32 — катастрофический по скорости процесс, поскольку никакая оптимизация невозможна без поддержки хоть сколь серьезной операционной системы).

 Работа с каталогами и файлами

Каждая файловая система выполняет элементарные операции с файлами — доступ, удаление, создание, перемещение и т.д. Скорость работы этих операций зависит от принципов организации хранения данных об отдельных файлах и от устройства структур каталогов.

На что влияет этот параметр: на скорость осуществления любых операций с файлом, в том числе — на скорость любой операции доступа к файлу, особенно — в каталогах с большим числом файлов (тысячи).

· FAT16 и FAT32 имеют очень компактные каталоги, размер каждой записи которых предельно мал. Более того, из-за сложившейся исторически системы хранения длинных имен файлов (более 11 символов), в каталогах систем FAT используется не очень эффективная и на первый взгляд неудачная, но зато очень экономная структура хранения этих самих длинных имен файлов. Работа с каталогами FAT производится достаточно быстро, так как в подавляющем числе случаев каталог (файл данных каталога) не фрагментирован и находится на диске в одном месте.
Единственная проблема, которая может существенно понизить скорость работы каталогов FAT — большое количество файлов в одном каталоге (порядка тысячи или более). Система хранения данных — линейный массив — не позволяет организовать эффективный поиск файлов в таком каталоге, и для нахождения данного файла приходится перебирать большой объем данных (в среднем — половину файла каталога).

· NTFS использует гораздо более эффективный способ адресации — бинарное дерево. Эта организация позволяет эффективно работать с каталогами любого размера — каталогам NTFS не страшно увеличение количества файлов в одном каталоге и до десятков тысяч.
Стоит заметить, однако, что сам каталог NTFS представляет собой гораздо менее компактную структуру, нежели каталог FAT — это связано с гораздо большим (в несколько раз) размером одной записи каталога. Данное обстоятельство приводит к тому, что каталоги на томе NTFS в подавляющем числе случаев сильно фрагментированы. Размер типичного каталога на FAT-е укладывается в один кластер, тогда как сотня файлов (и даже меньше) в каталоге на NTFS уже приводит к размеру файла каталога, превышающему типичный размер одного кластера. Это, в свою очередь, почти гарантирует фрагментацию файла каталога, что, к сожалению, довольно часто сводит на нет все преимущества гораздо более эффективной организации самих данных.

Вывод: структура каталогов на NTFS теоретически гораздо эффективнее, но при размере каталога в несколько сотен файлов это практически не имеет значения. Фрагментация каталогов NTFS, однако, уверенно наступает уже при таком размере каталога. Для малых и средних каталогов NTFS, как это не печально, имеет на практике меньшее быстродействие.

В FAT присутствуют ограничения: максимальный размер тома: 2Гбайта, максимальное число файлов на томе – примерно 65 тысяч, длина имени файла – 11 символов, но с поддержкой длинных имен – 255 символов, атрибуты файлов имеют базовый набор, безопасности и сжатия – нет, устойчивость к сбоям – средняя, неэкономичная – огромные размеры кластеров на больших дисках, быстродействие – высокое для малого числа файлов, но быстро уменьшается с появлением большого количества файлов в каталогах.

В FAT32 также присутствуют ограничения: имена файлов – 255 символов, атрибуты файлов имеют базовый набор, безопасности и сжатия – нет, устойчивость к сбоям – плохая, достаточно экономичная по сравнению с FAT – уменьшены размеры кластеров, быстродействие полностью аналогично FAT. По сравнению с FAT достоинства заключаются в следующем: максимальный размер тома практически не ограничен и максимальное число файлов практически не ограничено.
Файловая система NTFS имеет наилучшие характеристики: максимальный размер тома и максимальное число файлов практически не ограничены. Запись имен файлов ограничивается 255 символами, при чем любые символы любых алфавитов (65 тысяч начертаний). Атрибуты файлов никак не ограничены, можно использовать все что угодно. Безопасность и сжатие доступны, причем начиная с NT5.0 встроена возможность физически шифровать данные. Устойчивость к сбоям полная – автоматическое восстановление системы при любых сбоях. Экономичность максимальная. Быстродействие системы не очень эффективно для малых и простых разделов (до 1 Гбайта), но работа с огромными массивами данных и большими каталогами организована эффективно.

Особенности файловых систем UNIX

Extfs (Extended File System, расширенная файловая система) — первая файловая система, разработанная специально для ОС linux. Файловая система Ext2 была разработана с целью устранения ошибок, обнаруженных в предыдущей системе Ext и снятия некоторых ее ограничений.

Ext2 файловая система стала основой для LINUX. В качестве стандартных возможностей Ext 2 называются следующие:

• Поддержка стандартных типов файлов Unix: обычных файлов, папок, файлов устройств и символических связей.

• Поддержка больших разделов - до 4 Тб. Поддержка длинных имен файлов - до 255 символов.

Ext 3 - имеет точно такую же стуктуру, как и Ext 2, но Ext 3 ведет журнал, а Ext 2 - нет. Основная цель, которая преследуется при создании журналируемых файловых систем, состоит в том, чтобы обеспечить как можно большую вероятность быстрого восстановления системы после сбоев.
В журнал записывается три типа блоков данных:

1)Метаданные, 2)Блоки дескрипторов 3)Заголовочные блоки

Блок метаданных журнала содержит полностью один блок метаданных ФС, такой, как он обновляется транзакцией. Даже при малейших изменениях в ФС необходимо записать полный журнальный блок. Тем не менее, это не очень сильно сказывается на производительности, так как эти операции специально оптимизируются.

Блоки дескрипторов описывают другие блоки метаданных журнала, так что механизм восстановления данных может скопировать метаданные назад в основную ФС. Эти блоки записываются перед любыми изменениями метаданных журнала.

И, наконец, заголовочные блоки описывают заголовки и окончания журнала плюс порядковый номер, для гарантии порядка записи во время восстановления.
Максимальное число блоков для ext3 равняется 232. Размер блока может быть различным, что влияет на максимальное число файлов и максимальный размер файла в файловой системе.
	Размер блока
	Макс. размер файла
	Макс. размер файловой системы

	1 KiB
	16 GiB
	до 2 TiB

	2 KiB
	256 GiB
	до 8 TiB

	4 KiB
	2 TiB
	до 16 TiB

	8 KiB
	2 TiB
	до 32 TiB

Fourth extended file system (четвёртая расширенная файловая система (ФС)), сокр. ext4, или ext4fs — журналируемая ФС, используемая в ОС с ядром Linux. Основана на ФС ext3, ранее использовавшейся по умолчанию во многих дистрибутивах GNU/Linux.
Основные изменения по сравнению с ext3:

· увеличение максимального объёма одного раздела диска до 1 эксбибайта (260 байт) при размере блока 4 кибибайт;

· увеличение размера одного файла до 16 тебибайт (244 байт);

· введение механизма пространственной (extent) записи файлов, уменьшающего фрагментацию и повышающего производительность. Суть механизма заключается в том, что новая информация добавляется в конец области диска, выделенной заранее по соседству с областью, занятой содержимым файла.

Несмотря на надёжность Ext4, иногда она всё-таки портит файлы, когда происходит внезапное отключение питания при записи в них. Если хранить в одном каталоге более миллиона файлов, скорость работы с ними будет очень низкой.
Ext4 – конечная ветвь эволюции, развиваться она не будет. Из архитектуры Ext больше ничего нельзя выжать, да и разработчики сконцентрировали усилия на Btrfs (Butter FS).
Задания для практического занятия

1. На основе таблицы 1 сравнить файловые системы FAT16, FAT32, NTFS

Таблица 1 - Сравнительная характеристика файловых систем FAT16, FAT32, NTFS

	
	FAT16
	FAT32
	NTFS

	ОС
	
	
	

	Мах размер тома
	
	
	

	Мах число файлов на томе
	
	
	

	Имя файла
	
	
	

	Возможные атрибуты файла
	
	
	

	Безопасность
	
	
	

	Сжатие
	
	
	

	Устойчивость к сбоям
	
	
	

	Экономичность
	
	
	

	Быстродействие
	
	
	

2. На основе таблицы 2 сравнить файловые системы Ext,Ext2,Ext3,Ext4
	
	Ext
	Ext2
	Ext3
	Ext4

	ОС*
	
	
	
	

	Мах размер тома
	
	
	
	

	Мах число файлов на томе
	
	
	
	

	Имя файла
	
	
	
	

	Безопасность*
	
	
	
	

	Устойчивость к сбоям
	
	
	
	

* найти используя Интернет
Контрольные вопросы

1. Что такое файловая система?
2. Достоинства и недостатки файловой системы NTFS
3. Достоинства и недостатки файловой системы Ext4
Практическая работа № 4

«Управление параметрами загрузки ОС»

Цель работы:

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:
- управлять параметрами загрузки операционной системы;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- принципы управления ресурсами в операционной системе;

- архитектуры современных операционных систем.

Краткие теоретические и учебно-методические материалы по теме практической работы

Загрузчик операционной системы NTLDR, начиная с Windows Vista, заменен новым диспетчером загрузки BOOTMGR. Вызвано это тем, что NTLDR уже не годился для выполнения загрузки системы на компьютерах, использующих спецификацию Extensible Firmware Interface (EFI). EFI - новый расширенный интерфейс для доступа к компьютерному оборудованию, призванный заменить базовую систему ввода-вывода BIOS.

Новый диспетчер загрузки BOOTMGR ориентирован на использование специального хранилища конфигурации загрузки BCD (Boot Configuration

Data), а также специально разработанных приложений и данных спецификации EFI. Для совместимости с версиями Windows, предшествующим Windows Vista, новый диспетчер BOOTMGR обеспечивает поддержку загрузки операционных систем предыдущего поколения компьютеров на базе BIOS.

Механизм загрузки операционной системы Windows 7

Процесс загрузки любой операционной системы начинается всегда одинаково - после проверки оборудования, управление получает подпрограмма BIOS, (Basic Input/Output System), считывающая с устройства загрузки первый сектор, являющийся главной загрузочной записью MBR (Master Boot Record). Запись MBR располагается в первом секторе загрузочного диска и занимает 512 байт (стандартная длина сектора). Это не обязательное условие - MBR может занимать более одного сектора, что зависит от конкретной разновидности загрузчика. Хотя запись MBR не является строго зависимой от платформы загружаемой ОС, она отличается, например, для файловых систем DOS, Windows и Linux.

Структура любой записи MBR включает в себя 2 основных элемента - программный код первичного загрузчика и таблицу разделов. Обязательным признаком наличия записи MBR является специальный код (сигнатура) в двух последних байтах - 55AA. Наличие сигнатуры проверяется подпрограммой BIOS в первую очередь, и при ее отсутствии, диск считается не загрузочным.

В случае с загрузкой Windows 7 (а также Windows Vista / Server 2008 и последующих ОС семейства Windows) программный код загрузчика раздела выполняет подготовку и выполнение следующего этапа загрузки системы - считывание в оперативную память и передачу управления специальной программе - диспетчеру загрузки BOOTMGR .

Диспетчер загрузки bootmgr представляет собой файл небольшого размера, расположенный в корневом каталоге активного раздела. Основное его предназначение - обеспечение дальнейшей процедуры загрузки в соответствии с существующей конфигурацией, хранящейся в специальном хранилище - хранилище данных конфигурации (BCD - Boot Configuratin Data), представляющем собой файл с именем BCD, находящийся в каталоге BOOT активного раздела.

Как видим, следующий этап загрузки операционной системы обеспечивается уже диспетчером bootmgr в соответствии с существующей конфигурацией BCD. В общем случае, диспетчер загрузки может выполнить не только загрузку ядра установленной на данном компьютере Windows, но и другие, имеющиеся в конфигурации варианты - загрузку Windows NT/2000/XP, операционных систем семейства Linux, загрузку ОС из образов (файлов wim) , виртуальных дисков (файлов VHD) и т.п.

При стандартной установке операционной системы Windows 7 на новый жесткий диск, в качестве активного раздела используется, автоматически создаваемый при инсталляции в первой части диска, раздел небольшого размера (около 100Мб для Windows 7 и 350Мб для Windows 8). Данному разделу не присваивается буква, и в проводнике он не отображается. Это сделано с целью защиты загрузчика от небезопасных для него действий пользователя - удаления файлов конфигурации или самого диспетчера, сжатия файловой системы и т.п. Кроме того, при такой организации структуры диска, легко реализуется процедура восстановления активного раздела из ранее созданного образа без потери установленной системы и пользовательских данных.

При просмотре в Диспетчере логических дисков, активный раздел отображается под названием «Зарезервировано системой», как показано на рисунке 1.

[image: image30.png]

Рис 1. Управление дисками

Таким образом, для того, чтобы выполнилась загрузка Windows с диспетчером BOOTMGR, активный раздел, как минимум, должен содержать правильную загрузочную запись PBR, файл диспетчера bootmgr и конфигурационные данные в файле \BOOT\BCD, являющимся системным хранилищем конфигурации загрузки. В случае с загрузкой Windows, диспетчер bootmgr считывает из хранилища конфигурации данные, необходимые для загрузки ядра системы, и передает управление приложению, выполняющему следующий этап (winload.exe) .

Кроме хранилища конфигурации загрузки, в данном разделе могут быть файлы и каталоги, необходимые для выполнения загрузки в соответствии с имеющимися дополнительными конфигурациями, например, загрузчик предыдущих Windows NTLDR и необходимые для него файлы, а также средства поддержки национальных алфавитов (файлы локализации).

Хранилище данных конфигурации загрузки (BCD Store)

Обычно файл bootmgr и каталог \Boot имеет атрибуты "скрытый" и "системный". Для получения доступа к активному разделу стандартными средствами, можно присвоить ему букву и включить отображение скрытых файлов, однако, нужно понимать, что любое неквалифицированное вмешательство в конфигурацию загрузки может привести к невозможности загрузки системы. При чем, неработоспособную конфигурацию загрузки можно получить даже без выполнения вышеперечисленных действий. Например, при неверном использовании стандартного редактора хранилища конфигурации - утилиты командной строки BCDEDIT. Поэтому, прежде чем вносить какие-либо изменения в конфигурацию загрузки, необходимо позаботиться о том, чтобы иметь возможность восстановления работоспособности системы в том случае, когда ее загрузка станет невозможной.

Программный код диспетчера загрузки , получив управление, выполняет поиск и обработку данных конфигурации загрузки (файл BCD в папке \BOOT\ активного раздела), в соответствии с которыми выполняется дальнейшие этапы загрузки (отображение меню, выбор загружаемой ОС или средств диагностики, загрузка ядра и т.п.). По своей структуре, файл \\boot\BCD является кустом реестра и отображается в редакторе реестра Windows как раздел HKLM\BCD0000000x (рисунок 2).

[image: image31.png]& Penaxrop peecrpa

Gaiin_Mpasxa Bua Usbpasroe Crpaska

% Kounrorep
- HKEY_CLASSES ROOT
-1 HKEY_CURRENT_USER
4-1J1 HKEY_LOCAL MACHINE
4-1J} BCDO0000000
1l Description
4-J) Objects
5[l {0ce4991b-e6b3-4b16-b23c-5e0d9250e5d9}
bl {1afa0c49-16ab-4a5¢-001b-212802da9460}
- {635855e-S40f4170-2130-B4TT6HCE]
b+ J {5189b25¢-5558-4bf2-bcad-289b11bd29e2}
5l {6efb52bf-1766-41db-a6b3-DeeSeff72bd7}
bl {Tea2elac-2e61-4728-a23-8969d0a0f0e}
b -J {7§f607€0-4395-11db-b0de-0800200c9366}
bl {915feBec-1caT-11¢7-9396-eb0fc034888)
b+ Ji {915feBed-1ca7-11¢7-9396-eb0fc0348f88}
b+l {915feBee-1caT-11¢7-9396-eb0fc034888)
b+ {915feBef-1caT-11¢7-9396-eb0fc034888)
b+ Ji {9deaB62c-5cdd-4e70-acc1-f32b344d4795)
b b (b2721d73-1db4-4c62-bf78-c5482880142d)
31} HARDWARE
o0k sam
L SECURITY
»Ji SOFTWARE
Ll SYSTEM
0} HKEY_USERS
-1 HKEY_CURRENT_CONFIG

Viun Tun navenne

Kounsrorep

Рис. 2 Редактор реестра – ветка BCD
Таким образом, диспетчер загрузки bootmgr работает с данными хранилища конфигурации загрузки BCD как с обычным разделом реестра Windows. Поскольку, данный раздел реестра предназначен для использования загрузчиком BOOTMGR, при ручном просмотре c использованием редактором реестра, он имеет разрешение только на чтение, которое можно изменить с помощью контекстного меню, вызываемого правой кнопкой мышки. Естественно, на данный раздел реестра, как и на любой другой, распространяются все допустимые действия, выполняемые в редакторе - просмотр, изменение, удаление, импорт и экспорт.

Раздел конфигурации BCD содержит подраздел Description с параметрами описания и подраздел Objects с объектами конфигурации загрузки. Данные конфигурации загрузки можно условно разделить на 3 основных составляющих:

- хранилища BCD (Store);

- записи в хранилище (Entries);

- параметры записей (Entry Options).

Иерархически, хранилище конфигурации загрузки представляет собой совокупность объектов (Objects), состоящих из отдельных элементов (Elements), которая представлена на рисунке 3.

[image: image32.png]BCD Store
BCD Object 1 BCD Object 2 BCD Object 3
BCD BCD BCD
Eloment 1.1 Element 2.1 Element 3.4
BCD BCD BCD
Eloment 1.2 Eloment 2.2 Eloment 3.2
BCD BCD BCD
Element 1.3 Element 2.3 Element 3.3
BCD BCD
Element 1.4 Element 3.4
BCD
Element 3.5

Рис. 3 Иерархическая структура BCD
Каждый из объектов представляет собой упорядоченную структуру элементов, обрабатываемую диспетчером загрузки. Существует 3 типа объектов:

- приложения (application objects)
- наследуемые объекты (inheritable objects)
- устройства (device objects)

Если вернуться к отображаемой редактором реестра структуре хранилища конфигурации (рисунок 2), то заметно, что каждый подраздел раздела Objects имеет имя, представляющее собой глобальный уникальный идентификатор - GUID . Идентификатор GUID формируется программным путем и однозначно является уникальным для той системы, где он создается. Алгоритм формирования GUID построен таким образом, что каждый новый генерируемый идентификатор никогда не совпадает с другим, существующим в данной системе. Обозначается GUID в виде групп из шестнадцатеричных цифр, разделяемых дефисами, и заключенными в фигурные скобки:

{d1f837a2-7e0f-11df-bc8b-f6edb78d41b5}

Некоторые объекты стандартных приложений конфигурации загрузки имеют предопределенные идентификаторы, связывающие некоторые из идентификаторов GUID с внутренними идентификаторами (псевдонимами) редактора bcdedit, которые показаны на рисунке 4.

[image: image33.png]Description BCDEit ID. GUID.
‘Windows Boot Manager toootmar) 9dea62c-5cdd-de70-acc1 32634464795
Firmware Boot Manager fwbootmar) 25030fa2-3d06-401-b54-a01dod 1 icba
Windows Memory Tester {memdiag) 62721473 1dbA-4c62-b178-c5482880142d
Windows Resume Application Noalias 147a2509-0358-4473-6835-0950dda00615
Legacy Windows Loader fntiar) 46675288-0a12-4176-9038-0956170dc21c.
Current boot entry fcurent) 1a926493-671-4193-2414-581062456d1e
Default boot entry. {default)

Рис.4. Идентификаторы BCD
Так например, псевдониму {bootmgr} используемому в качестве параметра команды bcdedit всегда соответствует GUID, приведенный в таблице - { 9dea862c-5cdd-4e70-acc1-f32b344d4795 }.

Каждый из разделов подраздела Objects также состоит из двух подразделов - Descriptions с описанием типа объекта и Elements, определяющего набор элементов с параметрами объекта. В разделе Description имеется ключ Type типа REG_DWORD, значение разрядов 28-31 которого определяет тип объекта (значение в старшей тетраде старшего байта):

0x1 – приложение

0x2 - наследуемый объект

0x3 - устройство.

Вполне понятно, что работать с данными конфигурации BCD в среде редактора реестра практически невозможно, поэтому в Windows Vista и более поздних ОС семейства Windows появилась специальная утилита bcdedit.exe предназначенная для работы с хранилищами конфигурации загрузки (BCD EDITor).

Раздел реестра HKLM\BCD00000000 используется, существующим в данной системе диспетчером BOOTMGR, и является системным хранилищем конфигурации (System BCD Store). Упоминаемая выше команда для редактирования конфигурации загрузки BCDEDIT может использоваться не только для редактирования системного хранилища, но и любого другого, задаваемого параметром командной строки /store.

bcdedit /store D:\BCDBackup\bcdsave - команда BCDEDIT выполняется для хранилища конфигурации загрузки в файле bcdsave каталога BCDBackup на диске D:. Если в командной строке bcdedit не задан ключ /store - то ее действие выполняется по отношению к системному хранилищу (активной конфигурации, используемой для данной загрузки).

Как уже упоминалось выше, при выполнении команд BCDEDIT к некоторым из объектов хранилища можно применять псевдонимы , например {bootmgr}, (соответствует диспетчеру загрузки) и {default} (соответствует используемому по умолчанию загрузчику Windows). Для отключения использования псевдонимов в командной строке bcdedit предусмотрен ключ /v:

bcdedit /v /enum all - отобразить все записи конфигурации загрузки в системном хранилище без использования псевдонимов.

При работе с системным хранилищем конфигурации, необходим запуск bcdedit от имени администратора.

Выполнение экспорта системного хранилища конфигурации с помощью утилиты BCDEDIT выглядит немного проще:

bcdedit /export C:\Backup\bcb - выполнить экспорт системного хранилища конфигурации загрузки в файл C:\backup\bcd.

Для просмотра содержимого хранилища конфигурации можно воспользоваться командой:

bcdedit /enum all - отобразить все записи в BCD

bcdedit /enum all > C:\enum-all.txt - то же, что и в предыдущем случае, но с выводом результатов в текстовый файл enum-all.txt на диске C.

