	[image: C:\Users\T'rain\Desktop\логотип 2016 УКРТБдля документов.jpg]
	МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ БАШКОРТОСТАН
Государственное бюджетное профессиональное образовательное учреждение
Уфимский колледж радиоэлектроники, телекоммуникаций и безопасности

	
	

	
	УТВЕРЖДАЮ
Зам. директора
_____________ Л.Р. Туктарова
«15» января 2020 г.

СБОРНИК МЕТОДИЧЕСКИХ УКАЗАНИЙ

ДЛЯ СТУДЕНТОВ ПО ВЫПОЛНЕНИЮ

 ПРАКТИЧЕСКИХ РАБОТ

[bookmark: _GoBack]МДК 1.2 «ПОДДЕРЖКА И ТЕСТИРОВАНИЕ ПРОГРАММНЫХ МОДУЛЕЙ»
специальность 09.02.07 «Информационные системы и программирование»

	

	СОГЛАСОВАНО
Зав. кафедрой
____________ М.Е. Бронштейн
РАЗРАБОТАЛ:
Преподаватель, к.т.н.
_____________ Р.А. Князев

Уфа 2020 г.

СОДЕРЖАНИЕ

	
	Стр.

	Предисловие
	3

	Практическая работа № 1-2 «Моделирование объекта автоматизации»
	5

	
Практическая работа № 3-4 «Тестирование программного средства»
	
7

	
Практическая работа № 5-6 «Оценка качества программного обеспечения»
	
12

	
Практическая работа № 7-8 «Применение стохастического тестирования классов»
	
16

	
Практическая работа № 9-10 «Применение тестирования разбиений на уровне классов»
	
19

	
Практическая работа № 11-12 «Тестирование программного средства»
	
21

	
Практическая работа № 13-14 «Отладка и тестирование программы на уровне модуля»
	
26

	
Практическая работа №15-16 «Ручная отладка программного обеспечения»
	
29

	
	

	Практическая работа №17-18 «Тестирование с помощью инструментов среды разработки»

	35

	Практическая работа №19-20 «Выполнение функционального тестирования»

Практическая работа №21-26 «Разработка и оформление ТЗ и эскизного проекта»

	41

 43

	Практическая работа №27-28 «Оформление документации на программные средства с использованием инструментальных средств»
	47

	
	

	Практическая работа №29-30 «Элементы документирования разработки»

Практическая работа №31-32 «Расчет основных показателей надежности программ с использованием различных моделей»

	52

56

ПРЕДИСЛОВИЕ

	Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам ,правильного составления отчетов.
	Приступая к выполнению практической работы необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами, краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы.
	Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем.
	Наличие положительной оценки по практическим работам необходимо для получения зачета по дисциплине и допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую работу необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических (лабораторных) работ
	1. Студент должен прийти на лабораторное занятие подготовленным к выполнению лабораторной работы.
	2. После проведения лабораторной работы студент должен представить отчет о проделанной работе.
	3. Отчет о проделанной работе следует выполнять в журнале лабораторных работ на листах формата А4 с одной стороны листа.

Оценку по лабораторной работе студент получает, если:
- студентом работа выполнена в полном объеме;
- студент может пояснить выполнение любого этапа работы;
- отчет выполнен в соответствии с требованиями к выполнению работы;
- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.
	Зачет по выполнению лабораторных работ студент получает при условии выполнения всех предусмотренных программой лабораторных работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий.

Обеспеченность занятия (средства обучения):

Основные источники:
1. Технология разработки программного обеспечения : учеб. пособие / Л.Г. Гагарина, Е.В. Кокорева, Б.Д. Виснадул ; под ред. Л.Г. Гагариной. — М. : ИД «ФОРУМ» : ИНФРА-М, 2017. — 400 с.
2. Программирование на СИ#: Учебное пособие / Медведев М.А., Медведев А.Н., - 2-е изд., стер. - М.:Флинта, Изд-во Урал. ун-та, 2017. - 64 с
3. Программирование на С++/С# в Visual Studio .NET 2003: Пособие / Понамарев В.А. - СПб:БХВ-Петербург, 2015. - 340 с. ISBN 978-5-9775-1224-
4. Федорова Г.Н. Разработка программных модулей программного обеспечения для компьютерных систем: учебник. Среднее профессиональное образования, профессиональная подготовка/Г.Н. Федорова – М.: Академия, 2017.