Пример конфигурации для диспетчера загрузки:

Диспетчер загрузки Windows

идентификатор {bootmgr}
device partition=Z:
description Windows Boot Manager
locale ru-ru
inherit {globalsettings}
default {current}
resumeobject {52d2064e-3939-11e2-aab2-005056c00008}
displayorder {current}
{d1f837a4-7e0f-11df-bc8b-f6edb78d41b5}
{52d2064c-3939-11e2-aab2-005056c00008}
{52d2064d-3939-11e2-aab2-005056c00008}
toolsdisplayorder {memdiag}
timeout 30

идентификатор - псевдоним или GUID конфигурации диспетчера bootmgr
device - устройство загрузки. Либо буква диска, если она присвоена активному разделу, либо ссылка на раздел без буквы - partition=\Device\HardDiskVolume1 (Volume2 . . .)
description - текстовое описание элемента, в данном случае - диспетчера bootmgr.
locale - используемая локализация (язык элемента)
inherit - наследуемые установки.
default - псевдоним или GUID конфигурации загрузки системы, выполняемой по умолчанию.
resumeobject - GUID конфигурации для приложения, выполняемого при выходе из спящего режима (гибернации). В документации называется приложением возобновления (Windows Resume Application).
displayorder - задает порядок отображения пунктов меню загрузчика для нескольких операционных систем.
toolsdisplayorder - задает порядок отображения пунктов меню загрузчика для нескольких вариантов средств диагностики.
timeout - время ожидания выбора одного из пунктов меню.

Пример конфигурации элемента загрузки операционной системы Windows Vista и более поздних ОС семейства Windows:

Загрузка Windows

идентификатор {52d2064f-3939-11e2-aab2-005056c00008}
device partition=C:
path \windows\system32\winload.exe
description Windows 7
locale ru-ru
inherit {6efb52bf-1766-41db-a6b3-0ee5eff72bd7}
osdevice partition=C:
systemroot \windows
resumeobject {52d2064e-3939-11e2-aab2-005056c00008}
nx OptIn

идентификатор - псевдоним или GUID конфигурации для загрузки данной ОС Windows
device - буква, соответствующая логическому диску с установленной ОС Windows.
path - путь приложения загрузки ядра системы.
description - текстовое описание элемента, в данном случае - загружаемой ОС Windows.
osdevice - буква диска для данной ОС
systemroot - корневой каталог загружаемой ОС.
resumeobject - GUID конфигурации для приложения, выполняемого при выходе из спящего режима (гибернации).
nx - настройки безопасности, задающие использование режима предотвращения выполнения данных (Data Execution Prevention, DEP)

Очевидно, что стандартные средства конфигурирования загрузки Windows 7 (а также Windows Vista, Windows 8, Windows 10) не очень удобны и, кроме того, не имеют защиты от создания неработоспособной конфигурации для диспетчера загрузки . Одна ошибка в командной строке bcdedit может легко сделать невозможной загрузку ядра системы. Именно поэтому, довольно большой популярностью пользуются программные продукты сторонних производителей с графическим интерфейсом пользователя, позволяющие в несколько щелчков мышью, выполнить наиболее востребованные действия по редактированию конфигурации загрузки. Одной из таких программ является бесплатная для частного некоммерческого использования программа EasyBCD.

Работа с EasyBSD
EasyBCD позволяет довольно просто создавать элементы конфигурации загрузки для диспетчера bootmgr, необходимые при выполнении загрузки старых версий Windows, загрузки операционных систем семейства Unix/BSD/Linux, загрузки Windows PE, образов и виртуальных дисков. Имеется возможность сохранения текущей конфигурации загрузки, и ее восстановления из ранее сделанной копии. В целом, программа объединяет в себе возможности нескольких стандартных утилит командной строки Windows для работы с загрузочными данными. Кроме всего прочего, EasyBCD может использоваться не только в среде ОС Windows ориентированных на загрузку с помощью диспетчера bootmgr, но и в среде Windows XP.

Программа очень проста в использовании и имеет поддержку нескольких языков, включая русский. В качестве примера приведу последовательность действий при создании конфигурации для загрузки ERD Commander из ISO-образа:

- нажимаем кнопку "Добавить запись"

- В правой нижней части окна, обозначенной как "Съемный внешний носитель" выбираем вкладку "ISO"

- Заполняем поле "Имя" - ERD Commander
- Выбираем путь к файлу ISO-образа ERD Commander. Хотя данное окно программы EasyBCD названо "Съемный внешний носитель", файл ISO-образа может быть на любом диске, в том числе и не съемном, например - на системном - C:\ISO\erdc.iso.

- Выбрать режим - "Load from Memory". Поскольку для загрузки из ISO образов, программа EasyBCD использует универсальный загрузчик GRUB, лучше выбирать загрузку из памяти, иначе, загрузка непосредственно с диска не будет выполнена, если файл образа фрагментирован. Это - особенность загрузчика GRUB

- Нажать кнопку "Добавить"

- Нажать кнопку "Редактировать меню загрузки" в панели инструментов

- Убедиться в наличии изменений загрузочного меню, при необходимости изменить порядок отображения пунктов или время ожидания и нажать кнопку «Сохранить»

Важной особенностью программы явлеятся то, что кроме редактирования записей конфигурации, имеется возможность создания файлов, содержащих информацию загрузочных секторов для загрузки сторонних операционных систем (Linux / Unix Mac OS, BSD), что невозможно сделать стандартными средствами Windows.

[image: image34.png]D23-
Daiin Vncrpymenter

VcTpymerTs E3syBCD

Cnpaska

Pexam npocuotpa

e—

2.p Pegartuposats
wero sarpysen

© Aosasums sance

Wacrpoiku

Apuisauns/Boccra
Hosnetue BCD

P

Kparknii © Mogpot [0] 1l Meperoc crpox
B sarpyzunke oga sanice. <
Mo ymonaruo: Windows 7

Taiiviayr: 0 cexyra(si)
Pacnonoxenne BCD: G\

Zanucs NeL

Vivas: Windows 7

Viaermugukatop BCD: {current)

Iner: G\

Tlyrs i sarpyseuney: \Windows\system32\winload.exe

Рис. 5. Главное окно программы EasyBCD
Устранение проблем с загрузкой Windows 7

Процесс загрузки Windows 7 можно представить в виде цепочки из последовательно выполняемых этапов, представленных на рисунке 6.

[image: image35.png]

Рис. 6. Цепочки загрузки Windows 7

Отсутствие или нарушение программного кода загрузочных записей, файлов загрузчика или неверная конфигурация BCD обрывают эту цепочку и делают невозможной загрузку системы.

Следующий важный момент - для устранения проблем потребуется загрузка в какой-либо другой системе с компакт-диска, флешки, съемного USB-диска, или по сети. В крайнем случае, перенос диска с проблемной системой на другой компьютер. Самый простой вариант - создать диск аварийного восстановления стандартными средствами Windows 7 (рис. 7):

- Перейти в Панель управления
- Выбрать «Архивация и восстановления»

- Создать диск восстановления системы

[image: image36.png]|8 Cosare anox soccranoanewms orcrenst Y =l £.

B epUTE YCTPOIICTE A3 STeHNR KOMTAKT-ANCKOB Wik DVD-AHCKOB U BCTassTe &
Hero nycroi anck.

ZIACK BOCCTaHOBNEHIA CHCTEMB! MOXCHO WENONS30BTh A7 3arPY3KN
KOMTIbOTED. Ha HeM TaKKe COREpXATCA CEACTE SOCCTaHOBNEHHS CHCTEMS!
Windows, € IOMOLEI0 KOTOPEX MOXHO BOCCTaHOBHT CHCTemy Windows &
€hyua¢ CeDLE3HOR OLMEKM WAW BOCCTAHOBHTE KOMREIOTER U3 06pa3a CHETEN

Auc: VD RW anckosoa ()

onea

Рис. 7. Создание диска восстановления системы

Созданный диск восстановления системы содержит нужные для загрузки загрузочные записи, файл диспетчера загрузки bootmgr, каталоги BOOT и SOURCES.

Для просмотра параметров загрузки в ОС Windows 7 предусмотрена встроенная функция «Загрузка и восстановление». Для доступа нужно открыть «Панель управления» -> «Система» -> «Дополнительные параметры системы» и выбрать «Загрузка и восстановление» и нажать кнопку «Параметры», где откроется окно, показанное на рисунке 8.

[image: image37.png]arpysxa n soccrarosnerme I =)

R ——
e

[dows? -

0 30) eex.

5 e

Рис. 8. Загрузка и восстаноление

Здесь можно настроить загружаюмую ОС по умолчанию, время отображения списка ОС, варианты восстановления ОС, а такж выбрать действия при отказе системы.
Задания для практического занятия

1. Изучить теоретическую часть.

2. Запустить ОС Windows 7 в Oracle VirtualBox.

3. Изучить хранилище данных конфигурации загрузки, использую редактор реестра – regedit (запустить можно через командную строку) и найти стандартные приложения конфигурации загрузки.

4. Указать какие стандартные приложения конфигурации загрузки присутствуют в ОС.

5. Выполнить экспорт системного хранилища конфигурации загрузки в C:\FIO (вместо FIO записывается фамилия студента).

6. Запустить программу EasyBCD. Создать конфигурацию для загрузки с внешнего носителя - ERD Commander.

7. Настроить «Загрузка и восстановление» следующим образом: ОС по умолчанию – Windows 7, Время отображения списка ОС – 10сек, Выполнить автоматическую перезагрузку – отключено, запись отладочной информации – малый дамп памяти.

Контрольные вопросы

1. Что такое bootmgr?

2. Что такое PBR?

3. Как можно представить процесс загрузки Windows 7?

Практическая работа № 5

«Выполнение конфигурирования аппаратных устройств»

Цель работы: изучение конфигурирования аппаратных устройств в ОС Windows 7.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять параметрами загрузки операционной системы;

- выполнять конфигурирование аппаратных устройств.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";
- принципы управления ресурсами в операционной системе.

Краткие теоретические и учебно-методические материалы по теме практической работы

Основные задачи по конфигурированию аппаратных средств и устранению неполадок в их работе выполняется на вкладке «Оборудование» окна «Свойства системы» (рисунок 1), либо в оснастке «Управление компьютером» (рисунок 2), которая открывается при нажатии ПКМ на «Компьютер» и в контекстном меню надо выбрать «Управление».

[image: image38.png]Dononwrensro Sowrs cncrew Yaanersoi gocyn

Vs kovmroTepa Osopyaosarme

Dvcnersep yerpolicTs

Iicnerep yCTPORCTS NpUBOT CricoK 5Cero
JCTHOBTEHHOrD OBOPY 033 Ha JaHHOM KOMISOTEDS 1
Po3BoNAET UaMer#T CBOMCTEa T10B0r0 YCTPOACTES.

ncneriep yeponcTs.

Mapaverpe yerarosn yerpoicTs

HacTpofica napaveTpos sarpysicn apaieepos i
BonomHATE B CaSgeH 0 .

apaverpe yeraros yoTpoicrs.

Cox) =

Рис.1. – Свойства системы

Чтобы открыть окно «Свойства системы», воспользуемся значком «Система» на панели управления и далее выберем «Дополнительные параметры системы».
[image: image39.png]Ooiin Leiicrone Bnag Crpasea

= 26 EE

& Ynpasnenne xommerorepon (1]
4} CryxeSuoie mporpammne
» (@ Mnawmposuya saganu
[Mpocwotp cobemuii
&1 OBume namen
b & Moxansmsie nonssosar
» ® Mponssommensocrs
4 2 3anommnarouwe yerpoiicr
S Ynpasnenne anceawn
Ao ap—

4 KABAHLEB-TK
+ ca IDEATAVATAPT conrponneps
[Epa—
+ s Ancxossie ycrpoiicrsa
3 3aycossie, suaeo w urpossie ycrpoiicrsa
b= Knsewsryp
48 Komnsrorep
5§ Komrponnep USE

K Morroper
TRy —
b 75 Moprei (COM u LPT)
+ 3 Mpoucccopes

5P Ceresie apaneps
48 Cucrenmore ycrpoiicrea

1 U Yerpoiicrea HID (Human Interface Devices)

Hononwumensrsie aei.

Рис. 2. – Управление компьютером

Помимо вызова «Диспетчера устройств», также можно настроить «Параметры установки устройст».

«Параметры установки устройств» включают в себя настройку загрузку драйверов и дополнительные сведения о них. Окно настройки показано на рисунке 3.

[image: image40.png]Mapawerpsi yerarona yerporicra 11

CreayeT nm OC Windows 3arpy>xaTs Apaiiseps! U PeanvcTvuHble 3Hauk A1
yerpoiicra?

Lo, aenars 370 asTomaTIECKH (peKomenayeTcs)

I R e e SEans I

(© Beeras ycranas wsars vawGonce nogoasune apaiiocpsi 3 LienTpa oBoenenna Windows. |

© Yeranasnusare apaiisepei w3 Lentpa o6nosnenns Windows, ecu onm He Haiigersi Ha
kounsrorepe.

© Huxoraa e ycranasausars apaiiseps: us Lientpa o6nosnenua Windows.

[3amenams cramgaprieie o ycrpoficrs ynyuiesmomn

Movey pexowmerayerca genar 37o asTomaTHuECKH?

& Copanms

Рис. 3. Параметры установки устройств

Диспетчер устройств – это специальная утилита, входящая в состав Windows, предназначенная для управления устройствами компьютера, а также контроля за их состоянием.

Диспетчер устройств позволяет получить информацию о названии и некоторых характеристиках центрального процессора, видеокарты, звуковой карты, сетевого адаптера, жестких дисков и других устройств компьютера, проконтролировать состояние их использования, узнать о возможных проблемах в их работе, обновить для них программное обеспечение (драйверы), и даже временно отключить некоторые из них (рисунок 4).

[image: image41.png]T e e

OsiinJeiicrane Bua_ Cnpasea

e mHm 8

42 KABAHUEB-TIK
3 IDE ATAVATAPI kowTponnepet

i 3oyxossie, anaco urpos
b= Knaswarypr

48 Kownerorep

»-§ Korponnepsi USB

< KoMTponnepe: sanommaroLym yCTpofcTs
K Morroper

TRy —
b 75 Moprei (COM u LPT)
3 Mpouccco;

5P Ceresie apaneps
48 Cucrenmore ycrpoiicrea

1 U Yerpoiicrea HID (Human Interface Devices)

rowime ycTpolicras.

Рис. 4. Диспетчер устройств

Для открытия диспетчера устройств существует универсальный способ (походит для всех версий Windows): Win+R -> команда devmgmt.msc.

[image: image42.png]= e

BaeaTe 1A MPOTPaKIMIL, NaNKW, AOKYMENT Wik Pecypca
VibrepHera, KoTopele TPEBYETEA oTkpBITs.

Omperms:

[——

=

Рис. 5. Выполнить команду

Диспетчер устройств позволяет решать следующие задачи:

1. Получить информацию о любом устройстве компьютера.

Достаточно открыть раздел, к которому это устройство принадлежит. Например, чтобы узнать название видеокарты компьютера, нужно открыть раздел Диспетчера с названием «Видеоадаптеры», дважды щелкнув по нему левой кнопкой мышки.

Чтобы получить более подробную информацию об устройстве, необходимо один раз щелкнуть по нему правой кнопкой мышки и в контекстном меню выбрать пункт «Свойства».

2. Получить информацию о наличие проблем а работе компьютера.

Обычно, «проблемные» устройства в Диспетчере обозначены специальными значками (красный крестик, знак вопроса, восклицательный знак и др.) и их видно сразу же после открытия Диспетчера.

3. Установить драйвер устройства.

Для установки драйвера устройства необходимо щелкнуть по нему правой кнопкой мышки и выбрать пункт «Обновить драйверы…», после чего указать путь к папке с файлами драйверов.

4. Переустановить драйвер устройства.

Бывает, что определенные устройства компьютера перестают правильно работать (например, при неполадках звуковой карты пропадает звук). Часто такие проблемы решаются переустановкой драйвера. Необходимо в диспетчере устройств щелкнуть правой кнопкой мышки по проблемному устройству (в нашем примере звуковая карта) и выбрать пункт «Удалить». После того, как устройство исчезнет из списка, в меню Диспетчера щелкнуть по разделу «Действие» и выбрать пункт «Обновить конфигурацию оборудования».

5. Отключить устройство.

Необходимо щелкнуть по устройству правой кнопкой мышки и выбрать пункт «Отключить». В любой момент отключенное устройство можно включить, щелкнув по нему правой кнопкой мышки в Диспетчере устройств и выбрав пункт «Задействовать».

Отключать временно не используемые устройства целесообразно, например, в ноутбуках. Это экономит заряд батареи.

2.1. Установка устройств

Для конфигурирования устройств, которые подключены к компьютеру, операционная система Windows 7 производит установку драйверов автоматически. В некоторых ситуациях требуется установить драйвер для устройства вручную. Для этого необходимо открыть диспетчер устройств выбрать пункт «Установить старое устройство» (рис.6). После установки следует обновить конфигурацию оборудования, что позволит увидеть устройство (должно быть подключено).

[image: image43.png]e
aiin [eiicrewe Bug Crpaska

LI

& Ynpasnenue komnsrotepom (7] [4 14 OC

PR S —— 3| OBomms xonurypaunto oSopyaosarn
» @ Mnauposupscsagarn]| 5 cg| Ycramosums crapoe ycrpoiicrso

% EenEr

B Foocmors cobrrui

Рис. 6. Диспетчер устройств: установить старое устройство

После того как выбран пункт «Установить старое устройство» откроется мастер установки оборудования (рис.7).

[image: image44.png]Veranosa o6opyaosanis

Macrep ycranosku o6opyaosatin

SroT MaCrep noMoraeT yCraHoBMTS ApSIiSEpSI 413 NOAERIH
crapeix ycTpoicrs, He noaaepuearouty Plug-and-Play n He
PacnozHasaemsix onepaLyoHOf cHcTeMof Windows.

37OT MaCTep NpeAHEIHaNEH TOMLKD AR OMBITHE
Rones0saTenel WA An5 BEIMONHENMS ASCTENT,
PeKOMENAOBaHHBIX C1YKBOM TEXHIIECKOR NOAREP K.

Ecaw x ycrpolicray npunaraeTca yCranosouHbil AMck,
pexomenayercs Haxas kionky “Ormena” An
33KPLITIA 3TOFO MACTEP3 M BOCNONL3OBATEER AUCKOM
SFOTOBMIENs A5 YCTaHOBKY 3TOTO YCTPOVCTEa.

Lnn nposomxcenu Haxme kronky “Jlanee’

[oves]

Рис. 7. Мастер установки оборудования

Следуя подсказкам мастера происходит выбор оборудования и дальнейшая установка драйвера. Для ручной установки необходимо выбрать пункт «Установка оборудования, выбранного из списка вручную». Далее необходимо выбрать тип устанавливаемого оборудования из предоставляемого списка (рис. 8).

[image: image45.png]ECAin Hysxcii Bau Tun OBOpYAOBaHIA OTCYTCTBYET, WenKHiTe Snement cruncka "Mokasars
sce ycrpoiicraa’.

CranaaprHeie Tunst 060pyaoBaHia:

ClIDE ATA/ATAPI xonrponnepe!
(RIEEE 12644 cosmectmmaui npirep.
(RIEEE 12844 ycrpoicrss

PCMCIA sgamrepes

Windows SideShow
% Bugeoapanrepsi
[farancn

 Apaiacps ycrpoiicrs nawamn

Рис. 8. Тип устанавливаемого оборудования

Далее указывается каталог/диск/сетевое хранилище с содержащимся драйвером для устанавливаемого оборудования. После этого ручная установка оборудования заканчивается.

Задания для практического занятия

1. Изучить и записать разные способы получения доступа к диспетчеру устройств.

2. Запустить виртуальную машину Windows 7.

3. Настроить загрузку драйверов и реалистичных значков – автоматически.

4. Произвести ручную установку оборудования: принтер Canon LBP2900.

5. Произвести ручную установку оборудования: сетевой адаптер Realtek RTL8187B
6. Убедиться в установке оборудования, просмотрев диспетчера устройств и «Устройства и принтеры» в панели управления.

7. Записать в отчет описание устройства Realtek RTL8187B включающее: ИД оборудования, класс устройства, производитель, выводимое имя, установочный INF-файл и поставщик.

8. Удалить установленный сетевой адаптер Realtek RTL8187B.

9. Произвести установку программы DeamonTools (DTLite).

10. Определить какое оборудование было добавлено в систему после установки DTLite.

11. Завершить работу ОС Windows 7.

12. Удалить виртуальную машину Windows 7.
Контрольные вопросы

1. Что относится к аппаратным устройствам?

2. Что такое диспетчер устройств?

3. Какие задачи позволяет решать диспетчер устройств?

Практическая работа № 6

«Управление виртуальной памятью. Настройка файла подкачки»

Цель работы: изучение настройки виртуальной памяти в операционной системе Windows 7.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять параметрами загрузки операционной системы;

- выполнять конфигурирование аппаратных устройств.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- принципы управления ресурсами в операционной системе.

Краткие теоретические и учебно-методические материалы по теме практической работы

ОС Windows использует не только оперативную память для своей работы. Чтобы немного разгрузить ресурсы оперативной памяти, на жестком диске создается специальный файл, в котором ОС также хранит текущие данные. Называется он swap – файлом, или файлом подкачки, а также виртуальной памятью компьютера. Оперативную память называют физической, т.к. она создана из конкретного материала, т.е. ее можно взять в руки и рассмотреть. Виртуальная память – ненастоящая, это область дискового пространства, которую ОС тоже считает памятью. Слово «виртуальный» в данном случае подразумевает «созданный на компьютере»

Файл подкачки автоматически создается ОС в корневой папке того диска, где расположена сама система. Его размер определяется исходя из объема физической(оперативной) памяти компьютера. По умолчанию минимальный размер файла подкачки соответствует полутора размерам физической памяти, а максимальный размер обычно превышает ее в 3 раза.

Размер файла подкачки и его расположение можно изменять. Для этого откройте Панель управления-> Система-> Дополнительные параметры системы -> вкладка «Дополнительно» -> Быстродействие -> Дополнительно. Для настройки объема виртуальной памяти нажмите в области виртуальная память кнопку «Изменить».

[image: image46.png]©aiin N0k -3T0 obnacTs Ha KeCTKO aucKe,
COMs3yeNas 415 XpaHerS CTDaHAL SHPTYaneHOli NaHSTH.

OBy ofen haiina oo Ha scex
avox: 10245

Рис. 1. – Параметры быстродействия

Текущая информация о размере файла подкачки отображается в нижней части данного окна в области Общий объем файла подкачки на всех дисках (рис.2).
Обратите внимание на то, что:

- если у вас установлено несколько жестких дисков (не логических разделов, именно жестких дисков), логично установить файл подкачки на самый быстрый из них. При этом лучше, чтобы ОС находилась на другом диске.

- можно разместить файл подкачки на нескольких жестких дисках одновременно.

- если у вас только один жесткий диск, разбитый на разделы, лучше всего установить файл подкачки на самом первом из них, физически расположенном ближе к краю диска.

- не нужно устанавливать файл подкачки сразу на нескольких логических дисков одного жесткого. Это только замедлит работу системы, т.к. магнитным головкам жесткого диска придется постоянно перепрыгивать с места на место.

- если у вас много оперативной памяти (1024 Мбайт и выше), то размеры файла подкачки по умолчанию (от 1,5 Гбайт до 2 Гбайт) будут неоправданно занимать пространство жесткого диска. Однако, как вы знаете, полностью отключать файл подкачки нельзя. Поэтому поступите так: снимите галочку с «Автоматически выбирать объем файла подкачки» и далее выберите «Указать размер». Далее в зависимости от ресурсов вашего жесткого диска возможно несколько вариантов:

1) если объем жесткого диска достаточно большой, то в поле Исходный размер введите значение 1024 Мбайт. Максимальный размер зависит от приложений, с которыми вы работаете (не более 2 Гбайт).

2) если свободного места на диске маловато, то установите исходный размер 2 Мбайт. Максимальный размер при этом должен быть не меньше, чем размер физической памяти.

- если оперативной памяти не так уж много (менее 512 Мбайт), то нужно оставить параметры, принятые по умолчанию, либо выбрать режим Размер по выбору системы, при котором Windows 7, собирая информацию об использовании файла подкачки в процессе работы, при необходимости сможет корректировать (увеличивать) его размеры.

После внесения изменений в настройки файла подкачки компьютер нужно перезагрузить(при уменьшении его размеров либо при создании нового файла подкачки система сама предложит вам это).
[image: image47.png]Bupryanswan nauAs

(o e
Pasnep afina noaka:#ot 47 KaXAT0 AUCKa
Aves eia Tone]

@aiin nogka (M)

OBt e afina ok Ha sex naxax.
Mipamanrio pashep: 16 M6
Pexonennyerca:

153405
Teouipaes: 102415

[oc] [Comen]

Рис. 2. Настройка виртуальной памяти

Распределение работы памяти и процессора

Windows 7 позволяет настроить некоторые дополнительные параметры управления быстродействием системы.

Для знакомства с ним перейдите на вкладку Дополнительно окна параметры быстродействия.

Обратите внимание на область Распределение времени процессор. По умолчанию переключатель Оптимизировать работу находится в положении программ. Однако если вы работаете с большим количеством программ одновременно, то для увеличения стабильности работы специалисты рекомендуют установить переключатель в положении служб работающих в фоновом режиме. Однако, при этом стабильность работы повысится, скорость выполнения текущего активного приложения немного снизится.

Уменьшение дискового пространства, занимаемого Windows 7

Для уменьшения дискового пространства нужно удалить все неиспользуемые программные компоненты Windows 7.

Для очистки дисков в Windows XP встроены специальные служебные программы, найти которые можно в программной группе пуск- все программы - стандартные – служебные - очистка диска (рис. 3). После запуска программа очистка диска оценит, сколько мусора поднакопилось в ваших закромах. Затем выдаст результаты проверки.
[image: image48.png]Oucria ancr: smbop ycrpoiicrss ==

BuiGepuTe BHCK, Ha KOTOpOM CreyeT SsomHTS
owncTiy.

Dincram:
&o -

o] [(ooen)

Рис. 3. Очистка диска

2.3. Диспетчер задач

Для каждого запущенного приложения ОС отводит определенный объем оперативной памяти, или другими словами, задачу. Каждая задача, в свою очередь, создает один или несколько процессов – отдельных процедур выполняющих конкретную функцию задачи и занимающих строго определенное место в адресном пространстве памяти. Для управления задачами и процессами в Windows 7 предназначена специальная служебная программа – Диспетчер задач. Вызвать его можно либо с помощью контекстного меню панели задач, либо нажав комбинации клавиш Ctrl-Shift-Esc (рис. 4).

[image: image49.png]Oaiin_Mzpawerpss Bua_Crpasca
Ponoxerys | Moouece! |Gy | Bocrpoasiicrave | Cere | Honssosarem |

Wmobpasa | Momso.. U1 Mawsms (.. O
s s00ks
dnm.exe 75K5
explore.exe 070K5
sbostexe maKs
g 135266
VBoxTay.exe seaks
wnlogon.exe: k5

Рис. 4. Диспетчер задач Windows 7

В строке состояния располагается информация об общем количестве процессов в памяти, загрузке процессора и общем количестве физической и виртуальной памяти, используемой этими процессами.

Диспетчер задач является отличным инструментом борьбы с зависшими приложениями. Если в поле состояние напротив той или иной задачи появилось значение не отвечает, то нужно только выделить такую задачу и нажать кнопку снять задачу, после чего спокойно продолжить работу. чтобы переключить на какую-либо задачу, нужно выделить мышью ее название в поле Задача и нажать кнопку Переключиться. Для запуска новой задачи – кнопка новая задача и т.д.

Программы автозагрузки
Программы в автозагрузке начинают свою работу вместе со стартом операционной системы. Для доступа к программам автозагрузки необходимо перейти пуск-> автозагрузка. Если нужно добавить программу в автозагрузку самый простой способ, скопировать ярлык в папку автозагрузка.

Также для доступа к списку автозагрузки можно использовать утилиту msconfig. Нажимаем Win+R –> пишем в поле msconfig. Откроется «Конфигурация системы» и далее переходим на вкладку «Автозагрузка» (рис. 5). Также в конфигурации системы доступна вкладка «Сервис», где находятся встроенные утилиты Windows 7. С данной вкладки возможен запуск этих утилит.

[image: image50.png](o) (Somena) (row | (aooman)

Рис. 5. Конфигурация системы

Задания для практического занятия

1. Изучить теоретическую часть.

2. Запустить виртуальную машину Windows 7.
3. Для изменения параметров файла подкачки выполняются следующие действия:

а. Выберите нужный диск в верхней части окна.

б.Если на данном диске вам не нужен файл подкачки, то установите переключатель в области Размер файла подкачки для выбранного диска в положение Без файла подкачки
если компьютер оснащен большим количеством оперативной памяти, то может возникнуть соблазн убрать файлы подкачки со всех дисков. Ни в коем случае не делайте этого!

в.Параметр размер по выбору системы включает динамическое(т.е. изменяемое со временем) управление размером файла подкачки ОС

г.Установив переключатель в положение Особый размер, вы сможете вручную установить значения файла подкачки.

д.После внесения всех изменений нажмите кнопку Задать.

4. Выполните очистку дисков в Windows 7.

5. Вызовите диспетчер задач и завершите процесс «explorer.exe».

6. Через диспетчер задач заново запустите процесс «explorer.exe»
7. Добавить в автозагрузку программу «Paint».

8. Проверить возможность автозагрузки перезагрузив систему.
Контрольные вопросы

1. Что такое swap
2. Как можно изменить размер файла подкачки?
3. Что такое программы автозагрузки? Как получить к ним доступ?
Практическая работа № 7

«Установка операционной системы Windows 7»

Цель работы:

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- устанавливать операционные системы семейств "UNIX" и "Windows";

- управлять параметрами загрузки операционной системы.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- общие принципы работы с командным интерпретатором в "Windows".

- основные этапы процесса установки операционных систем семейств "Windows" и "UNIX".

Краткие теоретические и учебно-методические материалы по теме практической работы

Windows — это семейство ОС, выпускаемых корпорацией Microsoft.ОС Windows устанавливается на жесткий диск и уже "внутри этой программы" происходит установка и эксплуатация других программ.

ОС Windows на сегодняшний день сама распространенная среди пользователей персональных компьютеров (ПК). Существуют разные версии ОС Windows, которые широко используются:

- Windows XP;

- Windows Vista;

- Windows 7;

- Windows 8;

- Windows 10.

Существуют также другие версии Windows, но они считаются устаревшими и почти не используются.

На сегодняшний день, самой используемой ОС считается Windows 7 и 10.

Установка операционной системы Windows 7

Для установки ОС Windows 7 необходимо иметь диск с установочными файлами (загрузочный диск) или флеш накопитель («флешка»). После того, как диск вставлен в привод ПК, необходимо указать, чтобы загрузка выполнялась с привода, а не с жесткого диска.

Далее начнется загрузка файлов необходимых для запуска установки ОС Windows 7 (рис. 1).

[image: image51.png]windows is Toading files...

Рис. 1. Загрузка файлов для установки

Как только файлы загружены, появится окно «Установка Windows» (рис. 2).

[image: image52.png]% Ycranoska Windows

Y A
Windows 7

©opuaT spement 1 geHexHx eauHIL:

2acKknaaKa KnasuaTyps! W METOR 8B0AE:

BuiGepure HyXrbii Asuix 1 ADYTUE NZpAMETPS, 3 aTeAs HEXMITE ki

© Kopnopaus Maixpocacr (icrozot Corp), 2005 Bee npass sapuigies

Рис. 2. Установка Windows 7

Далее следуя инструкция на экране, необходимо выбрать используемый язык для устанавливаемой ОС, а также ознакомится с условиями лицензионного соглашения и принять их. Затем выбирается тип установки: «Обновление» или «Полная установка». Обновление используется только в случае, если установщик был запущен из предыдущей версии ОС Windows.

После того как все пункты выполнены, необходимо настроить жесткий диск. При этом настройка осуществляется в графическом интерфейсе после нажатия кнопки «Настройка диска», как показано на рисунке 3.

[image: image53.png]Buibepure pasaen anm ycraroskn Windows

i Hosemocueco w0 mors wes |

4 Q6Hosums 7S s & Qopuamaposats 3 Comaars
€ 3arpyska Sppacumpus

Рис. 3. Настройка диска

Для того чтобы создать новый раздел на жестком диске необходимо нажать кнопку «Создать» и указать размер данного раздела (рис. 4) и затем нажать кнопку «Применить».

[image: image54.png]& opuaaposams ¥ Cosaame

e [2|6 (Do) [G

Рис. 4. Создание раздела

Если требуется создать несколько разделов, то опять нажимаем кнопку «Создать» и указываем размер раздела. Общий размер всех разделов не должен превышать общий размер жесткого диска.

После создания раздела, куда будет установлена ОС Windows 7, также создаться специальный системный раздел, который необходим для корректной работы ОС (рис. 5).

[image: image55.png][Gsin [Mot pas.. | Caotomno] Tun]

57 Ancx0Parton 1:System Reserved 1000 M5 860MB Cucrema

i Mtse2 BT 1985 Ouemsi |

Рис. 5. Созданные разделы

Также если разделы уже существуют, то их можно удалить либо стереть с них информацию (форматировать), использовав соответствующие кнопки «Удалить» и «Форматировать».

Далее после того как разделы созданы, нажимаем кнопку «Далее» и начинается процесс копирования файлов Windows и установки Windows 7 (рис.6).

[image: image56.png]Ycraroska Windows...

lonyser sca HeabxoAMMaR WHbopHaLLAR BO EPEMS YCTaHOSKH KOMASIOTEp GYACT HECKOMSKO P2
nepessrpyen.

 Konupossiane dainos Windows
Pacumperme daiinos Windows (53%)..
[P —
Yerawosra obnosneni
R —

Рис. 6. Процесс установки Windows
После завершения процесса копирования файлов и установки, ПК перезагрузится автоматически и далее необходимо, чтобы загрузка осуществлялась с жесткого диска. После загрузки появится окно «Настройка Windows», как показано на рисунке 7.

[image: image57.png]& Windows 7 MakcumansHast

BLIGEPUTE WA MOML3082TENA ANA BALLIEH YHETHOT 32MACH, 3 TAIOKE UNIA KOMREHOTEPa & CETH.

Baeaure s nonssosarens I»ﬁn%mﬂf A%Eﬁk

Boeaure wuia kounsiorepa:
K

@ © Kopnopauns ilipocos (Mictosft Cop, 250, B npasa s

Рис. 7. Настройка Windows 7

Далее необходимо настроить основные параметры системы, такие как имя пользователя, пароль пользователя, часовой пояс, активация Windows. И после настройки произойдет запуск ОС Windows 7.

Для работы ОС Windows 7 необходимо минимум 512Мб оперативной памяти и 20 Гб на жестком диске для установки.

Задания для практического занятия

1. Произвести установку ОС Windows 7, указать имя пользователя – фамилию студента, который выполняет работу.
2. Записать этапы установки в отчет.
3. Запустить ОС Windows 7 и показать преподавателю
4. Завершить работу ОС Windows 7

Контрольные вопросы

1. Какие версии операционной системы Windows наиболее популярны?
2. Какой объем оперативной памяти необходим для работы Windows 7?
3. Какие действия необходимо выполнить для создания нового раздела?
Практическая работа № 8

«Установка операционной системы Linux дистрибутива openSUSE»

Цель работы: является изучение процесса установки операционной системы openSUSE 13.1.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- устанавливать операционные системы семейств "UNIX" и "Windows";

- управлять параметрами загрузки операционной системы.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- общие принципы работы с командным интерпретатором в "Windows".

- основные этапы процесса установки операционных систем семейств "Windows" и "UNIX".

Краткие теоретические и учебно-методические материалы по теме практической работы

Операционная система (ОС) – это комплекс взаимосвязанных системных программ, назначение которых – организовать взаимодействие пользователя с аппаратной частью компьютера, а также управление ресурсами компьютера и другими программами.

Операционная система выполняет роль связующего звена между аппаратурой компьютера, с одной стороны, и выполняемыми программами, а также пользователем, с другой стороны.

Операционная система обычно хранится во внешней памяти компьютера — на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ. Этот процесс называется загрузкой операционной системы.

Операционная система Linux openSUSE

openSUSE – дистрибутив Linux, который разрабатывается компанией Novell. Данный дистрибутив является стабильным, легким в использовании (рис. 1).

[image: image58.jpg]openSUSE

Рис. 1. Значок openSUSE
Основные преимущества openSUSE
Основные преимущества дистрибутива Linux openSUSE:

- большой набор приложений, как для работы, так и для развлечений;

- интуитивно-понятный интерфейс для пользователя;

- простая настройка системы по средствам YaST (центр управления, подобие «Панели управления» в Windows);

- простая система управления приложениями;

- достаточно большой набор драйверов для устройств;

- стабильность, безопасность и поддержка разработчиком.

Установка openSUSE
Для установки ОС openSUSE необходимо иметь диск с установочными файлами (загрузочный диск). После того, как диск вставлен в привод ПК, необходимо указать, чтобы загрузка выполнялась с привода, а не с жесткого диска.

После того как загрузка с диска осуществилась, появится стартовый экран openSUSE installer (рис.2), где присутствует возможность выбрать необходимое действие.

[image: image59.png]SUSE installer

Boot from Hard Disk

Installation

Rescue System
Check Installation Media
Firmware Test

Memory Test

Boot Options

Fl Help F2 Language F3 Video Mode F4 Source F5 Kernel F6 Driver
English (US) Default DVD Default No

Рис. 2. openSUSE installer: стартовый экран

Для установки русского языка необходимо нажать клавишу F2, и выбрать русский язык. Чтобы процесс установки происходил с диска (CD, DVD) необходимо выбрать источник установки – DVD, нажав клавишу F4, в случае установки из другого источника выбираем нужный пункт из меню (рис. 3).

[image: image60.png]DVD
JKECTKMi AnCK
SLP.
FTP.
HTTP

NFS

SMB / CIFS

Hactpoitka ceTu >

HTTP-npokcu

Рис. 3. Выбор источника установки

В openSUSE installer выбирается пункт «Установить» и запускается процесс установки ОС (рис. 4).

[image: image61.png]3anyck.

3arpyska apa Linux

75%

Рис. 4. Загрузка ядра

Работа с установщиком openSUSE
Работу с установщиком openSUSE можно разбить на этапы.

На первом этапе необходимо будет выбрать язык системы и раскладку клавиатуры. По умолчанию выставляется русский язык и русская раскладка (рис. 5).

Помимо выбора языка, необходимо ознакомиться с лицензионным соглашением openSUSE, которое устанавливает правила загрузки, установки или использования ОС в соответствии с Универсальной общественной лицензией GNU (GNU General Public License). При этом перевод лицензии является неофициальным, но максимально приближенным к оригиналу на английском языке.

[image: image62.png]© [lo6po noxanosaTh

openSUSE [
e Bl (o pyeacn -
> No6po noxanosars
Avanu3 cucTems Packnaaka kiasnaTypsl
CeTeatie penosuTopun Pycckit E
Yacosoii nosc
Bri6op pabosero cTona
el Nuyensun
HacTpoiikn nofk3osaTens
JWLIEH3IOHHOE COTTIAUEHVE openSUSE (R) 13.1 =

Ycranonka 370 WeojuLIMANSHYIN NMEeBOR MMLEH3HA openSUSE 13.1 Ha pycckui f3sK

- 0630p ycTaHoBKN 04 He RENRETCH WDHINUECKIM OKYMEHTOM - TONSKO OPHTUHGTIHIN TKCT Ha

aHTTUICKOM OMUCHBAET YCOBHA PACTPOCTpHeHHR 0penSUSE 13.1 ¢ ToukM
SPEHHR paBa. Tew HE MeHee, Mbl HATEGMCA, UTO STOT MEPSBO MOMOKET Gones
NOMHOM MOHAMGHUND ALEHSUA Py CCKOTOBOPAIMMIA NONk308aTenHI

+ BLIMOAHMTE yCTaHOBKy

Hacrpoiika

570 COTMaleHie YCTAHABNWSAET NPaBANA 3TPY3KM, YCTAHORKW W
- ABTOMATW4ECKas HACTPOMKA UCNONL30B3HUA OMEPALIMOHHOR CUCTeMbl 0pENSUSE 13,1 W eé oboBneHd,
HE3ABUCUMO OT CTOCOBA NOMYEHNT, B COOTBETCTEWM C 3aKOHOAGTENLCTEOM
CUA 06 aBTOpCKoM npase openSUSE 13.1 ABNAETCA KONMeKTHEHOF
PaboTO. Mt COBMKIEHHA HWKEUSNOKEHHKX YCTOBWI MPOSKT openSUSE
NPEAOCTABNAET BaM MALSHSMD Ha 3Ty KOMMEKTUBHR PaBOTY B COOTBETCTEMM C
VHUBEpCaNoHOR OBNecTaeHHoR Tilienaneii GNU (GNU General Public License)
BEPCHN 2. 3aTpyAaR, YCTEHABNABAR WIW UCNONe3yA OenSUSE 13.1, Byl
COTnalaeTech C YCTOBUAMA GHHOTO COTMaueHHn

0penSUSE 13,1 ABNAETCA MORYMbHOA OMEpaLIMOHHOM cUCTEMO Linux
COCTORNEN U3 COTeH MPOTPEMMHKX KOMTOHEHTOB. THUEH3WOHHOE COrnaUeHHe
B9 KGKAOTO KOMTOHEHTA HAXOMUTCA, KaK NPaBATO, B COCTABE ETO HCXOMHOTO
KOZA. 33 UCKTOUEHUEM HEKOTODHX (aTOR, COREPMAMX TOBGPHAII HAK
<OpEnSUSE» U OMMCAHHHX HAKE, YCTIOBWA MULIEH3HA Ha KOMTOHEHTH Mo38onsk
BaM KOMUDOBATS W PACTDOCTPaHATL HX. 33 BO3MONHEM WCKTIOMEHUEM HEKOTOpHX
§ain0s MPOUMBOK, YCTIOBHA MMLIEHSUH Ha KOMNOHEHTHI paspeuair Bam
KONWPOBATS, MOMWEMLIMPOBATS U PACTPOCTPEHATL WX, KAK 8 BUME HCXORHOTO
KORA, Tak U B AEOMHHOA §opMe. [laHHOE COTMAWSHUE He OrpaHULWBAET Eauit

Mepesoab nuyensun.

Cnpaska Npepsare. Lanee

Рис. 5. Установщик openSUSE: первый этап

После нажатия на кнопку «Далее» происходит переход ко второму этапу «Анализ системы», где будет произведен опрос всего оборудования, которое система сможет найти. Также будет предложен выбор режима установки ОС: новая установка или обновление существующей системы.

Второй этап включает выбор автоматической настройки или ручной и добавление сетевых репозиториев перед установкой. Ручная настройка позволяет изменить следующие параметры: имя узла, сеть, обновления по сети, примечания к выпуску и настройка оборудования.

На третьем этапе происходит настройка часового пояса.

Четвертый этап заключается в выборе окружения рабочего стола. Наиболее широко используемыми окружениями являются GNOME и KDE, оба они в равной степени поддерживаются в openSUSE. Обычно выбор рабочего стола зависит от собственных предпочтений.

 Пятый этап представляет собой формирование предполагаемой разметки диска. Установщик openSUSE автоматически распределяет свободное пространство на диске на разделы в зависимости от конфигурации компьютера (рис. 6).

[image: image63.png]openSUSE

Noarotoska

v
v
v

v
>

o6po noxanosaTs
AHaAMS CUCTemsl
Hacosoii nosc

Bri6op pabosero cTona
Aunek

HacTpoiki nos:

Vcranoska

P ycTaHoBKM
BHINOAHATS YCTaHOBKY

Hacrpoiika

MposepyTs ycTaHoBKy
sy

cere

O6HoBneHme o ceTh
MpiwenaHas Kk sbinycky
HacTpoiika oBopyaosaHis

Mpepnaraemas pasmeTka

« Co3paTL Tom noakaukw /dev/sdal (745,20 ME)
« Co3AaTs KopHesoii Tom /dev/sda2 (7,84 T6) ¢ extd
« CospaTs Tom /devisda3 (1142 [6) 4na fhome c extd

Npeanaraembie HacTpoikH

Co3paTh npeanoxeHue Ha 6ase LM

 TpeAToXATS OT AeTbHAIA WAL pasaen

Vicron308a TS Birfs Kak (aiinoyio CUCTeMy M0 yMOTHaHIO

Coapatk paamerky
UMnopTHpoBaTE pasmeTky.

PeAaKTHpoBaTh pasMerky..

Cnpaska

Npepsare.

Hasaa

Hanee

Рис. 6. Разметка диска

Для создания собственной разметки необходимо выбрать «Создать разметку», если уже имеется созданная конфигурация разметки то можно выбрать «Импортировать разметку» и для редактирования существующей разметки выбирается «Редактировать разметку».

При создании собственной разметки и редактировании существующей желательно, чтобы следующие разделы (тома) были сформированы:

· Том подкачки (обычно его размер устанавливают в объеме в два раза превышающей объект оперативной памяти).

· Корневой том (в нем содержатся все остальные каталоги и файлы).

· Отдельный домашний том (отдельный раздел для каталога /home).

При создании или редактировании разделов используется графический интерфейс, называемый экспертной разметкой диска (рис. 7).

[image: image64.png]&) OkcnepTHas pasmMeTka

BuA cvcTeml

5 >kectimit puck: /dev/sda
&8 linux

1 Device Mapper

B s
Btrfs.
tmpfs

19 Hencronssyemie yc
18 Kapra ycTpoiicTs
i e e
8 virorycrarosi

/" HacTpoiiku

TR Fozc [
- & Kectrve anckn sda3
R — 4zt
sdal
sdaz Tun oC [MeTka
s RaD =D S
& Vnpasnenve Tomam |/devisda2 7.8416 F () Ui Eid !
& Wnipposarsie iy |/devisda3 114276 F €3 Unux native Exta Iy

Рис. 7. Экспертная разметка диска

Жесткий диск обозначается как sda, если в системе несколько жестких дисков то буква «a» будет меняться на следующую по алфавиту (sdb, sdc и т.д.). Разделы нумеруются в зависимости от обозначения диска, например, sda1,sda2 и т.д.

Файловая система по умолчанию выбирается Ext4 (четвертая расширенная файловая система), но также можно выбрать типы Btrfs, Ext2, Ext3, FAT, XFS, Swap. Последняя относится к тому подкачки.

При создании разделов существуют следующие точки монтирования (каталоги корневой файловой системы):

/home – каталог для размещения начальных каталогов пользователей;

/var – используется для хранения файлов различных сервисных программ;

/opt – каталог для дополнительного коммерческого программного обеспечения;

/boot – каталог, где хранится загрузчик операционной системы;

/srv – каталог для хранения данных сервисных служб;

/tmp – каталог для временных файлов;

/usr/local – каталог для дополнительного свободно распространяемого программного обеспечения.

На шестом этапе создается пользователь и выбирается метод аутентификации.

Седьмой этап включает проверку параметров установки, если возникает необходимость внести изменения в параметры, то нужно щелкнуть на заголовке (рис. 8).

Для изменения списка устанавливаемого программного обеспечения нужно щелкнуть на заголовок «Программное обеспечение» и откроется окно со списком всего возможного программного обеспечения и задач системы (рис. 9).

При этом для выбора устанавливаемого программного обеспечения необходимо поставить слева от названия галочку, либо если установка не нужна, то галочку следует снять. После того как выбор закончен, необходимо нажать кнопку «ОК».

[image: image65.png]£ MapameTpbl yCTaHOBKM
LLUAKHNTE Ha 33r0NI0BKE ANA BHECEHVA MSMEHEHW WM UCTIONL3YATE MEHo

3arpyska B

«Tun sarpyauka: GRUB2
«Pacrionoxenme: /dev/sda2 (*/")
= V3MeHTL pacnonoxkenue:

3MEHUTE. ." BHI3Y.

©3arpyska u3 MBR oTKIOYeHa (Kni0dnTE))
©3arpy3Ka U3 KOPHEBOr0 PasAena BKIOHeHa (OTKIIoINTE)

MporpammHoe obecneuenue

«IpoayKT: opensUSE
- TVn cucTems: PaBosi cTon KDE
« LWabnom:
+ Bazosas cucTema
+ PaclmpenHas 6a30san cucTena
+ AppArmor
+ ALMAHUCTPUDOBAHUE CUCTeME ¢ YaST
+ YIpABAEHUE NPOT PAMMHLIM OBEcneveHem
+ Cpena pabodero cTona KDE4
+ MynbTuveaua
+ Basosas cucTema KDE4
+ OducHOe MporpamMHoe obecriedenme
+ CcTewma X Window.
+ WpndpTel
+ Tpaduka
+ Vrpst
+ Pa3Hble MPOMPUETAPHLIE MEKETH
« Pa3Mep yCTaHaB MBaeMSX NaKeToB: 3.2 T6

PernoHanbHble W A3bIKOBbIE NapaMeTpbl

« S3kik: Pycckuit
« PaCK/I3/IKa KNSBUATYD: PYCCKAR

HacoBoi nosic
« EBpona / Poccns (Mockea) - YCTaHOBMTE CACTemHbie dackl UTC 2016-02-15 - 14:20:10

HacTpoiiku nosb3osatens

« MoneaosaTens andrey (andrey) HacTpoeH
« [13D0J BAMAHCTPATOPE YCTAHOBAEH -

Wamennr

copaska npepoars | | Hasan, | (Verawomms)

 [image: image66.png]i3
& Bbibop nporpamMMHoro obecneyeHuns 1 3ajay cUCTEMbI

(i Wabnon |
O @ nokywentauns

= Tpacpuieckme cpens

7" Cpena padosero cTona LXDE

’
€ Cpena patouero crona GNO.

[cuerema x window
2 [wenpra

O /) I EET R AT S

O /) e R GRS

= ®yHKUMM PaBoero c..

I vynerumeava

Ocpuckoe nporpammHoe obe,

Il rpavca

< virpu

0O [vasnesmwin padouwi cron

osann| Coboaro [Beero
35GB 7.8GB
B OCHOBHBI € TexHooru home 7% 10,5 GB 11.4 GB

[() Texnnveckan aokymenTauns

Mo,

 Рис. 8. Параметры установки Рис. 9. Выбор программного

 обеспечения и задач системы

Далее для начала запуска установки необходимо нажать кнопку «Установить», далее подтвердить, что все параметры верны и начнется процесс подготовки дисков, распаковки образов и установки пакетов.

По завершению установки система попросит перезагрузки и далее необходимо начать загрузку с жесткого диска. Если на втором этапе была выбрана ручная установка, то после перезагрузки системы необходимо указать параметры сети, также будет выдано примечания к выпуску openSUSE и определены дополнительные устройства (принтеры, звуковые платы и т.п.).

Задания для практического занятия

1. Запустить установку ОС openSUSE 13.1.
2. Согласно варианту задания в таблице 1, произвести настройку установщика openSUSE.

3. Завершить установку openSUSE 13.1.

4. Загрузить ОС openSUSE и продемонстрировать созданные тома.

5. Завершить работу openSUSE 13.1.

Таблица 1
Варианты заданий
	№
	Рабочий стол
	Файловая система корневого тома
	Тома
	Установка

дополнительных возможностей ОС

	1
	KDE
	Ext4
	Корневой, подкачки, домашний,

для временных файлов
	Возможность разработки на Java

	2
	GNOME
	Ext3
	Корневой, подкачки,

для временных файлов
	Возможность разработки на C/C++

	3
	KDE
	Ext2
	Корневой, подкачки, домашний,

дополнительный для коммерческого ПО
	Возможность разработки KDE

	4
	GNOME
	Ext4
	Корневой, подкачки, дополнительный для коммерческого ПО
	Возможность разработки GNOME

	5
	KDE
	Ext3
	Корневой, подкачки, домашний,

сервисных служб
	Возможность организовать файловый сервер

	6
	GNOME
	Ext2
	Корневой, подкачки, сервисных служб
	Возможность организовать сервер печати

	7
	KDE
	Ext4
	Корневой, подкачки, домашний,

сервисных программ
	Возможность для установки сервера DHCP и DNS

	8
	GNOME
	Ext3
	Корневой, подкачки,

сервисных программ
	Возможность доступа к удаленному рабочему столу

	9
	KDE
	Ext2
	Корневой, подкачки, домашний,

для временных файлов
	Возможность расширенной работы с консолью (доп. утилиты)

	10
	GNOME
	Ext4
	Корневой, подкачки, для временных файлов
	Возможность веб-разработки

Контрольные вопросы

1. С каких источников можно произвести установку openSUSE?

2. По какой лицензии распространяется openSUSE 13.1?
3. Какие типы файловых систем возможно использовать в openSUSE 13.1?

Практическая работа № 9

«Выполнение команд в среде ОС Linux и Windows»

Цель работы: является изучение архитектуры и принципов функционирования многопользовательской многозадачной операционной системы Linux, особенности ее использования в качестве рабочей станции.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- создавать и выполнять командные файлы в семействах "UNIX" и "Windows";

- выполнять конфигурирование аппаратных устройств.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- общие принципы языка интерпретатора "BASH";

- общие принципы работы с командным интерпретатором в "Windows".
Краткие теоретические и учебно-методические материалы по теме практической работы

ОС Linux включает следующие основные компоненты.

Ядро. Выполняет функции управления памятью, процессорами. Осуществляет диспетчеризацию выполнения всех программ и обслуживание внешних устройств. Все действия, связанные с вводом/выводом и выполнением системных операций, выполняются с помощью системных вызовов. Системные вызовы реализуют программный интерфейс между программами и ядром. Имеется возможность динамического конфигурирования ядра.

Диспетчер процессов Init. Активизирует процессы, необходимые для нормальной работы системы и производит их начальную инициализацию. Обеспечивает завершение работы системы, организует сеансы работы пользователей, в том числе, для удаленных терминалов.

Интерпретатор команд Shell. Анализирует команды, вводимые с терминала либо из командного файла, и передает их для выполнения в ядро системы. Команды обычно имеют аргументы и параметры, которые обеспечивают модернизацию выполняемых действий. Shell является также языком программирования, на котором можно создавать командные файлы (shell-файлы). При входе в ОС пользователь получает копию интерпретатора Shell в качестве родительского процесса. Далее, после ввода команды пользователем создается порожденный процесс, называемый процессом-потомком. Т.е. после запуска ОС каждый новый процесс функционирует только как процесс - потомок уже существующего процесса. В ОС Linux имеется возможность динамического порождения и управления процессами.

Обязательным в системе является интерпретатор Bash, полностью соответствующий стандарту POSIX. В качестве Shell может быть использована оболочка mc с интерфейсом, подобным Norton Commander.

Сетевой графический интерфейс X-сервер (X-Windows). Обеспечивает поддержку графических оболочек.

Графические оболочки KDE, Gnome. Отличительными свойствами KDE являются: минимальные требования к аппаратуре, высокая надежность, интернационализация. Базовые библиотеки KDE (qt, kde-libs) признаны одними из лучших продуктов по созданию графического интерфейса, обеспечивают простое написание программ с использованием передовых технологий. Gnome имеет развитые графические возможности, но более требователен к аппаратным средствам.

Сетевая поддержка NFS, SMB, TCP/IP. NFS - программный комплекс РС-NFS (Network File System) для выполнения сетевых функций. РС-NFS ориентирован для конкретной ОС персонального компьютера (PC) и включает драйверы для работы в сети и дополнительные утилиты. SMB - сетевая файловая система, совместимая с Windows NT. TCP/IP - протокол контроля передачи данных (Transfer Control Protocol/Internet Protocol). Сеть по протоколам TCP/IP является неотъемлемой частью ОС семейства UNIX. Поддерживаются любые сети, от локальных до Internet, с использованием только встроенных сетевых средств.

Инструментальные средства программирования. Основой средств программирования является компилятор СС или GCC для языков С и С++; модули поддержки других языков программирования (Obective C, Фортран, Паскаль, Modula-3, Ада, Java и др.); интегрированные среды и средства визуального проектирования: Kdevelop, Xwpe; средства адаптации привязки программ AUTOCONFIG, AUTOMAKE.

Выполнение простых команд

Формат команд в ОС LINUX следующий:

имя команды [аргументы] [параметры] [метасимволы]

Имя команды может содержать любое допустимое имя файла; аргументы - одна или несколько букв со знаком минус (-); параметры - передаваемые значения для обработки; метасимволы интерпретируются как специальные операции. В квадратных скобках указываются необязательные части команд.

Введите команду echo, которая выдает на экран свои параметры:

echo good morning

и нажмите клавишу Enter. На экране появится приветствие "good morning" – параметр команды echo. Командный интерпретатор shell вызвал команду echo, реализованную в виде программы на языке СИ, и передал ей параметры. После этого интерпретатор команд вывел знак-приглашение. Синтаксис команды echo:

echo [-n] [arg1] [arg2] [arg3]...

Команда помещает в стандартный вывод свои параметры, разделенные пробелами и завершаемые символом перевода строки. При наличии флага -n символ перевода строки исключается.

who [am i] - получение информации о работающих пользователях.

В квадратных скобках указываются параметры команды, которые можно опустить. Ответ представляется в виде таблицы, которая содержит следующую информацию:

 - идентификатор пользователя;

 - идентификатор терминала;

 - дата подключения;

 - время подключения.

date - вывод на экран текущей даты и текущего времени.

cal [[месяц]год] - календарь; если календарь не помещается на одном экране, то используется команда cal год | more и клавишей пробела производится постраничный вывод информации.

man <название команды> - вызов электронного справочника об указанной команде. Выход из справочника - нажатие клавиши Q.

Команда man man сообщает информацию о том, как пользоваться справочником.

tty - сообщение имени специального файла стандартного вывода, соответствующего терминалу пользователя.

cat <имя файла> - вывод содержимого файла на экран. Команда cat > text.1 создает новый файл с именем text.1, который можно заполнить символьными строками, вводя их с клавиатуры. Нажатие клавиши Enter создает новую строку. Завершение ввода - нажатие Ctrl - d. Команда cat text.1 > text.2 пересылает содержимое файла text.1 в файл text.2. Слияние файлов осуществляется командой cat text.1 text.2 > text.3.

ls [-alrstu] [имя] - вывод содержимого каталога на экран. Если параметр не указан, выдается содержимое текущего каталога.

Аргументы команды:

-a - выводит список всех файлов и каталогов, в том числе и скрытых;

-l - выводит список файлов в расширенном формате, показывая тип каждого элемента, полномочия, владельца, размер и дату последней модификации;

- r - выводит список в порядке, обратном заданному;

- s - выводит размеры каждого файла;

- t - перечисляет файлы и каталоги в соответствии с датой их последней модификации;

- u - перечисляет файлы и каталоги в порядке, обратном их последней модификации.

rm <имя файла> - удаление файла (файлов). Команда rm text.1 text.2 text.3 удаляет файлы text.1, text.2, text.3. Другие варианты этой команды - rm text.[123] или rm text.[1-3].
wc [имя файла] - вывод числа строк, слов и символов в файле.

clear - очистка экрана.

Группирование команд

Группы команд или сложные команды могут формироваться с помощью специальных символов (метасимволов):

& - процесс выполняется в фоновом режиме, не дожидаясь окончания предыдущих процессов;

? - шаблон, распространяется только на один символ;

* - шаблон, распространяется на все оставшиеся символы;

| - программный канал - стандартный вывод одного процесса является стандартным вводом другого;

> - переадресация вывода в файл;

< - переадресация ввода из файла;

; - если в списке команд команды отделяются друг от друга точкой с запятой, то они выполняются друг за другом;

&& - эта конструкция между командами означает, что последующая команда выполняется только при нормальном завершении предыдущей команды (код возврата 0);

|| - последующая команда выполняется только, если не выполнилась предыдущая команда (код возврата 1);

() - группирование команд в скобки;

{ } - группирование команд с объединенным выводом;

[] - указание диапазона или явное перечисление (без запятых);

>> - добавление содержимого файла в конец другого файла.

Примеры.

who | wc - подсчет количества работающих пользователей командой wс (word count - счет слов);

cat text.1 > text.2 - содержимое файла text.1 пересылается в файл text.2;

mail student < file.txt - электронная почта передает файл file.txt всем пользователям, перечисленным в командной строке;

cat text.1,text.2 - просматриваются файлы text.1 и text.2;

cat text.1 >> text.2 - добавление файла text.1 в конец файла text.2;

cc primer.c & - трансляция Си - программы в фоновом режиме. Имя выполняемой программы по умолчанию a.out.

cc -o primer.o primer.c - трансляция Си-программы с образованием файла выполняемой программы с именем primer.o;

rm text.* - удаление всех файлов с именем text;

{cat text.1; cat text.2} | lpr - пpосмотp файлов text.1 и text.2 и вывод их на печать;

ps [-al] [number] - команда для вывода информации о процессах:

-a - вывод информации обо всех активных процессах, запущенных с вашего терминала;

-l - полная информация о процессах;

number - номер процесса.

Команда ps без параметров выводит информацию только об активных процессах, запущенных с данного терминала, в том числе и фоновых. На экран выводится подробная информация обо всех активных процессах в следующей форме:

F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

1 S 200 210 7 0 2 20 80 30 703a 03 0:07 cc

1 R 12 419 7 11 5 20 56 20 03 0:12 ps

F - флаг процесса (1 - в оперативной памяти, 2 - системный процесс, 4 - заблокирован в ОЗУ, 20 - находится под управлением другого процесса, 10 - подвергнут свопингу);

S - состояние процесса (O - выполняется процессором , S - задержан, R - готов к выполнению, I - создается);

UID - идентификатор пользователя;

PID - идентификатор процесса;

PPID - номер родительского процесса;

C - степень загруженности процессора;

PRI - приоритет процесса, вычисляется по значению переменной NICE и чем больше число, тем меньше его приоритет;

NI - значение переменной NICE для вычисления динамического приоритета, принимает величины от 0 до 39;

ADDR - адрес процесса в памяти;

SZ - объем ОЗУ, занимаемый процессом;

WCHAN - имя события, до которого процесс задержан, для активного процесса - пробел;

TTY - номер управляющего терминала для процесса;

TIME - время выполнения процесса;

CMD - команда, которая породила процесс.

nice [-приращение приоритета] команда[аргументы] - команда изменения приоритета. Каждое запущенное задание (процесс) имеет номер приоритета в диапазоне от 0 до 39, на основе которого ядро вычисляет фактический приоритет, используемый для планирования процесса. Значение 0 представляет наивысший приоритет, а 39 - самый низший. Увеличение номера приоритета приводит к понижению приоритета, присвоенного процессу. Команда nice -10 ls -l увеличивает номер приоритета, присвоенный процессу ls -l на 10.

renice 5 1836 - команда устанавливает значение номера приоритета процесса с идентификатором 1836 равным 5. Увеличить приоритет процесса может только администратор системы.

kill [-sig] <идентификатор процесса> - прекращение процесса до его программного завершения. Sig - номер сигнала. Sig = -15 означает программное (нормальное) завершение процесса, номер сигнала = -9 - уничтожение процесса. По умолчанию sig= -9. Вывести себя из системы можно командой kill -9 0. Пользователь с низким приоритетом может прервать процессы, связанные только с его терминалом.

mc - вызов файлового менеджера (программы - оболочки) Midnight Commander, аналогичного Norton Commander.

sort [-dr] - сортировка входных файлов и вывод результата на экран.

4. Краткое описание командного интерпретатора Shell

Интерпретатор команд Shell анализирует команды, вводимые с терминала либо из командного файла, и передает их для выполнения в ядро системы. Команды обычно имеют аргументы и параметры, которые обеспечивают модернизацию выполняемых действий. Shell является также языком программирования, на котором можно создавать командные файлы (shell-файлы). При входе в ОС пользователь получает копию интерпретатора Shell в качестве родительского процесса. Далее, после ввода команды пользователем создается порожденный процесс, называемый процессом-потомком. Т.е. после запуска ОС каждый новый процесс функционирует только как процесс - потомок уже существующего процесса. В ОС Linux имеется возможность динамического порождения и управления процессами.

Обязательным в системе является интерпретатор Bash, полностью соответствующий стандарту POSIX. В качестве Shell может быть использована оболочка mc с интерфейсом, подобным Norton Commander.

Задания для практического занятия

1. Ознакомиться с теоретической частью к лабораторной работе.

2. Определить день недели, в который Вы родились.

3. Получить подробную информацию обо всех активных процессах.

4. Используя редактор VI (см. приложение), создать два текстовых файла (с расширением TXT) и командой САТ просмотреть их на экране.

5. Получить информацию о работающих пользователях, подсчитать их количество и запомнить в файле.

6. Объединить текстовые файлы в единый файл и посмотреть его на экране.

7. Посмотреть приоритет своего процесса и уменьшить скорость его выполнение за счет повышения номера приоритета.

8. Используя редактор VI, написать программу на языке Си и запустить ее на трансляцию в фоновом режиме.

9. Показать преподавателю исходный текст программы на языке Си, текстовый файл, файл с сохранением количества пользователей.

10. Продемонстрировать выполнение Си - программы.

11. Удалить свои файлы и выйти из системы.

Контрольные вопросы

1. Перечислите основные функции и назначение многопользовательской многозадачной операционной системы LINUX и ее отличительные особенности от однопрограммной системы DOS.

2. Какое назначение имеет ядро системы и интерпретатор команд?

3. В чем заключается понятие «процесс» и какие операции можно выполнить над процессами?

Практическая работа № 10

«Функции файловой системы по обработке и управлению данными»

Цель работы: является изучение структуры файловой системы OC LINUX, изучение команд создания, удаления, модификации файлов и каталогов, функций манипулирования данными.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять учетными записями, настраивать параметры рабочей среды пользователей;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- принципы управления ресурсами в операционной системе;

- основные задачи администрирования и способы их выполнения в изучаемых операционные системах.

Краткие теоретические и учебно-методические материалы по теме практической работы

В операционной системе LINUX файлами считаются обычные файлы, каталоги, а также специальные файлы, соответствующие периферийным устройствам (каждое устройство представляется в виде файла). Доступ ко всем файлам однотипный, в том числе, и к файлам периферийных устройств. Такой подход обеспечивает независимость программы пользователя от особенностей ввода/вывода на конкретное внешнее устройство.

Файловая структура LINUX имеет иерархическую древовидную структуру. В корневом каталоге размещаются другие каталоги и файлы, включая 5 основных каталогов:

bin - большинство выполняемых командных программ и shell - процедур;

tmp - временные файлы;

usr - каталоги пользователей (условное обозначение);

etc - преимущественно административные утилиты и файлы;

dev - специальные файлы, представляющие периферийные устройства; при добавлении периферийного устройства в каталог /dev должен быть добавлен соответствующий файл (черта / означает принадлежность корневому каталогу).

Текущий каталог - это каталог, в котором в данный момент находится пользователь. При наличии прав доступа, пользователь может перейти после входа в систему в другой каталог. Текущий каталог обозначается точкой (.); родительский каталог, которому принадлежит текущий, обозначается двумя точками (..).

Полное имя файла может включать имена каталогов, включая корневой, разделенных косой чертой, например: /home/student/file.txt. Первая косая черта обозначает корневой каталог, и поиск файла будет начинаться с него, а затем в каталоге home, затем в каталоге student.

Один файл можно сделать принадлежащим нескольким каталогам. Для этого используется команда ln (link):

ln <имя файла 1> <имя файла 2>

Имя 1-го файла – это полное составное имя файла, с которым устанавливается связь; имя 2-го файла - это полное имя файла в новом каталоге, где будет использоваться эта связь. Новое имя может не отличаться от старого. Каждый файл может иметь несколько связей, т.е. он может использоваться в разных каталогах под разными именами. Команда ln с аргументом -s создает символическую связь:

ln -s <имя файла 1> <имя файла 2>

Здесь имя 2-го файла является именем символической связи. Символическая связь является особым видом файла, в котором хранится имя файла, на который символическая связь ссылается. LINUX работает с символической связью не так, как с обычным файлом - например, при выводе на экран содержимого символической связи появятся данные файла, на который эта символическая связь ссылается.

В LINUX различаются 3 уровня доступа к файлам и каталогам:

1) доступ владельца файла;

2) доступ группы пользователей, к которой принадлежит владелец файла;

3) остальные пользователи.

Для каждого уровня существуют свои байты атрибутов, значение которых расшифровывается следующим образом:

r – разрешение на чтение;

w – разрешение на запись;

x – разрешение на выполнение;

- – отсутствие разрешения.

Первый символ байта атрибутов определяет тип файла и может интерпретироваться со следующими значениями:

- – обычный файл;

d – каталог;

l – символическая связь;

в – блок-ориентированный специальный файл, который соответствует таким периферийным устройствам, как накопители на магнитных дисках;

с – байт-ориентированный специальный файл, который может соответствовать таким периферийным устройствам как принтер, терминал.

В домашнем каталоге пользователь имеет полный доступ к файлам (READ, WRITE, EXECUTE; r, w, x).

Атрибуты файла можно просмотреть командой ls -l и они представляются в следующем формате:

d rwx rwx rwx

 | | | |

 | | | | Доступ для остал

ьных пользователей

 | | | Доступ к файлу для членов группы

 | | Доступ к файлу владельца

 | Тип файла (директория)

Пример. Командой ls -l получим листинг содержимого текущей директории student:

- rwx --- --- 2 student 100 Mar 10 10:30 file_1

- rwx --- r-- 1 adm 200 May 20 11:15 file_2

- rwx --- r-- 1 student 100 May 20 12:50 file_3

После байтов атрибутов на экран выводится следующая информация о файле:

- число связей файла;

- имя владельца файла;

- размер файла в байтах;

- дата создания файла (или модификации);

- время;

- имя файла.

Примеры:

>letter - создание файла letter. Символ > используется как для переадресации, так и для создания файла;

cat - вывод содержимого файла;

cat file.1 file.2 > file.12 - конкатенация файлов (объединение);

mv file.1 file.2 - переименование файла file.1 в file.2;

mv file.1 file.2 file.3 directory - перемещение файлов file.1, file.2, file.3 в указанную директорию;

rm file.1 file.2 file.3 - удаление файлов file.1, file.2, file.3;.

cp file.1 file.2 - копирование файла с переименованием;

mkdir namedir - создание каталога;

rm dir_1 dir_2 - удаление каталогов dir_1 dir_2;

ls [acdfgilqrstv CFR] namedir - вывод содержимого каталога; если в качестве namedir указано имя файла, то выдается вся информация об этом файле. Значения аргументов:

- l –- список включает всю информацию о файлах;

- t – сортировка по времени модификации файлов;

- a – в список включаются все файлы, в том числе и те, которые начинаются с точки;

- s – размеры файлов указываются в блоках;

- d – вывести имя самого каталога, но не содержимое;

- r – сортировка строк вывода;

- i – указать идентификационный номер каждого файла;

- v – сортировка файлов по времени последнего доступа;

- q ​– непечатаемые символы заменить на знак ?;

- с – использовать время создания файла при сортировке;

- g – то же что -l, но с указанием имени группы пользователей;

- f – вывод содержимого всех указанных каталогов, отменяет флаги -l, -t, -s, -r и активизирует флаг -а;

- С – вывод элементов каталога в несколько столбцов;

- F – добавление к имени каталога символа / и символа * к имени файла, для которых разрешено выполнение;

- R – рекурсивный вывод содержимого подкаталогов заданного каталога.

cd <namedir> - переход в другой каталог. Если параметры не указаны, то происходит переход в домашний каталог пользователя.

pwd - вывод имени текущего каталога;

grep [-vcilns] [шаблон поиска] <имя файла> - поиск файлов с указанием или без указания контекста (шаблона поиска).

Значение ключей:

- v – выводятся строки, не содержащие шаблон поиска;

- c – выводится только число строк, содержащих или не содержащих шаблон;

- i – при поиске не различаются прописные и строчные буквы;

- l – выводятся только имена файлов, содержащие указанный шаблон;

- n – перенумеровать выводимые строки;

- s – формируется только код завершения.

Примеры.

1. Напечатать имена всех файлов текущего каталога, содержащих последовательность "student" и имеющих расширение .txt:

grep -l student *.txt
2. Определить имя пользователя, входящего в ОС LINUX с терминала tty23:

who | grep tty23

Задания для практического занятия

1. Ознакомиться с файловой структурой ОС LINUX. Изучить команды работы с файлами.

2. Используя команды ОС LINUX, создать два текстовых файла.

3. Полученные файлы объединить в один файл и его содержимое просмотреть на экране.

4. Создать новую директорию и переместить в нее полученные файлы.

5. Вывести полную информацию обо всех файлах и проанализировать уровни доступа.

6. Создать еще один каталог.

7. Установить дополнительную связь объединенного файла с новым каталогом, но под другим именем.

8. Создать символическую связь.

9. Произвести поиск заданной последовательности символов в файлах текущей директории и получить перечень соответствующих файлов.

10. Получить информацию об активных процессах и имена других пользователей.

11. Сдать отчет о работе и удалить свои файлы и каталоги.

Контрольные вопросы

1. Что считается файлами в OC LINUX?

2. Объясните назначение связей с файлами и способы их создания.

3. Что определяет атрибуты файлов и каким образом их можно просмотреть и изменить?

Практическая работа № 11-12

«Создание и выполнение командных файлов»

Цель работы: является изучение методов создания и выполнения командных файлов на языке Shell - интерпретатора.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- выполнять конфигурирование аппаратных устройств;
- создавать и выполнять командные файлы в семействах "UNIX" и "Windows".

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- основные задачи администрирования и способы их выполнения в изучаемых операционные системах;

- общие принципы языка интерпретатора "BASH";

- общие принципы работы с командным интерпретатором в "Windows".
Краткие теоретические и учебно-методические материалы по теме практической работы

В предыдущих лабораторных работах взаимодействие с командным интерпретатором Shell осуществлялось с помощью командной строки. Однако, Shell является также и языком программирования, который применяется для написания командных файлов (shell - файлов). Командные файлы также называются скриптами и сценариями. Shell - файл содержит одну или несколько выполняемых команд (процедур), а имя файла в этом случае используется как имя команды.

Переменные командного интерпретатора

Для обозначения переменных Shell используется последовательность букв, цифр и символов подчеркивания; переменные не могут начинаться с цифры. Присваивание значений переменным проводится с использованием знака = , например, РS2 = '<' . Для обращения к значению переменной перед ее именем ставится знак $. Их можно разделить на следующие группы:

- позиционные переменные вида $n, где n - целое число;

- простые переменные, значения которых может задавать пользователь или они могут устанавливаться интерпретатором;

- специальные переменные # ? - ! $ устанавливаются интерпретатором и позволяют получить информацию о числе позиционных переменных, коде завершения последней команды, идентификационном номере текущего и фонового процессов, о текущих флагах интерпретатора Shell.

Простые переменные. Shell присваивает значения переменным:

z=1000

х= $z

есhо $х

1000

Здесь переменной x присвоено значение z.

Позиционные переменные. Переменные вида $n, где n - целое число, используются для идентификации позиций элементов в командной строке с помощью номеров, начиная с нуля. Например, в командной строке

саt text_1 text_2...text_9

аргументы идентифицируются параметрами $1...$9. Для имени команды всегда используется S0. В данном случае $0 - это саt, $1 - text_1, $2 - text_2 и т.д. Для присваивания значений позиционным переменным используется команда set, например:

set arg_1 arg_2... arg_9

здесь $1 присваивается значение аргумента arg_1, $2 - arg_2 и т.д.

Для доступа к аргументам используется команда echo, например:

echo $1 $2 $9

arg_1 arg_2 arg_9

Для получения информации обо всех аргументах (включая последний) используют метасимвол *. Пример:

echo $*

arg_2 arg_3 ... arg_10 arg_11 arg_12

С помощью позиционных переменных Shell можно сохранить имя команды и ее аргументы. При выполнении команды интерпретатор Shell должен передать ей аргументы, порядок которых может регулироваться также с помощью позиционных переменных.

Специальные переменные. Переменные - ? # $! устанавливаются только Shell. Они позволяют с помощью команды echo получить следующую информацию:

- – текущие флаги интерпретатора (установка флагов может быть изменена командой set);

– число аргументов, которое было сохранено интерпретатором при выполнении какой-либо команды;

? – код возврата последней выполняемой команды;

$ – числовой идентификатор текущего процесса PID;

! – PID последнего фонового процесса.

Арифметические операции

Команда expr (express -- выражать) вычисляет выражение expression и записывает результат в стандартный вывод. Элементы выражения разделяются пробелами; символы, имеющие специальный смысл в командном языке, нужно экранировать. Строки, содержащие специальные символы, заключают в апострофы. Используя команду expr, можно выполнять сложение, вычитание, умножение, деление, взятие остатка, сопоставление символов и т. д.

Пример. Сложение, вычитание:

b=190

a=` expr 200 - $b`
где ` - обратная кавычка (левая верхняя клавиша). Умножение *, деление /, взятие остатка %:

d=` expr $a + 125 "*" 10`

c=` expr $d % 13`

Здесь знак умножения заключается в двойные кавычки, чтобы интерпретатор не воспринимал его как метасимвол. Во второй строке переменной с присваивается значение остатка от деления переменной d на 13.

Сопоставление символов с указанием числа совпадающих символов:

concur=` expr "abcdefgh" : "abcde"`

echo $concur

ответ 5.

Операция сопоставления обозначается двоеточием (:). Результат - переменная соncur.

Подсчет числа символов в цепочках символов. Операция выполняется с использованием функции length в команде expr:

chain="The program is written in Assembler"

str=` expr length "$chain"`

echo $str

ответ 35. Здесь результат подсчета обозначен переменной str.

Встроенные команды

Встроенные команды являются частью интерпретатора и не требуют для своего выполнения проведения последовательного поиска файла команды и создания новых процессов. Встроенные команды:

cd [dir] - назначение текущего каталога;

exec [cmd [arg...]] <имя файла> - выполнение команды, заданной аргументами cmd и arg, путем вызова соответствующего выполняемого файла.

umask [-o | -s] [nnn] - устанавливает маску создания файла (маску режимов доступа создаваемого файла, равную восьмеричному числу nnn: 3 восьмеричных цифры для пользователя, группы и других). Если аргумент nnn отсутствует, то команда сообщает текущее значение маски. При наличии флага -o маска выводится в восьмеричном виде, при наличии флага -s - в символьном представлении;

set, unset - режим работы интерпретатора, присваивание значений параметрам;

eval [-arg] - вычисление и выполнение команды;

sh <filename.sh> выполнение командного файла filename.sh;

exit [n] - приводит к прекращению выполнения программы, возвращает код возврата, равный нулю, в вызывающую программу;

trap [cmd] [cond] - перехват сигналов прерывания, где: cmd - выполняемая команда; cond=0 или EXIT - в этом случае команда cmd выполняется при завершении интерпретатора; cond=ERR - команда cmd выполняется при обнаружении ошибки; cond - символьное или числовое обозначение сигнала, в этом случае команда cmd выполняется при приходе этого сигнала;

export [name [=word]...] - включение в среду. Команда export объявляет, что переменные name будут включаться в среду всех вызываемых впоследствии команд;

wait [n] - ожидание завершения процесса. Команда без аргументов ожидает завершения процессов, запущенных синхронно. Если указан числовой аргумент n, то wait ожидает фоновый процесс с номером n;

read name - команда вводит строку со стандартного ввода и присваивает прочитанные слова переменным, заданным аргументами name.

Пример. Пусть имеется shell-файл data, содержащий две команды:

echo -n "Please write down your name:"

read name

Если вызвать файл на выполнение, введя его имя, то на экране появится сообщение:

Please write down your name:

Программа ожидает ввода с клавиатуры (в данном случае - фамилии пользователя). После ввода фамилии и нажатия клавиши Enter команда выполнится и на следующей строке появится знак - приглашение.

Управление программами

Команды true и false служат для установления требуемого кода завершения пpоцесса: true - успешное завершение, код завершения 0; false - неуспешное завершение, код может иметь несколько значений, с помощью которых определяется причина неуспешного завершения. Коды завершения команд используются для принятия решения о дальнейших действиях в операторах цикла while и until и в условном операторе if. Многие команды LINUX вырабатывают код завершения только для поддержки этих операторов.

Условный оператор if проверяет значение выражения. Если оно равно true, Shell выполняет следующий за if оператор, если false, то следующий оператор пропускается. Формат оператора if:

if <условие>

then

list1

else

list2

fi

Команда test (проверить) используется с условным оператором if и операторами циклов. Действия при этом зависят от кода возврата test. Test проводит анализ файлов, числовых значений, цепочек символов. Нулевой код выдается, если при проверке результат положителен, ненулевой код при отрицательном результате проверки.

В случае анализа файлов синтаксис команды следующий:

test [-arwfds] file

где

-a – файл существует;

-r – файл существует и его можно прочитать (код завершения 0);

-w – файл существует и в него можно записывать;

-f – файл существует и не является каталогом;

-d – файл существует и является каталогом;

-s – размер файла отличен от нуля.

При анализе числовых значений команда test проверяет, истинно ли данное отношение, например, равны ли А и В . Сравнение выполняется в формате:

-eq А = В

-ne А <> B
test A -ge B эквивалентно А >= В

-le А <= В

-gt А > В

-lt А < В

Отношения слева используются для числовых данных, справа – для символов.

Кроме команды test имеются еще некоторые средства для проверки:

! - операция отрицания инвертирует значение выражения, например, выражение if test true эквивалентно выражению if test ! false;

o - двуместная операция "ИЛИ" (or) дает значение true, если один из операндов имеет значение true;

a - двуместная операция "И" (and) дает значение true, если оба операнда имеют значение true.

Циклы

Оператор цикла с условием while true и while false. Команда while (пока) формирует циклы, которые выполняются до тех пор, пока команда while определяет значение следующего за ним выражения как true или false. Фоpмат оператора цикла с условием while true:

while
list1

do

list2

done
Здесь list1 и list2 - списки команд. While проверяет код возврата списка команд, стоящих после while, и если его значение равно 0, то выполняются команды, стоящие между do и done. Оператор цикла с условием while false имеет формат:

until
list1

do

list2

done
В отличие от предыдущего случая условием выполнения команд между do и done является ненулевое значение возврата. Программный цикл может быть размещен внутри другого цикла (вложенный цикл). Оператор break прерывает ближайший к нему цикл. Если в программу ввести оператор break с уровнем 2 (break 2), то это обеспечит выход за пределы двух циклов и завершение программы.

Оператор continue передает управление ближайшему в цикле оператору while.

Оператор цикла с перечислением for:

for name in [wordlist]

do

list

done

где name - переменная; wordlist - последовательность слов; list - список команд. Переменная name получает значение первого слова последовательности wordlist, после этого выполняется список команд, стоящий между do и done. Затем name получает значение второго слова wordlist и снова выполняется список list. Выполнение прекращается после того, как кончится список wordlist.

Ветвление по многим направлениям case. Команда case обеспечивает ветвление по многим направлениям в зависимости от значений аргументов команды. Формат:

case <string> in

s1) <list1>;;

s2) <list2>;;

 .

 .

 .

sn) <listn>;;

*) <list>

esac

3десь list1, list2 ... listn - список команд. Производится сравнение шаблона string с шаблонами s1, s2 ... sk ... sn. При совпадении выполняется список команд, стоящий между текущим шаблоном sk и соответствующими знаками ;;. Пример:

echo -n 'Please, write down your age'

read age

case $age in

test $age -le 20) echo 'you are so young' ;;

test $age -le 40) echo 'you are still young' ;;

test $age -le 70) echo 'you are too young' ;;

*)echo 'Please, write down once more'

esac

В конце текста помещена звездочка * на случай неправильного ввода числа.

Задания для практического занятия

Составьте и выполните shell - программы, включающей следующие действия:

1. Создать каталог DIR и в нем создать файл Myfile.txt, записать в файл свою фамилию и текущее время.

2. Переименовать файл Myfile.txt в Old_Myfile.txt и установить у него атрибут ReadOnly.

3. Вычислить омическое сопротивление двух параллельно соединенных резисторов. Значения сопротивлений резисторов в диапазоне от 0,1 ом до 1000 Мом вводить с клавиатуры.

4. Перевести заданное десятичное число в шестнадцатеричную форму. Ввод десятичного числа с клавиатуры в диапазоне от 0 до 4096.

5. Запрос и ввод имени пользователя, сравнение с текущим логическим именем пользователя и вывод сообщения: верно/неверно.

6. Запрос и ввод имени файла в текущем каталоге и вывод сообщения о типе файла.

7. Циклическое чтение системного времени и очистка экрана в заданный момент.

8. Циклический просмотр списка файлов и выдача сообщения при появлении заданного имени в списке.

Контрольные вопросы

1. Какое назначение имеют shell - файлы?

2. Как создать shell - файл и сделать его выполняемым?

3. Какие типы переменных используются в shell - файлах?

Практическая работа № 13

«Задание прав доступа к файлам и каталогам в Linux»

Цель работы: является изучение возможности изменить атрибуты файлов и доступа к ним.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять учетными записями, настраивать параметры рабочей среды пользователей;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- основные задачи администрирования и способы их выполнения в изучаемых операционные системах.

Краткие теоретические и учебно-методические материалы по теме практической работы

В LINUX различаются 3 уровня доступа к файлам и каталогам:

1) доступ владельца файла;

2) доступ группы пользователей, к которой принадлежит владелец файла;

3) остальные пользователи.

Для каждого уровня существуют свои байты атрибутов, значение которых расшифровывается следующим образом:

r – разрешение на чтение;

w – разрешение на запись;

x – разрешение на выполнение;

- – отсутствие разрешения.

Первый символ байта атрибутов определяет тип файла и может интерпретироваться со следующими значениями:

- – обычный файл;

d – каталог;

l – символическая связь;

в – блок-ориентированный специальный файл, который соответствует таким периферийным устройствам, как накопители на магнитных дисках;

с – байт-ориентированный специальный файл, который может соответствовать таким периферийным устройствам как принтер, терминал.

В домашнем каталоге пользователь имеет полный доступ к файлам (READ, WRITE, EXECUTE; r, w, x).

Атрибуты файла можно просмотреть командой ls -l и они представляются в следующем формате:

d rwx rwx rwx

 | | | |

 | | | | Доступ для остальных пользователей

 | | | Доступ к файлу для членов группы

 | | Доступ к файлу владельца

 | Тип файла (директория)

Пример. Командой ls -l получим листинг содержимого текущей директории student:

- rwx --- --- 2 student 100 Mar 10 10:30 file_1

- rwx --- r-- 1 adm 200 May 20 11:15 file_2

- rwx --- r-- 1 student 100 May 20 12:50 file_3

После байтов атрибутов на экран выводится следующая информация о файле:

- число связей файла;

- имя владельца файла;

- размер файла в байтах;

- дата создания файла (или модификации);

- время;

- имя файла.

Атрибуты файла и доступ к нему, можно изменить командой:

chmod <коды защиты> <имя файла>

Коды защиты могут быть заданы в числовом или символьном виде. Для символьного кода используются:

знак плюс (+) - добавить права доступа;

знак минус (-) - отменить права доступа;

r,w,x - доступ на чтение, запись, выполнение;

u,g,o - владельца, группы, остальных.

Коды защиты в числовом виде могут быть заданы в восьмеричной форме. Для контроля установленного доступа к своему файлу после каждого изменения кода защиты нужно проверять свои действия с помощью команды ls -l.

Примеры:

chmod g+rw,o+r file.1 - установка атрибутов чтения и записи для группы и чтения для всех остальных пользователей;

ls -l file.1 - чтение атрибутов файла;

chmod o-w file.1 - отмена атрибута записи у остальных пользователей;

Задания для практического занятия

1. Ознакомиться с файловой структурой ОС LINUX. Изучить команды работы с атрибутами файлов.

2. Используя команды ОС LINUX, создать три текстовых файла (назвать их фамилией студента и указать номер файла).

3. Добавить право на выполнение членам группы и остальным пользователям для первого файла.

4. Вывести на экран расширенный список информации о первом файле. Проанализировать уровни доступа.
5. Добавить право на чтение и запись ко второму файлу для членов группы.

6. Вывести на экран расширенный список информации о втором файле. Проанализировать уровни доступа.
7. Добавить право на выполнение членам группы и право чтения, записи для остальных пользователей.
8. Вывести на экран расширенный список информации о третьем файле. Проанализировать уровни доступа.

9. Создать новый каталог и переместить три файла, созданные ранее, в данный каталог.

10. Вывести полную информацию обо всех файлах в каталоге.

Контрольные вопросы

1. Сколько уровней доступа в Linux?
2. Где пользователь имеет полный доступ к файлам?

3. Какой командой можно изменить атрибуты файла?
Практическая работа № 14

«Задание прав доступа к файлам и каталогам в Windows»

Цель работы:

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять учетными записями, настраивать параметры рабочей среды пользователей;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- основные задачи администрирования и способы их выполнения в изучаемых операционные системах.

Краткие теоретические и учебно-методические материалы по теме практической работы
Справочная система
Команда help выводит на экран описание указанной команды. Например, чтобы изучить команду dir, нужно ввести команду: help dir.
Длинный текст справки выводится на экран постранично.
Некоторые команды и программы сами могут выводить справку при указании вопросительного знака в качестве параметра:

dir /?

Справку можно также получить через меню Пуск ► Справка и поддержка. В строке поиска справочной системы введите имя команды, например, dir.

Квадратные скобки в тексте справки отмечают необязательные аргументы.

Работа с каталогами

Для создания каталогов используется команда mkdir (англ. Make Directory – Создать каталог).

Для удаления каталогов используется команда rmdir (англ. Remove Directory – Удалить каталог).

Для удаления фалов используется команда del (англ. Delete – Удалить).

Создание файлов
Для обеспечения безопасности текущие настройки ОС в дисплейном классе не позволяют пользователям создавать файлы в корневом каталоге диска c:\. Рекомендуется проводить опыты с файлами в каталоге C:\Student.
Для создания текстовых файлов в командной строке можно использовать два способа.
Способ 1. Копирование ввода с клавиатуры в файл: copy con file.txt При выполнении этой команды данные с клавиатуры записываются в указанный файл. Для завершения ввода текста нажмите комбинацию [Ctrl + Z] , а затем [Enter]. con (англ. Console – Консоль) – устройство стандартного вводавывода информации. «Стандартный ввод» выполняется с клавиатуры, а «стандартный вывод» – на экран.
Способ 2. Перенаправление стандартного вывода: echo текст > file.txt Команда echo (англ. Echo – эхо) выводит текст, напечатанный после команды, на экран. Знак > направляет вывод вместо экрана в файл. В результате, при выполнении этой команды будет создан файл file.txt, который будет содержать в себе текст, напечатанный после команды echo.

Изменение атрибутов файлов
Команда ATTRIB дает возможность изменять атрибуты файла посредством командной строки. Команда имеет синтаксис: ATTRIB [-A][+A][-S][+S][-R][+R][-H][+H][-I][+I] [Диск:][Путь][Имя файла][/S][/D][/L]. Буквы A, S, R, H, I означают соответственно: архивный, системный, только для чтения, скрытый, неиндексированное содержимое. Знак «+» и «-» означают соответственно установку и снятие атрибута.
Для примера, создадим на диске «С» файл «test_attrib.txt». По умолчанию, данный файл при создании имеет установленным лишь архивный атрибут и атрибут «индексации». Изменим атрибуты данного файла, установив атрибут «Только для чтения» и, сняв атрибут «архивный»: attrib +r –a test_attrib.txt
Ключ /S команды ATTRIB указывает на то, что меняются атрибуты файла не только в указанном каталоге, но и во всех подкаталогах.
Команда ATTRIB применяется не только к файлам, но и к каталогам. Например, команда attrib +h d:\atribut установит атрибут «Скрытый» для папки «atribut».
Задания для практического занятия

1. Вызовите справку по mkdir

2. Создайте каталог (в названии используйте номер группы)

3. Перейдите в новый каталог

4. Создайте каталог (в названии используйте фамилию)

5. Перейдите в новый каталог

6. Создайте текстовый файл

7. Удалите текстовый файл

8. Поднимитесь на один уровень вверх по файловому дереву

9. Вызовите справку по rmdir

10. Удалите каталог

11. Создайте каталог новый каталог (в названии используйте фамилию)
12. Создадим в каталоге еще две папки «atribut1» и «atribut2». В каждой из этих папок создадим по нескольку файлов (3-5 файлов).
13. Изменить атрибуты всех файлов на: системный и только для чтения.

14. Установить атрибут «скрытый» для каталога «atribut1»
Контрольные вопросы

1. Как получить доступ к справочной системе?
2. Какие способы существуют для создания файлов?
3. Какая команда в Windows позволяет изменить атрибуты файлов?
Практическая работа № 15

«Создание и делегирование прав пользователей в Windows»

Цель работы: является изучение создания учетных записей пользователей и делегирование прав в ОС Windows 7.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять учетными записями, настраивать параметры рабочей среды пользователей;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- основные задачи администрирования и способы их выполнения в изучаемых операционные системах.

Краткие теоретические и учебно-методические материалы по теме практической работы

Учётная запись пользователя – это запись, которая содержит сведения, необходимые для идентификации пользователя при подключении к системе, а также информацию для авторизации и учёта. Это имя пользователя и пароль (или другое аналогичное средство аутентификации – например, биометрические характеристики). Пароль или его аналог, как правило, хранится в зашифрованном или хэшированном виде (в целях его безопасности).
Создание учётных записей пользователей

В операционной системе Windows 7 можно создавать несколькими способами как учётные записи пользователей для компьютеров, состоящих в рабочих группах, так и учётные записи пользователей для компьютеров, которые входят в состав домена. Домены, рабочие группы и домашние группы представляют разные методы организации компьютеров в сети. Основное их различие состоит в том, как осуществляется управление компьютерами и другими ресурсами.

Рабочая группа – это группа компьютеров, подключённых к сети, которые совместно используют ресурсы. При настройке сети операционная система Windows автоматически создаёт рабочую группу и присваивает ей имя по умолчанию.

Домен – это группа компьютеров одной сети, имеющих единый центр, использующий единую базу пользователей, единую групповую и локальную политики, единые параметры безопасности, ограничение времени работы учётной записи и прочие параметры, значительно упрощающие работу системного администратора организации, если в ней эксплуатируется большое число компьютеров.
Для того чтобы создать учётную запись при помощи диалога «Управление учётными записями пользователей», нужно сделать следующее:

1. Нажать на кнопку «Пуск» для открытия меню, открыть «Панель управления» и из списка компонентов панели управления выбрать «Учётные записи пользователей».

2. В диалоге «Учётные записи пользователей» перейти по ссылке «Управление другой учётной записью», а затем нажать на «Создание учётной записи».

3. Здесь нужно будет ввести имя для учётной записи, выбрать тип учётной записи и нажать на кнопку «Создание учётной записи».

Имя пользователя не должно совпадать с любым другим именем пользователя или группы на данном компьютере. Оно может содержать до 20 символов верхнего или нижнего регистров, за исключением следующих: « / \ [] : ; | = , + * ? <> @, а также имя пользователя не может состоять только из точек и пробелов.

В этом диалоге, можно выбрать одну из двух типов учётных записей: «обычные учётные записи пользователей», которые предназначены для повседневной работы или «учётные записи администратора», которые предоставляют полный контроль над компьютером и применяются только в необходимых случаях.

Управление учётными записями при помощи диалога
«Управление учётными записями пользователей»

При помощи диалогового окна «Учётные записи пользователей» можно не только создавать учётные записи, но и выполнять с ними простейшие действия, такие как:

· изменение имени;

· создание пароля;

· изменение пароля;

· удаление пароля;

· изменение рисунка;

· установка родительского контроля;

· изменение типа учётной записи;

· удаление учётной записи;

· включение и отключение гостевой учётной записи.

В этом разделе будет подробно рассмотрено каждое из перечисленных действий.

[image: image67.png]Marens ynpasnerua -
aomawHAR CTpaHLE
AguuncrpuposaHue ysersx
‘Cosganme nckersl copoca
napons

Mogxnosene

waesnuKaTopoS.
Ronszosateneii Mseprera

Ynpasnese cepragukaTan
Lunpposaun parinoe

[——
cpeast

. Taroke

® Poamenscuu xonmpons

BHECEHVIE M3MEHEHWTE B YUETHYIO 3aMCE NONb30BATENA

Vimenenne csoero napona
Yaanesne cooero naporn
Vimenenme cooero pucymea
LT ——

[r—————

[p————

@ Vsenene napamerpos kowTpona ysemnx sanucel

Рис. 1 – Диалоговое окно «Учётные записи пользователей»

Создание учётной записи при помощи командной строки

Помимо вышеперечисленных способов, учётные записи пользователей можно создавать, изменять и удалять при помощи командной строки. Для этого нужно выполнить следующие действия:

4. Запустить командную строку от имени администратора.

5. Для создания учётной записи при помощи командной строки использовать команду net user.

Команда net user используется для добавления пользователей, установки паролей, отключения учётных записей, установки параметров и удаления учётных записей. При выполнении команды без параметров командной строки отображается список учётных записей пользователей, присутствующих на компьютере. Информация об учётных записях пользователей хранится в базе данных учётных записей пользователей.

Пример команды:

net user User /add /passwordreq:yes /times:monday-friday,9am-6pm/fullname: «New user»

Используемые параметры:

/add – этот параметр указывает, что необходимо создать новую учётную запись;

/passwordreq – этот параметр отвечает за то, чтобы при первом входе в систему пользователь сменил свой пароль;

/times – этот параметр определяет, сколько раз пользователю разрешено входить в систему. Здесь можно указывать как единичные дни, так и целые диапазоны (например Sa или M-F). Для указания времени допускается как 24-часовой формат, так и 12-часовой формат;

/fullname – этот параметр идентичен полю «Полное имя» при создании пользователя предыдущими способами.

Задания для практического занятия

1. С помощью диалога «Управление учетными записями пользователей» создать двух пользователей: а) Администратор: в названии указать Фамилию; б) Обычный доступ: в названии указать Имя.

2. Создать пользователя с использованием командной строки и установить следующие параметры: а) при первом входе в систему пользователь должен сменить свой пароль; б) разрешить пользователю входить в систему по вариантам из таблицы 1.

Таблица 1

Варианты задания

	Номер вариант
	Дни когда разрешен вход
	Время

	1
	понедельник-среда
	9am-6pm

	2
	понедельник-четверг
	10am-5pm

	3
	вторник-четверг
	9am-6pm

	4
	пятница-суббота
	10am-5pm

	5
	понедельник-воскресенье
	9am-6pm

	6
	пятница-воскресенье
	10am-5pm

	7
	понедельник-вторник
	9am-6pm

	8
	понедельник-суббота
	10am-5pm

	9
	среда-суббота
	9am-6pm

	10
	четверг-воскресенье
	10am-5pm

3. При помощи диалогового окна «Учетные записи пользователей» выполнить действия с учетными записями:

а) изменить имена учетных записей созданных в пункте 1.

б) изменить рисунок учетной записи созданной в пункте 2.

в) выключить гостевую учетную запись.

Контрольные вопросы

1. Дать определение учетной записи пользователя.
2. Что такое рабочая группа?

3. Как можно создать учетную запись?
Практическая работа № 16

«Создание и делегирование прав пользователей в Linux»

Цель работы: является изучение создания учетных записей пользователей и делегирование прав в ОС OpenSUSE.
Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять учетными записями, настраивать параметры рабочей среды пользователей;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- основные задачи администрирования и способы их выполнения в изучаемых операционные системах.

Краткие теоретические и учебно-методические материалы по теме практической работы

Вся информация о пользователях находится в файле /etc/passwd. Мы могли бы создать пользователя linux просто добавив его туда, но так делать не следует, поскольку для этой задачи существуют специальные утилиты. Одна из таких утилит, это useradd.
sudo (англ. substitute user and do, дословно «подменить пользователя и выполнить») — программа для системного администрирования UNIX-систем, позволяющая делегировать те или иные привилегированные ресурсы пользователям с ведением протокола работы.
Команда useradd
Это довольно простая команда, которая есть во всех дистрибутивах Linux. Она позволяет зарегистрировать нового пользователя или изменить информацию об уже имеющемся. Во время создания можно даже создать домашний каталог пользователя и скопировать в него системные файлы. Рассмотрим синтаксис команды:
$ useradd опции имя_пользователя
Все довольно просто, дальше нам нужно рассмотреть основные опции команды, с помощью которых вы будете настраивать нового пользователя:

· -b — базовый каталог для размещения домашнего каталога пользователя, по умолчанию /home;

· -c — комментарий к учетной записи;

· -d — домашний каталог, в котором будут размещаться файлы пользователя;

· -e — дата, когда учетная запись пользователя будет заблокирована, в формате ГГГГ-ММ-ДД;

· -f — заблокировать учетную запись сразу после создания;

· -g — основная группа пользователя;

· -G — список дополнительных групп;

· -k — каталог с шаблонами конфигурационных файлов;

· -l — не сохранять информацию о входах пользователя в lastlog и faillog;

· -m — создавать домашний каталог пользователя, если он не существует;

· -M — не создавать домашнюю папку;

· -N — не создавать группу с именем пользователя;

· -o — разрешить создание пользователя linux с неуникальным идентификатором UID;

· -p — задать пароль пользователя;

· -r — создать системного пользователя, не имеет оболочки входа, без домашней директории и с идентификатором до SYS_UID_MAX;

· -s — командная оболочка для пользователя;

· -u — идентификатор для пользователя;

· -D — отобразить параметры, которые используются по умолчанию для создания пользователя. Если вместе с этой опцией задать еще какой-либо параметр, то его значение по умолчанию будет переопределено.

Примеры:
sudo useradd test - простой пользователь, без оболочки и пароля, а также без групп.
sudo useradd -p password -s /bin/bash test1 - создание пользователя с паролем и оболочкой /bin/bash
sudo useradd -G adm,cdrom,wheel -p password -s /bin/bash test2 - дополнительные группы пользователя задаются с помощью параметра -G. Например, разрешим пользователю читать логи, использовать cdrom и пользоваться sudo.
sudo useradd -G adm,cdrom,wheel -p password -s /bin/bash -e 01:01:2018 test2 - устанавливается дата, когда аккаунт пользователя будет отключен автоматически, это может быть полезно для пользователей, которые будут работать временно.
sudo useradd -o -u 0 -g 0 -s /bin/bash newroot - создание пользователя с правами root linux (суперпользователь - администратор)
Центр управления YAST

Ручная настройка Linux - довольно сложное занятие, требующее серьезной подготовки. Для того, чтобы облегчить задачу пользователю, современные дистрибутивы Linux предлагают бесчисленное количество программ для их настройки, установки и удаления программ и т.п.

Основная конфигурация Linux надёжно защищена паролем администратора. Но сегодня всё большее распространение получают программы, работающие с оборудованием динамически на уровне пользователя, интегрированные, зачастую, в рабочие столы. В частности настройка сети, мыши и раскладки клавиатуры, режимов работы видео- и аудио-систем, профилей питания компьютера и т.п. производится сегодня стандартными средствами KDE.
Для настройки и администрирования в openSUSE используется центр управления. В openSUSE центр управления представлен программным пакетом – YaST (Yet another Setup Tool). Среди возможностей настройки YaST: программное обеспечение, оборудование, система, сеть, сетевые службы, управление пользователями и группами, настройки брандмауэра. Важной особенностью YaST так же является возможность работать с ним как через консоль, так и графический интерфейс.

Для доступа к YaST нужно открыть меню запуска приложений (кнопка с хамелеоном) и в нем выбрать вкладку «Приложения» и затем выбрать «Система» и далее «Центр управления» (рис.1). Другой способ доступа к YaST – посредством выполнения команды yast в интерпретаторе командной строки shell/bash (рис. 3). Для работы с YaST необходимо иметь права администратора.

[image: image68.png]() crven
m Lenrp ynpasnernn

4 [EOg

Vabparoe Mpunoxerus | Kownsiorep Mocriepide Buixod

Рис. 1. Меню запуска приложений

После запуска YaST станет доступен графический интерфейс, показанный на рисунке 2.

[image: image69.png]CeTeasie ycTpoiicTea
Cereatie cnposl

© s

LUeHTp ynpasnenus YaST @ linux-j8oy

Tiporpavioe obecnietier

* [OnonHWTekHEIE MDOAYKTE!

avosea 1 yaaneve goromresss poay

&, cersaos comosmane

‘1 Penoaimopu nporpauHoro oBscneEHIA

O6opynosatme

ﬁ YpasnEHHE MpopaMULIM 0BECNSNEKIEM

8 vvopuauns o6 oBopyacsar

gﬂwwev
5o

Cucreva

(S8 pcoier

Cranep

CUCTeMHaR acKkNagKa knaBaTypLl

(s enn
Bl

o v

Рис. 2. Центр управления YaST – графический режим

[image: image82.png]O Oncamposanssii svpTyamSHS KECTIO AMOC

Рис. 3. Центр управления YaST – режим консоли

Категории модулей YaST
В центре управления доступны модули по настройке той или иной функции операционной системы. Модули объединены по категориям: программное обеспечение, оборудование, система, сетевые устройства, сетевые службы, безопасность и пользователи, поддержка и разное (рис.4).

[image: image70.png]ﬁ CaTensie yerpoiicrsa

1 carssus s

© romas
% P

Рис. 4. Категории модулей

Модуль в YaST представляет собой отдельную программу или набор функций по управлению настройками системы. Например, в категории «Программное обеспечение» существуют модули «Дополнительные продукты», «Проверка носителя» и т.д.

В состав YaST по-умолчанию входит более 50-ти модулей для настройки Linux:

- Набор утилит для установки и удаления программного обеспечения, настройки списка репозиториев и выполнения сетевого обновления.
(Репозиторий операционной системы линукс - это место в сети интернет, где хранятся пакеты (packages) этой операционной системы).
- Программы для сбора подробной информации о подключенном оборудовании. Настройка сети, основных системных устройств ввода-вывода: мыши и клавиатуры, принтеров и сканеров, аудио- и видео- устройств.

- Настройка основных системных параметров: режимов работы ядра, загрузчика, даты и времени, уровней загрузки системы, локализации (перевода) и, главное, основной системной конфигурации (/etc/sysconfig). Управление профилями пользователей и группами.

- Настройка серверов и клиентов Windows-сетей (Samba), сетей NFS (Сетевая Файловая Система) и других сетевых служб.

В YaST так же доступны утилиты настройки Novell AppArmor, сетевого экрана (брандмауэра), просмотр различных системных журналов и т.п.

Возможности YaST можно расширить, установив дополнительные модули для настройки системы: например, для управления сервером DHCP (пакет yast2-dhcp-server) для соединения с другими компьютерами по сети напрямую и т.п.

Возможность настройки Linux при помощи YaST требует внесения некоторых специальных изменений в архитектуру дистрибутива системы, что затрудняет использование YaST с другими дистрибутивами Linux, не принадлежащими к семейству SuSE. Компоненты YaST так же используются и для установки дистрибутива openSuSE Linux.

Задание для практического занятия

1. Запустить операционную систему openSUSE.

2. Создать простого пользователя с помощью команды «useradd» , в качестве имени указать фамилию.
3. Создать пользователя с паролем и оболочкой, в качестве имени указывается имя студента.
4. Создать пользователя с правами суперпользователя.
5. Получить доступ к центру управления (YaST) через графический интерфейс операционной системы.

6. Ознакомиться с интерфейсом центра управления openSUSE.
7. Запустить YaST в командной строке.
8. Добавить нового пользователя используя YaST, запущенный в командной строке (переключение между кнопками осуществляется нажатием клавиши Tab).
9. Запустить YaST через графический режим и удостовериться в создании нового пользователя.
10. Зайти под созданными пользователями и проверить возможность запуска программ.
Контрольные вопросы

1. Как можно добавить нового пользователя?
2. Как можно получить доступ к центру управления?
3. Что такое YaST?
Практическая работа № 17

«Написание и компиляция программ в Windows»

Цель работы:

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- компилировать программы в семействах "UNIX" и "Windows";

- управлять учетными записями, настраивать параметры рабочей среды пользователей;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основы компиляции программ в семействах "UNIX" и "Windows";

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows".
Краткие теоретические и учебно-методические материалы по теме практической работы

Для написания программ используются языки программирования, в которых определены свои типы данных. В языке высокого уровня Си, используются несколько типов данных, которые определяются стандартом IEEE 754.

В языке Си можно выделить следующие наиболее используемые типы данных, которые задаются следующими ключевыми словами:

char – символьный; int – целый; float – вещественный; double – вещественный двойной точности.

В языке Си существуют типы данных с модификаторами (unsigned – без знака, signed – со знаком, short – короткий, long – длинный), показанные в таблице 1.

Таблица 1
Типы данных в языке Си

	 Тип
	Размер в байтах (битах)
	Интервал изменения

	char
	1 (8)
	от -128 до 127

	unsigned char
	1 (8)
	от 0 до 255

	signed char
	1 (8)
	от -128 до 127

	int
	4 (32)
	от -2147483648 до 2147483647

	unsigned int
	4 (32)
	от 0 до 4294967295

	signed int
	2 (16)
	от -2147483648 до 2147483647

	short int
	2 (16)
	от -32768 до 32767

	unsigned short int
	2 (16)
	от 0 до 65535

	signed short int
	2 (16)
	от -32768 до 32767

	long
	4 (32)
	от -2147483648 до 2147483647

	unsigned long int
	4 (32)
	от 0 до 4294967295

	signed long int
	4 (32)
	от -2147483648 до 2147483647

	float
	4 (32)
	от
[image: image71.wmf]38

3,4

-

 до
[image: image72.wmf]38

3,4

	double
	8 (64)
	от
[image: image73.wmf]308

1,7

-

 до
[image: image74.wmf]308

1,7

	long double
	10 (80)
	от
[image: image75.wmf]4932

3,4

-

 до
[image: image76.wmf]4932

3,4

Допустим в случае использования типа char, значения не могут выходить за пределы от -128 до 127. Например, если при сложении двух чисел получается большее число, то возникает переполнение старшего разряда, и счет начинается с -128.
Для побайтового копирования в Си используется функция memcpy (&d, &s, n), где &d – указатель на приемник, &s – указатель на источник, n – число байт для копирования. По сути, копируются все биты одной переменной с определенным типом данных, в другую переменную со свои типом данных, при этом типы данных могут быть разные. Нужно учитывать, что при копировании из одного типа данных в другой, значения могут получиться совершенно разные.

Работа с компилятором MinGW
MinGW (от англ. Minimalist GNU for Windows) – компилятор, в который входят компиляторы языка Си, Си++ и другие, предназначен для создания программного обеспечения для системы Windows.

Для работы с MinGW не требуется графический интерфейс, вся работа выполняется в командной строке (cmd) Windows.

По умолчанию для компиляции программы необходимо прописать следующую команду:

>> C:\MinGW\bin\gcc C:\file.cpp -o C:\file.exe

где «C:\MinGW\bin\gcc» – вызов компилятора, «C:\file.cpp» – указание компилятору, где находится файл для с исходным кодом на Си, «-o C:\file.exe» - указание компилятору создать выполняемый (выходной) файл в заданном каталоге.

Файл с исходным кодом и выходной файл могут находиться в любом каталоге.

Для создания файла с расширение cpp можно воспользоваться следующей командой в cmd:

>> echo .> file.cpp
На рисунке 1 показана командная строка с командами по созданию файла с расширением cpp и дальнейшая компиляция с использованием MinGW. В итоге на диске С, будут созданы два файла с расширение cpp и exe, как показано на рисунке 2.

[image: image77.png]C:\>echo .> file.cpp

C:\>C:\MinGu\bin\gce C:\File.cpp -o C:\file.exe

C:\>

Рис. 1. Командная строка

[image: image78.png][filecpp 160420161625 aiin "CPP" 1K

&7 file.exe 16.04.2016 1625 Mpunoxerne 67KB

Рис. 2. Созданные файлы

Ниже приведен программный код на языке Си для вывода значения переменной x с типом данных char.

#include <stdio.h> // библиотека ввода-вывода

#include <conio.h> // библиотека необходимая для задержки

int main()

{

char x;

x=100;

printf("x = %d\n", x); // %d – вывод целого десятичного числа

getch(); // используется для задержки экрана

return 0;

}

Задания для практического занятия

1. Реализовать программу на языке Си для выполнения арифметической операции C=A+B, где числа A и B целые и берутся из таблицы 2 с заданным форматом данных для переменных A, B и C.
2. Произвести побайтовое копирование переменной Y с типом данных float из таблицы 2, в переменную D с типом данных int. Просмотреть значение переменной D после копирования.
Таблица 2

Варианты задания
	№
	Число A
	Число B
	Формат данных для A,B и C
	Y

	1
	121
	103
	char
	5678

	2
	65000
	1235
	unsigned short int
	-5986

	3
	121
	221
	unsigned char
	5863

	4
	-32000
	-2354
	signed short int
	1587

	5
	101
	102
	char
	-2305

	6
	33105
	51005
	unsigned short int
	1458

	7
	10
	252
	unsigned char
	5455

	8
	31150
	12505
	signed short int
	-9685

	9
	101
	156
	char
	5864

	10
	201
	102
	unsigned char
	-2569

Контрольные вопросы
1. Что такое MinGW?
2. Какие типы данных существуют в Си?
3. Какое расширение у файла с исходным кодом на Си?
Практическая работа № 18

«Написание и компиляция программ в UNIX»

Цель работы:

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- компилировать программы в семействах "UNIX" и "Windows";

- управлять учетными записями, настраивать параметры рабочей среды пользователей;

- управлять дисками и файловыми системами, настраивать сетевые параметры, управлять - разделением ресурсов в локальной сети.

знать:

- основы компиляции программ в семействах "UNIX" и "Windows";

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows".

Краткие теоретические и учебно-методические материалы по теме практической работы

Написание заданий на языке командного интерпретатора расширяет список доступных пользователю команд — каждое задание, оформленное в виде исполняемого файла, может быть запущено как команда. Возможности таких команд обычно ограничены тем фактом, что языки управления заданиями обычно позволяют только комбинировать другие готовые команды (как внутренние команды интерпретатора, так и внешние, существующие в виде исполняемых файлов), но не предоставляют никаких возможностей доступа к функциям ядра ОС — к системным вызовам. В случае необходимости использования системных вызовов используются программы, написанные на одном из языков высокого уровня (реже — на языке ассемблера). Стандартным языком подавляющего большинства UNIX-систем является язык C, который при дальнейшем изложении будет использоваться в качестве основного. При этом будут использоваться стандартные системные вызовы, одинаковые практически во всех вариантах UNIX. Подразумевается, что читатель знаком с программированием на языке C, поэтому в данном разделе приведены только основные особенности, специфичные для UNIX — рассмотрены только заголовочные файлы, определяющие формат системных вызовов, и параметры командной строки компилятора.

Заголовочные файлы

Стандартные заголовочные файлы, содержащие определения системных вызовов, находятся в каталоге /usr/include. Каждый файл содержит определения функций и типов данных.
Компиляция программ в UNIX

Компиляция программ в UNIX проводится в два этапа — на первом этапе из исходных текстов при помощи компилятора cc (или gcc) формируются объектные файлы (с расширением .o), на втором этапе при помощи сборщика ld формируется исполняемый файл или файл библиотеки.

Управление процессом компиляции и сборки (например, уровень оптимизации кода, формат выходного файла, пути к системным библиотекам) задаются ключами запуска компилятора и сборщика. Для компиляции и сборки простых программ достаточно вызывать только компилятор gcc, который далее автоматически запустит сборщик ld. Например, чтобы получить исполняемый файл myprogram на основе исходного текста программы из файла myprogram.c, достаточно воспользоваться командой:

gcc —o myprogram myprogram.c
Здесь после ключа —o указано имя выходного исполняемого файла. После ключей указывается имя компилируемого файла.
Возможно указание нескольких файлов, содержащих определения функций и типов данных:
gcc —o myprogram myprogram1.c myprogram2.c

При такой компиляции в файлах исходных текстов не должно присутствовать функций, глобальных переменных или определений типов данных с одинаковыми именами, например, недопустимо несколько раз объявлять функцию main().

Файлы статических библиотек имеют расширение .a, а их имена начинаются со слова lib. Например, libm.a— имя библиотеки, содержащей программный код математических функций, определенных в заголовочном файле math.h.
Для подключения библиотек в процессе сборки исполняемого файла используется ключ —l. Имя подключаемой библиотеки указывается без префикса libи без расширения .a. Так, например, для компиляции и сборки программы, использующей библиотеку libm.a, необходимо использовать вызов:
gcc —o myprogram —L/usr/lib —lm myprogram.c

Здесь ключ —L задает расположение библиотеки, а —l задает ее имя.

Кроме статических большинство UNIX-систем поддерживает динамически подгружаемые библиотеки. Программный код функций, хранящихся в таких библиотеках, подгружается динамически во время выполнения программы. Файлы динамически подгружаемых библиотек имеют расширение .so, имена их файлов

также начинаются с префикса lib. Например, динамически подгружаемый вариант библиотеки математических функций будет иметь имя libm.so

Для выявления причин неработоспособности программ во многих UNIX-системах существует команда ldd. После запуска этой программы с параметром — именем исполняемого файла — на экран будет выведен список используемых этим файлом динамических библиотек, пути к файлам библиотек и информация об отсутствии библиотек.
Во всех рассмотренных выше способах компиляции и сборки программ от пользователя скрыт этап сборки — объектные файлы удаляются сразу после создания исполняемого файла, и пользователь получает исполняемый файл, не видя объектных. Иногда требуется явно выполнять два этапа — компиляцию и сборку, сохраняя объектные файлы. Например, некоторые библиотеки поставляются только в виде объектных файлов, без исходных текстов, и для сборки программ, использующих такие библиотеки, необходимо сначала получить объектные файлы своей программы, а затем собрать все объектные файлы (свои и библиотечные) в исполняемый файл.

Для получения объектных файлов используется ключ —c компилятора.
Пример:

gcc —c myfile1.c myfile2.c —I/usr/local/include

Данная команда вызовет компиляцию файлов myfile1.c и myfile2.cт и сохранение ее результатов в объектных файлах myfile1.oи myfile2.o. Поиск заголовочных файлов, необходимых для компиляции, будет производиться в каталоге /usr/local/include.

Чтобы получить исполняемый файл, собранный из объектных, достаточно вызвать компилятор, передав ему имена объектных файлов в качестве параметров. Компилятор распознает, что файлы не являются исходными текстами программ, и передаст их на обработку сборщику. Например, команда
gcc —shared —o myprogram —L/usr/local/lib —lm myfile1.o myfile2.o

выполняет сборку программы myprogram из объектных файлов myfile1.o и myfile2.o
Пример программы

Примером простейшей программы, реализовать которую при помощи задания на языке BASH достаточно трудно, может служить программа, которая возвращает число x, равное sin(y)*100, где y передается программе в качестве параметра. BASH не имеет встроенных тригонометрических функций, однако на языке C такая программа реализуется сравнительно просто.
[image: image79.png]#include <stdio.h>
#include <math.h>
int main(int arge, char
{
double res;
int angle;
if (arge <= 1)
return 0;
atoi(argv(l], angle);
res = sin(angle)*100;
return (int)res;

**argv)

Для компиляции этой программы можно воспользоваться следующей строкой вызова gcc:
gcc —lm —o sin —L/usr/lib —I/usr/include sin.c

Задание (командный файл), которое будет использовать такую программу, может выглядеть следующим образом:
[image: image80.png]#!/bin/bash
if [-z $1 1; then
echo “No parameters specified”
exit 1
£i
if [! —z $2 1; then
echo “More than one parameter specified”
exit 2
£i
./sin $1
echo “Hundredths of sine of angle S1 equals ” $?

Задания для практического занятия

1. Реализовать программу на языке Си для выполнения арифметической операции C=A+B, где числа A и B целые и берутся из таблицы 1 с заданным форматом данных для переменных A, B и C.

2. Реализовать программу из примера. Произвести компиляцию программы. Создать командный файл и проверить работоспособность.
Таблица 1

Варианты задания
	№
	Число A
	Число B
	Формат данных для A,B и C

	1
	1210
	1030
	int

	2
	6500
	12350
	int

	3
	1210
	2210
	int

	4
	-3200
	-2355
	int

	5
	1010
	1022
	int

	6
	3310
	5100
	int

	7
	1045
	2525
	int

	8
	3114
	1250
	int

	9
	1014
	1567
	int

	10
	2011
	1022
	int

Контрольные вопросы
1. Как проходит компиляция программ в UNIX-системах?
2. Что существует в UNIX-системах для выявления причин неработоспособности?
3. Как получить исполняемый файл, собранный из объектных?
Практическая работа № 19

«Системные вызовы для работы с сигналами в UNIX»

Цель работы: является изучение методов программирования по созданию пользовательских процессов в ОС Linux.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- создавать процессы и использовать системные вызовы;

- выполнять конфигурирование аппаратных устройств.

знать:

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

- архитектуры современных операционных систем.

Краткие теоретические и учебно-методические материалы по теме практической работы

Идентификаторы процессов. Каждый процесс в Linux помечается уникальным идентификатором (PID , process identifer). Идентификаторы – это 16-разрядные числа, назначаемые последовательно по мере создания процессов. У всякого процесса имеется также родительский процесс за исключением специального суперсервера init с идентификатором 1. Таким образом, все процессы Linux организованы в виде сложной иерархии, на вершине которой находится процесс init. Иерархию процессов можно увидеть, выполнив команду ps –axf . К атрибутам процесса относится идентификатор его родительского процесса (PPID, parent process identifer).

Работая с идентификаторами процессов в программах, написанных на языках C и C++, следует объявить соответствующие переменные как имеющие тип pid_t (этот тип определяется в файле <sys/types.h>). Программа может узнать идентификатор своего собственного процесса с помощью системного вызова getpid(), а идентификатор своего родительского процесса с помощью системного вызова getppid().

Пример 1:

#include<stdio.h>

#include<unistd.h>

int main()

{

printf (“Номер процесса: %d\n”, (int) getpid());

printf («Номер родительского процесса: %d\n», (int) getppid());

return 0;

}

Обратите внимание на важную особенность: при каждом вызове программа сообщает о разных идентификаторах, поскольку всякий раз запускается новый процесс. Тем не менее, если программа вызывается из одного и того же интерпретатора команд, то родительский идентификатор оказывается одинаковым.

Создание процессов

Существуют два способа создания процессов. Первый из них относительно прост, применяется редко, поскольку неэффективен и связан со значительным риском для безопасности системы. Второй способ сложнее, но избавлен от недостатков первого. Первый способ основан на применении функции system(), а второй на основе применения функций fork() и exec().

Функция system()

Функция system() определена в стандартной библиотеке языка C и позволяет вызвать из программы системную команду, как если бы она была набрана в командной строке.

По сути, эта функция запускает стандартный интерпретатор и передает ему команду на выполнение.

Пример 2:

#include<stdlib.h>

int main()

{

int return_value;

return_value = system(“ls –l /”);

return return_value;

}

Функция system() возвращает код завершения указной команды. Если интерпретатор не может быть запущен, возвращается значения 127, а в случае возникновения других ошибок (-1).

Поскольку функция system() запускает интерпретатор команд, она подвержена всем тем ограничениям безопасности, что и командный интерпретатор.

В большинстве Unix-системах программа /bin/sh представляет собой символическую ссылку на другой интерпретатор. В Linux это в основном bash.

Вызов из функции system() программы с привилегиями пользователя root также может иметь неодинаковые последствия в разных системах. Таким образом, лучше создавать процессы с помощью функций fork() и exec().

Функции fork() и exec()

В DOS и Windows API имеется семейство функций spawn(). Они принимают в качестве аргумента имя программы, создают новый экземпляр ее процесса и запускают его.

В Linux нет такой функции, которая выполнила бы все это за одни заход. Вместо этого имеются функция fork(), создающая дочерний процесс, который является точной копией родительского процесса, и семейство функций exec(), заставляющих требуемый процесс перестать быть вторым экземпляром одной программы и превратиться в экземпляр другой программы.

Чтобы создать новый процесс, нужно сначала с помощью функции fork() создать копию текущего процесса, а затем с помощью функции exec() преобразовать одну из копий в экземпляр запускаемой программы.

Вызов функции fork()

Вызывая функцию fork(), программа создает свой дубликат, называемый дочерним процессом. Родительский процесс продолжает выполнять программу с той точки, где была вызвана функция fork(). То же самое делает и дочерний процесс.

Процессы отличаются своими идентификаторами. Таким образом, программа может вызывать функцию getpid() и узнать где именно она находится.

Но сама функция fork() реализует другой способ: она возвращает разные значения в родительском и дочернем процессах. В родительском процессе функция fork() равна идентификатору своего потомка, а в дочернем процессе она равна 0. Рассмотрим данную ситуацию на примере, учтите, что первая часть инструкции if выполняется только в родительском процессе, тогда как ветвь else – только в дочернем.

Пример 3:

#include<stdio.h>

#include<sys/types.h>

#include<unistd.h>

int main()

{

pid_t child_pid;

printf(“ID процесса основной программы: %d\n”, (int) getpid());

child_pid = fork();

if (child_pid)

{

printf(«Это родительский процесс, с ID %d\n», (int) getpid());

printf(“Дочерний процесс, с ID %d\n”, (int) child_pid);

}

else

printf(«Дочерний процесс с ID %d\n», (int) getpid());

return 0;

}

Семейство функций exec()

Функции семейства exec() заменяют программу, выполняющуюся в текущем процессе, другой программой. Когда программа вызывает функцию exec(), ее выполнение немедленно прекращается и начинает работу новая программа.

Функции, в название которых присутствует суффикс 'p' (execvp() и execlp()), принимают в качестве аргумента имя программы и ищут эту программу в каталогах, определяемых переменной среды PATH. Всем остальным функциям нужно передавать полное путевое имя программы.

Функции, в названии которых присутствует суффикс 'v' (execv(), execvp(), execve()), принимают список аргументов программы в виде массива строковых указателей, оканчивающегося NULL-указателем. Функции с суффиксом 'l' (excevl(), execlp(), execlve()), принимают список аргументов переменного размера.

Функции, в названии которых присутствует суффикс 'e' (execve(), execle()), в качестве дополнительного аргумента принимают массив переменных среды. Этот массив содержит строковые указатели и оканчивается пустым указателем. Каждая строка должна иметь вид «Переменная = значение».

Поскольку функция exec() заменяет одну программу другой, она никогда не возвращает значение – только если вызов программы оказался невозможен в случае ошибки.

Список аргументов, передаваемых программе, аналогичен аргументам командной строки, указываемым при запуске программы в интерактивном режиме. Их тоже можно получить с помощью параметров argc и argv функции main(). Когда программу запускает интерпретатор команд, первый элемент массива argv будет содержать имя программы, а далее будут находиться переданные программе аргументы. Аналогичным образом следует поступить, формируя список аргументов для функции exec().

Совместное использование функций fork() и exec()

Стандартная методика запуска одной программы из другой такова: сначала с помощью функции fork() создается дочерний процесс, затем в нем вызывается функция exec().

Это позволяет главной программе продолжать выполнение в родительском процессе. В качестве примера напишем программу, которая отображает корневой каталог.

Пример 4:

#include<stdio.h>

#include<stdlib.h>

#include<sys/types.h>

#include<unistd.h>

int spawn(char* program, char** arg_list)

{

pid_t child_pid;

child_pid = fork();

if(child_pid)

return child_pid;

else

{

execvp (program, arg_list);

fprintf (stderr, “an error
роцесс
 in execvp\n”);

abort();

}

}

int main()

{

int child_status;

char* arg_list[] = {“ls”,”-l”,”/”,NULL};

spawn (“ls”, arg_list);

wait (&child_status);

printf(“done\n”);

return 0;

}

Системные вызовы wait()

Самая простая функция в семействе называется wait(). Она блокирует вызывающий процесс до тех пор, пока один из его дочерних процессов не завершиться (или не произойдет ошибка).

Пример использования данной функции приведен выше.

Функция waitpid() позволяет дождаться завершения конкретного дочернего процесса.

Функция wait3() возвращает информацию о статистике использования центрального процессора завершившемся дочерним
роцесссом.

Функция wait4() позволяет задать дополнительную информацию о том, каких процессов следует дождаться.

Задания для практического занятия

1. Изучить характеристики и синтаксис функций и системных вызовов.

2. Набрать код примеров в текстовые файлы и произвести компиляцию программ.

3. Проверить работоспособность программ.

Контрольные вопросы

1. Что является атрибутами процесса?

2. Как организуется взаимодействие процессов?

3. Каким образом программные средства Linux позволяют динамически порождать процессы?

Практическая работа № 20

«Процессы и межпроцессное взаимодействие в Windows и UNIX»

Цель работы: является изучение методов программирования по взаимодействию процессов через системные вызовы и стандартную библиотеку ввода-вывода.

Образовательные результаты, заявленные в ФГОС:

Студент должен

уметь:

- управлять параметрами загрузки операционной системы;

- выполнять конфигурирование аппаратных устройств;
- компилировать программы в семействах "UNIX" и "Windows".

знать:

- виды и механизмы межпроцессного взаимодействия;

- основные понятия, функции, состав и принципы работы операционных систем;

- особенности построения и функционирования семейств операционных систем "Unix" и "Windows";

Краткие теоретические и учебно-методические материалы по теме практической работы

Наиболее простым способом для передачи информации с помощью потоковой модели между различными процессами или даже внутри одного процесса в операционной системе Linux является pipe (канал, труба, конвейер).

Важное отличие pip’а от файла заключается в том, что прочитанная информация немедленно удаляется из него и не может быть прочитана повторно.

Pipe можно представить в виде трубы ограниченной емкости, расположенной внутри адресного пространства операционной системы, доступ к входному и выходному отверстию которой осуществляется с помощью системных вызовов. В действительности pipe представляет собой область памяти, недоступную пользовательским процессам напрямую, зачастую организованную в виде кольцевого буфера. По буферу при операциях чтения и записи перемещаются два указателя, соответствующие входному и выходному потокам. При этом выходной указатель никогда не может перегнать входной и наоборот. Для создания нового экземпляра такого кольцевого буфера внутри операционной системы используется системный вызов pipe ().
Прототип системного вызова:

#include <unistd.h>

int pipe(int *fd);

Описание системного вызова. Системный вызов pipe предназначен для создания pip'а внутри операционной системы. Параметр fd является указателем на массив из двух целых переменных. При нормальном завершении вызова в первый элемент массива – fd[0] – будет занесен файловый дескриптор, соответствующий выходному потоку данных pip’а и позволяющий выполнять только операцию чтения, а во второй элемент массива – fd[1] – будет занесен файловый дескриптор, соответствующий входному потоку данных и позволяющий выполнять только операцию записи. Системный вызов возвращает значение 0 при нормальном завершении и значение -1 при возникновении ошибок.

В процессе работы системный вызов организует выделение области памяти под буфер и указатели и заносит информацию, соответствующую входному и выходному потокам данных в два элемента таблицы открытых файлов, связывая тем самым с каждым pip’ом два файловых дескриптора. Для одного из них разрешена только операция чтения из pip’а, а для другого – только операция записи в pipe. Для выполнения этих операций используются те же самые системные вызовы read() и write(), что и при работе с файлами. Естественно, по окончании использования входного или/и выходного потока данных, нужно закрыть соответствующий поток с помощью системного вызова close() для освобождения системных ресурсов. Когда все процессы, использующие pipe, закрывают все ассоциированные с ним файловые дескрипторы, операционная система ликвидирует pipe. Таким образом, время существования pip’а в системе не может превышать время жизни процессов, работающих с ним.

Иллюстрацией действий по созданию pip'a, записи в него данных, чтению из него и освобождению выделенных ресурсов может служить программа, организующая работу с pip’ом в рамках одного процесса, приведенная ниже:

/* Программа 06-1.с, иллюстрирующая работу с pip'ом в рамках одного

процесса */

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include<stdlib.h>

int main(){

 int fd[2];

 size_t size;

 char string[] = "Hello, world!";

 char resstring[14];

 /* Попытаемся создать pipe */

 if(pipe(fd) < 0)

{

 /* Если создать pipe не удалось, печатаем об этом сообщение

 и прекращаем работу */

 printf("Can\'t create pipe\n");

 exit(-1);

 }

 /* Пробуем записать в pipe 14 байт из нашего массива, т.е. всю

 строку "Hello, world!" вместе с признаком конца строки */

 size = write(fd[1], string, 14);

 if(size != 14){

 /* Если записалось меньшее количество байт, сообщаем об

 ошибке */

 printf("Can\'t write all string\n");

 exit(-1);

 }

 /* Пробуем прочитать из pip'а 14 байт в другой массив, т.е. всю

 записанную строку */

 size = read(fd[0], resstring, 14);

 if(size < 0){

 /* Если прочитать не смогли, сообщаем об ошибке */

 printf("Can\'t read string\n");

 exit(-1);

 }

 /* Печатаем прочитанную строку */

 printf("%s\n",resstring);

 /* Закрываем входной поток*/

 if(close(fd[0]) < 0){

 printf("Can\'t close input stream\n");

 }

 /* Закрываем выходной поток*/

 if(close(fd[1]) < 0){

 printf("Can\'t close output stream\n");

 }

 return 0;

}

Организация связи через pipe между процессом-родителем и процессом-потомком

Достоинство pip'ов не сводится к замене функции копирования из памяти в память внутри одного процесса для пересылки информации через операционную систему. Таблица открытых файлов наследуется процессом-ребенком при порождении нового процесса системным вызовом fork() и входит в состав неизменяемой части системного контекста процесса при системном вызове exec(). Это обстоятельство позволяет организовать передачу информации через pipe между родственными процессами, имеющими общего прародителя, создавшего pipe.

Рассмотрим программу, осуществляющую однонаправленную связь между процессом-родителем и процессом-ребенком:

/* Программа 06-2.с, осуществляющая однонаправленную связь через pipe между процессом-родителем и процессом-ребенком */

#include <sys/types.h>

#include <unistd.h>

#include <stdio.h>

#include<stdlib.h>

int main(){

 int fd[2], result;

 size_t size;

 char resstring[14];

 /* Попытаемся создать pipe */

 if(pipe(fd) < 0){

 /* Если создать pipe не удалось, печатаем об этом сообщение

 и прекращаем работу */

 printf("Can\'t create pipe\n");

 exit(-1);

 }

 /* Порождаем новый процесс */

 result = fork();

 if(result < 0){

 /* Если создать процесс не удалось, сообщаем об этом и

 завершаем работу */

 printf("Can\'t fork child\n");

 exit(-1);

 } else if (result > 0) {

 /* Мы находимся в родительском процессе, который будет

 передавать информацию процессу-ребенку. В этом процессе

 выходной поток данных нам не понадобится, поэтому

 закрываем его.*/

 close(fd[0]);

 /* Пробуем записать в pipe 14 байт, т.е. всю строку

 "Hello, world!" вместе с признаком конца строки */

 size = write(fd[1], "Hello, world!", 14);

 if(size != 14){

 /* Если записалось меньшее количество байт, сообщаем

 об ошибке и завершаем работу */

 printf("Can\'t write all string\n");

 exit(-1);

 }

 /* Закрываем входной поток данных, на этом

 родитель прекращает работу */

 close(fd[1]);

 printf("Parent exit\n");

 } else {

 /* Мы находимся в порожденном процессе, который будет

 получать информацию от процесса-родителя. Он унаследовал

 от родителя таблицу открытых файлов и, зная файловые

 дескрипторы, соответствующие pipe, может их использовать.

 В этом процессе входной поток данных нам не

 понадобится, поэтому закрываем его.*/

 close(fd[1]);

 /* Пробуем прочитать из pip'а 14 байт в массив, т.е. всю

 записанную строку */

 size = read(fd[0], resstring, 14);

 if(size < 0){

 /* Если прочитать не смогли, сообщаем об ошибке и

 завершаем работу */

 printf("Can\'t read string\n");

 exit(-1);

 }

 /* Печатаем прочитанную строку */

 printf("%s\n",resstring);

 /* Закрываем входной поток и завершаем работу */

 close(fd[0]);

 }

 return 0;

}

Организации двунаправленной связи между родственными процессами через pipe.

Pipe служит для организации однонаправленной или симплексной связи. Если бы в предыдущем примере попытаться организовать через pipe двустороннюю связь, когда процесс-родитель пишет информацию в pipe , предполагая, что ее получит процесс-ребенок, а затем читает информацию из pip’а, предполагая, что ее записал порожденный процесс, то могла бы возникнуть ситуация, в которой процесс-родитель прочитал бы собственную информацию, а процесс-ребенок не получил бы ничего. Для использования одного pip’а в двух направлениях необходимы специальные средства синхронизации процессов. Более простой способ организации двунаправленной связи между родственными процессами заключается в использовании двух pipe. Модифицируйте программу из предыдущего примера для организации такой двусторонней связи, откомпилируйте ее и запустите на исполнение.

Необходимо отметить, что в некоторых UNIX-подобных системах (например, в Solaris2) реализованы полностью дуплексные pip’ы. В таких системах для обоих файловых дескрипторов, ассоциированных с pip'ом, разрешены и операция чтения, и операция записи. Однако такое поведение не характерно для pip’ов и не является переносимым.

Особенности поведения вызовов read() и write() для pip'а
Системные вызовы read() и write() имеют определенные особенности поведения при работе с pip’ом, связанные с его ограниченным размером, задержками в передаче данных и возможностью блокирования обменивающихся информацией процессов.

Будьте внимательны при написании программ, обменивающихся большими объемами информации через pipe. Помните, что за один раз из pip’а может прочитаться меньше информации, чем вы запрашивали, и за один раз в pipe может записаться меньше информации, чем вам хотелось бы. Проверяйте значения, возвращаемые вызовами!

Одна из особенностей поведения блокирующегося системного вызова read() связана с попыткой чтения из пустого pip'а. Если есть процессы, у которых этот pipe открыт для записи, то системный вызов блокируется и ждет появления информации. Если таких процессов нет, он вернет значение 0 без блокировки процесса. Эта особенность приводит к необходимости закрытия файлового дескриптора, ассоциированного с входным концом pip'a, в процессе, который будет использовать pipe для чтения (close (fd[1]). Аналогичной особенностью поведения при отсутствии процессов, у которых pipe открыт для чтения, обладает и системный вызов write(), с чем связана необходимость закрытия файлового дескриптора, ассоциированного с выходным концом pip'a, в процессе, который будет использовать pipe для записи (close (fd[0]) в процессе-родителе.

Попытка прочитать меньше байт, чем есть в наличии в канале связи приводит к чтению требуемого количества байт. При этом возвращается значение, соответствующее прочитанному количеству. Прочитанная информация удаляется из канала связи.

В канале связи находится меньше байт, чем затребовано, но не нулевое количество. Читает все, что есть в канале связи, и возвращает значение, соответствующее прочитанному количеству. Прочитанная информация удаляется из канала связи.

Попытка читать из канала связи, в котором нет информации. Блокировка вызова разрешена. Вызов блокируется до тех пор, пока не появится информация в канале связи и пока существует процесс, который может передать в него информацию. Если информация появилась, то процесс разблокируется, и поведение вызова определяется двумя предыдущими строками таблицы. Если в канал некому передать данные (нет ни одного процесса, у которого этот канал связи открыт для записи), то вызов возвращает значение 0. Если канал связи полностью закрывается для записи во время блокировки читающего процесса, то процесс разблокируется, и системный вызов возвращает значение 0.

Попытка читать из канала связи, в котором нет информации. Блокировка вызова не разрешена. Если есть процессы, у которых канал связи открыт для записи, системный вызов возвращает значение -1 и устанавливает переменную errno в значение EAGAIN. Если таких процессов нет, системный вызов возвращает значение 0.

Попытка записать в канал связи меньше байт, чем осталось до его заполнения. Требуемое количество байт помещается в канал связи, возвращается записанное количество байт.

Попытка записать в канал связи больше байт, чем осталось до его заполнения. Блокировка вызова разрешена. Вызов блокируется до тех пор, пока все данные не будут помещены в канал связи. Если размер буфера канала связи меньше, чем передаваемое количество информации, то вызов тем самым будет ждать, пока часть информации не будет считана из канала связи. Возвращается записанное количество байт.

Попытка записать в канал связи больше байт, чем осталось до его заполнения, но меньше, чем размер буфера канала связи. Блокировка вызова запрещена.
Системный вызов возвращает значение -1 и устанавливает переменную errno в значение EAGAIN.

В канале связи есть место. Попытка записать в канал связи больше байт, чем осталось до его заполнения, и больше, чем размер буфера канала связи. Блокировка вызова запрещена. Записывается столько байт, сколько осталось до заполнения канала. Системный вызов возвращает количество записанных байт.

Попытка записи в канал связи, в котором нет места. Блокировка вызова не разрешена. Системный вызов возвращает значение -1 и устанавливает переменную errno в значение EAGAIN.

Попытка записи в канал связи, из которого некому больше читать, или полное закрытие канала на чтение во время блокировки системного вызова. Если вызов был заблокирован, то он разблокируется. Процесс получает сигнал SIGPIPE. Если этот сигнал обрабатывается пользователем, то системный вызов вернет значение -1 и установит переменную errno в значение EPIPE.

Необходимо отметить дополнительную особенность системного вызова write при работе с pip’ами и FIFO. Запись информации, размер которой не превышает размер буфера, должна осуществляться атомарно – одним подряд лежащим куском. Этим объясняется ряд блокировок и ошибок в предыдущем перечне.

4. Краткое описание языка программирования Си
Си – универсальный язык программирования. Он тесно связан с системой UNIX, так как был разработан в этой системе, которая, как и большинство программ работающих в ней, написаны на Си.

В отличие от «безтиповых» языков Си обеспечивает разнообразие типов данных. Базовыми типами являются символы, а также целые и числа с плавающей точкой различных размеров. Кроме того, имеется возможность получать целую иерархию производных типов данных из указателей, массивов, структур и объединений. Выражения формируются из операторов и операндов. Любое выражение, включая присваивание и вызов функции, может быть инструкцией. Указатели обеспечивают машинно-независимую адресную арифметику. В Си имеются основные управляющие конструкции, используемые в хорошо структурированных программах: составная инструкция ({...}), ветвление по условию (if-else), выбор одной альтернативы из многих (switch), циклы с проверкой наверху (while, for) и с проверкой внизу (do), а также средство прерывания цикла (break). В качестве результата функции могут возвращать значения базовых типов, структур, объединений и указателей. Любая функция допускает рекурсивное обращение к себе. Функции программы на Си могут храниться в отдельных исходных файлах и компилироваться независимо. Переменные по отношению к функции могут быть внутренними и внешними. Последние могут быть доступными в пределах одного исходного файла или всей программы. Си – язык сравнительно «низкого уровня». Однако это вовсе не умаляет его достоинств, просто Си имеет дело с теми же объектами, что и большинство компьютеров, т. е. с символами, числами и адресами. С ними можно оперировать при помощи арифметических и логических операций, выполняемых реальными машинами. В Си нет прямых операций над составными объектами, такими как строки символов, множества, списки и массивы. В нем нет операций, которые бы манипулировали с целыми массивами или строками символов, хотя структуры разрешается копировать целиком как единые объекты. В языке нет каких-либо средств распределения памяти, помимо возможности определения статических переменных и стекового механизма при выделении места для локальных переменных внутри функций. Наконец, в самом Си нет средств ввода-вывода, инструкций READ (читать) и WRITE (писать) и каких-либо методов доступа к файлам. Все это – механизмы высокого уровня, которые в Си обеспечиваются исключительно с помощью явно вызываемых функций. Большинство реализованных Си-систем содержат в себе разумный стандартный набор этих функций. Си предоставляет средства лишь последовательного управления ходом вычислений: механизм ветвления по условиям, циклы, составные инструкции, подпрограммы – и не содержит средств мультипрограммирования, параллельных процессов, синхронизации и организации сопрограмм. Однако компактность языка имеет реальные выгоды. Поскольку Си относительно мал, то и описание его кратко, и овладеть им можно быстро. Программист может реально рассчитывать на то, что он будет знать, понимать и на практике регулярно пользоваться всеми возможностями языка. Важный аспект языка – это определение библиотеки, поставляемой вместе с Си-компилятором, в которой специфицируются функции доступа к возможностям операционной системы (например, чтения-записи файлов), форматного ввода-вывода, динамического выделения памяти, манипуляций со строками символов и т. д. Набор стандартных заголовочных файлов обеспечивает единообразный доступ к объявлениям функций и типов данных. Почти все программы, написанные на Си, если они не касаются каких-либо скрытых в операционной системе деталей, переносимы на другие машины. Си соответствует аппаратным возможностям многих машин, однако он не привязан к архитектуре какой-либо конкретной машины. Основной философией Си остается то, что программисты сами знают, что делают; язык лишь требует явного указания об их намерениях. Си, как и любой другой язык программирования, не свободен от недостатков. Тем не менее, как оказалось, Си – чрезвычайно эффективный и выразительный язык, пригодный для широкого класса задач.

Задания для практического занятия

1. Изучить характеристики и синтаксис функций и системных вызовов.

2. Набрать код примеров в текстовые файлы и произвести компиляцию программ.

3. Проверить работоспособность программ.

Контрольные вопросы

1. Что представляет собой в действительности канал pipe?

2. Почему в Linux не реализованы полностью дуплексные pip’ы?

3. В чем заключается отличие pip’а от файла?

Приложение

ПРИНЦИПЫ РАБОТЫ И ОСНОВНЫЕ КОМАНДЫ

ТЕКСТОВОГО РЕДАКТОРА VI

В составе ОС LINUX обычно поставляются текстовые редакторы: ed - интерактивный строковый редактор, vi и ех - его расширенные версии. Под именем vi (visual interpretator - визуальный интерпретатор) эта программа работает как экранно-ориентированный редактор, а под именем ех - как строчно-ориентированный.

Для вызова редактора vi используется команда vi:

vi [+line] [-R] [-х] [-r] [-t] file...

где +line - номер строки, с которой Вы хотите начать редактирование; R - читать; это означает, что файл можно только просматривать, но не модифицировать; х - расшифровывающее чтение т.е. просмотр файла, зашифрованного командой сryрt, или редактирование обычного текста с последующим шифрованием по мере записи на диск; r - восстановление файла после системного или программного крахов; t - вызов для редактирования файла, который содержит названный (в поле filе команды vi) тег (tag). Тег - это список символов, с которых начинается раздел в текстовом файле. Теги разных файлов объединяют в один файл - файл тегов с именем tags. Опцией -t обеспечивается вызов файла tags, который содержит названный тег и имя редактируемого файла, в котором тег находится. Команду вызова редактора можно использовать в форме vi +/word/file - начало редактирования файла file с первой строки, которая содержит слово word, или в форме vi +file - начало редактирования файла с последней строки.

Структура редактора

Работая с редактором, пользователь находится или в одном из его командных режимов, или в режиме ввода текста. Ниже приведенная схема иллюстрирует взаимодействие этих режимов и способы перехода редактора между ними.

[image: image81.png]; :
Konsor [¢ P Ko [[* omane | att, i1, o/ |- f:::a
S B e
.]
* o b el

Asromameiecigi neperon

В простейшем случае для вызова редактора нужно ввести команду vi техт и нажать клавишу Enter. На экране появится:

$ vi tехt

_

~

.

.

"text"

Строка начинается знаком ~, знак _ определяет положение курсора. В данный момент пользователь находится в командном режиме vi. Перейти в режим ввода текста можно с помощью команд добавления текста, которые не отображаются на экране после их ввода:

а/А - ввод текста после курсора/после конца строки (аррend - присоединение);

i/I - вставка текста перед курсором/с 1-й позиции данной строки (insert - вставить);

о/О - образовать пустую строку ниже имеющейся / выше имеющейся.

Для выполнения команд (например, записи в файл, перемещения курсора) после введения текста или его части нужно перейти снова в командный режим vi, нажав клавишу Еsс. После вызова vi нажмите клавишу а (ввод текста после курсора), не нажимая после этого клавишу Enter, и Вы попадете в режим ввода текста. Вводите текст, нажимая клавишу Enter в конце каждой строки (курсор в режиме ввода текста можно перемещать вправо, используя клавишу "пробел", и влево, используя клавишу ВаскSрасе.

Переход в командный режим vi. Для перехода в командный режим vi нужно нажать клавишу Еsс. Теперь редактор находится в командном режиме vi. В этом режиме выполняются следующие команды:

. - повторение последней команды;

u - аннулирование действия последней команды;

Изучение других многочисленных команд этого командного режима целесообразно проводить, разбив их на тематические группы. Они приведены в разделе 2.2.

Переход в режим ex. Чтобы перейти к группе команд редактора ех (под именем ех редактор работает как строчно-ориентированный), нужно ввести символ : (двоеточие), команду и нажать <Enter> или Еsс. Команды редактора ех начинаются с символа : и отображаются в нижней части экрана. После нажатия клавиши Еsс или <Enter> происходит возврат (назад) в командный режим. Команды режима ех:

:w - запись текста в файл;

:r - чтение файла;

:е - редактирование нового файла;

:е! - выход без сохранения данного файла и редактирование нового;

:n - авторедактирование;

:wq - запись текста и выход из редактора;

:x - запись текста только при наличии в нем изменений;

:q! - оставить текст в рабочей области и закончить редактирование;

:аb - присвоение сокращений;

:mар - определение ключей;

:set - изменение установочных режимов;

:s - выполнение замещений.

Переход в Shell. Редактор позволяет в процессе работы с ним выполнять команды ОС LINUX. Для этого нужно перейти в командный режим Shell с помощью команды !.

Рассмотрим пример. Определите текущее время командой date (вывод и установка даты) :! date. Здесь символ : означает переход в командный режим ех, а символ ! дает доступ к Shell. Для продолжительной работы с командами Shell можно вызвать командой :bash и после окончания работы вернуться в редактор vi, набрав СТRL-D.

Для возврата в командный режим vi нажмите клавишу Enter.

Команды, выполняемые в командном режиме VI

Изучим группу команд режима vi: перемещения курсора, добавления текста, поиска (частично), изменения и смещения текста, удаления, замены букв. Команды vi не отображаются на экране, кроме команд поиска, начинающихся со знаков / ? перемещение курсора, управление экраном дисплея, добавление текста.

Многие команды редактора выполняются только при определенном положении курсора, и нужно уметь пользоваться клавишами управления курсором (клавиши со стрелками <- , -> и т.д.). Кроме клавиши со стрелками для перемещения курсора можно использовать клавиши: СТRL-Н - влево; СТRL-N - вниз; СТRL-Р - вверх; SРАСЕ - вправо.

Команды перемещения курсора:

h - на одну позицию влево;

l - на одну позицию вправо;

j - на одну позицию вниз;

k - на одну позицию вверх;

b - к первому символу предыдущего слова;

В - то же самое, что b, но игнорируются знаки пунктуации;

w - к первому символу следующего слова;

W - то же самое, что w, но игнорируются знаки пунктуации;

е - к последнему символу следующего слова;

Е - то же самое, что е, но игнорируются знаки пунктуации;

(- к началу текущего предложения (предложение считается законченным, если после него есть два пробела или пустая строка);

) - к концу текущего предложения;

{ - к началу текущего раздела (разделителем раздела является пустая строка);

} - к концу текущего раздела;

[- к началу текущей секции;

] - к концу текущей секции;

^ - к первому отображаемому символу на текущей строке;

О - к началу текущей строки;

$ - к концу текущей строки;

Н - к началу экрана;

М - на середину экрана;

L - к концу экрана;

nG - к строке с номером n (на последнюю строку, если номера n нет); % - к символу парной скобки, если курсор находится под одной из них.

Команды управления экраном:

^U - смещение текста на одну строку вверх (СТRL-U);

^D - смещение текста на одну строку вниз (СТRL-D);

^В - смещение текста на один кадр назад (СТRL-В);

^F - смещение текста на один кадр вперед (СТRL-F).

Чтобы переместить текущую строку:

(в верхнюю часть экрана нужно ввести команду z и нажать клавишу Enter;

(в середину экрана z;

(в нижнюю часть экрана z- .

Для очистки экрана от сообщений нужно использовать команды СТRL-R и СТRL-L; тексты в рабочей области при этом сохраняются.

Команды изменения текста:

сw - изменение слова;

сW - то же самое, что и сw, но игнорируются знаки пунктуации;

сО - от начала текущей строки;

с$ - до конца текущей строки;

сс - изменение всей строки;

с(- от начала текущего предложения;

с) - до конца текущего предложения;

с{ - от начала текущего раздела;

с} - до конца текущего раздела.

Для внесения изменений в текст необходимо: переместить курсор в нужную позицию; ввести команду изменения; без пробела набрать новый текст; нажать клавишу ЕSС.

Во всех командах можно использовать множители n, например для изменения пяти слов используется команда с5w.

Команды поиска начинаются косой чертой / (поиск вперед по тексту) или знаком ? (поиск назад); далее следует номер строки или ключевое слово. Команда заканчивается нажатием клавиши Enter.

Команды смещения текста:

<(или>(- к началу текущего предложения;

<)или>) - к концу текущего предложения;

<{или>{ - к началу текущего раздела;

<}или>} - к концу текущего раздела.

В командах смещения текста можно использовать множители, например может использоваться команда 2>> (сдвиг вправо). Смещение устанавливается командой: set sw=m. По умолчанию m=8. После того как курсор подведен к требуемой строке, нужно набрать символы << или >>.

Удаление, замена строчных букв на прописные и наоборот. Для удаления текста/фрагмента нужно переместить курсор в требуемую позицию и ввести команду удаления.

dw - до конца текущего слова;

dW - то же, что и dw, но игнорируются знаки пунктуации;

d^ - до 1-го видимого символа текущей строки;

dО - удаление начала строки;

d$ - удаление конца строки;

d(- до начала текущего предложения;

d) - до конца текущего предложения;

d{ - до начала текущего раздела;

d} - до конца текущего раздела;

dd - удаление всей строки;

dkw - удаление k слов;

dk)/dk} - удаление k предложений, k разделов;

kdd - удаление k строк.

Для удаления одиночного символа нужно подвести к нему курсор и набрать х (не d), а для удаления нескольких символов подряд набрать команду nх.

Для удаления текста от начала строки до определенного места и от определенного места до конца строки используются команды d^ и d$ соответственно.

Символ ~ используется для замены строчных букв на прописные и наоборот. Замена 1-й буквы в последней строке текста:

(Введите символ ((к началу текущего предложения).

(Наберите команду .~

(Восстановите текст командой u.

Определение текущей рабочей позиции в файле. После ввода пользователем в командном режиме СТRL-G в нижней части экрана появится статусная информация в соответствии с положением курсора в текcте, включающая: имя файла; сведения о проведенной ранее модификации; номер текущей строки; общее число строк; расстояние курсора от начала файла (в процентах).

Для окончания работы с редактором введите в командном режиме :wq (запись текста из рабочей области в файл и окончание редактирования) и нажмите клавишу Enter. На экране появится сообщение о том, что Вы вышли из редактора и находитесь в Shell:

:wq <Enter>

/home/student >

PAGE
104

_1522142436.unknown

_1522142468.unknown

_1522142478.unknown

_1522142487.unknown

_1522142457.unknown

_1522142409.unknown