Оборудование лаборатории:
- Стол учительский -2 шт.
- Стул учительский - 2 шт.
- Кресло 16 шт.
- Стул -16 шт.
- Стол компьютерный -20 шт.
- Доска маркерная -2 шт.
- Плакат 5 шт.
- Стенд 1 шт.
Технические средства обучения:
- КомпьютерSIS 650 GXiC 1700 128DR/20Gb/intvidaud/CD52x/lan/key/ mousNet/CM570/G06 -21 шт.
- Проектор ACER – 1 шт.
- Программное обеспечение: Oracle VirtualBox, Visual Studio.

Порядок выполнения отчета по практической работе

Ознакомиться с теоретическим материалом по лабораторной работе.
Записать краткий конспект теоретической части.
Выполнить предложенное задание согласно варианту по списку группы.
Продемонстрировать результаты выполнения предложенных заданий преподавателю.
Записать код программы в отчет.
Ответить на контрольные вопросы.
Записать выводы о проделанной работе.

Практическая работа № 1-2
“Моделирование объекта автоматизации”

Цель работы: изучить моделирование объекта автоматизации.

Математические модели (ММ) служат для описания свойств объектов в процедурах АП. Если проектная процедура включает создание ММ и оперирование ею с целью получения полезной информации об объекте, то говорят, что процедура выполняется на основе математического моделирования.
К математическим моделям предъявляются требования универсальности, адекватности, точности и экономичности.
Степень универсальности ММ характеризует полноту отображения в модели свойств реального объекта. Математическая модель отражает лишь некоторые свойства объекта.
Точность ММ оценивается степенью совпадения значений параметров реального объекта и значений тех же параметров, рассчитанных с помощью оцениваемой ММ. Пусть отражаемые в ММ свойства оцениваются вектором выходных параметров Y = (y1, y2, ..., ym). Тогда, обозначив истинное и рассчитанное с помощью ММ значения j-го параметра через yjист и yjm соответственно, определим относительную погрешность Ej расчета параметра Yj как
Ej = (yjm - yjист)/yjист
Получена векторная оценка Е = (E1, E2, ..., Em). При необходимости сведения этой оценки к скалярной используют какую-либо норму вектора Е, например
Em = ||E|| = maxEj.
Адекватность ММ - способность отражать заданные свойства объекта с погрешностью не выше заданной. Поскольку выходные параметры являются функциями векторов параметров внешних Q и внутренних Х, погрешность Ej зависит от значений Q и Х.
Обычно значения внутренних параметров ММ определяют из условия минимизации погрешности Eм в некоторой точке Qном пространства внешних переменных, а используют модель с рассчитанным вектором при различных значениях Q. При этом, как правило, адекватность модели имеет место лишь в ограниченной области изменения внешних переменных - области адекватности (АО) математической модели:
OA = {Q|Em, d},
где d - заданная константа, равная предельно допустимой погрешности модели.
Экономичность ММ характеризуется затратами вычислительных ресурсов. Чем они меньше, тем модель экономичнее.
к ММ делятся на структурные и функциональные.
Структурные ММ предназначены для отображения структурных свойств объекта. Различают структурные ММ топологические и геометрические.
В топологических ММ отображаются состав и взаимосвязи элементов. Их чаще всего применяют для описания объектов, состоящих из большого числа элементов, при решении задач привязки конструктивных элементов к определенным пространственным позициям (например, задачи компоновки оборудования, размещения деталей, трассировки соединений) или к относительным моментам времени (например, при разработке расписаний, технологических процессов). Топологические модели могут иметь форму графов, таблиц (матриц), списков и т.п.
В геометрических ММ отображаются свойства объектов, в них дополнительно к сведениям о взаимном расположении элементов содержатся сведения о форме деталей. Геометрические ММ могут выражаться совокупностью уравнений линий и поверхностей; совокупностью алгебраических соотношений, описывающих области, составляющие тело объекта; графами и списками, отображающими конструкции из типовых конструктивных элементов, и т.п. Геометрические ММ применяют при решении задач конструирования в машиностроении, приборостроении, радиоэлектронике, для оформления конструкторской документации, при задании исходных данных на разработку технологических процессов изготовления деталей. Используют несколько типов геометрических ММ.
Функциональные ММ предназначены для отображения физических или информационных процессов, протекающих в объекте при его функционировании или изготовлении. Обычно функциональные ММ представляют собой системы уравнений, связывающих фазовые переменные, внутренние, внешние и выходные параметры.

Задания для практического занятия:
Вариант 1. Составить ММ открытия вклада.
Вариант 2. Составить ММ внесения платы за кредит.
Вариант 3. Составить ММ открытия ипотеки.

Контрольные вопросы:
1.Для чего служат ММ?
2. Как оценивается точность ММ?
3. На какие виды делятся ММ по характеру отображаемых свойств объекта?

Практическая работа №3-4
“Тестирование программного средства”

Цель работы: научиться делать тестирование программного средства

Тести́рование програ́ммного обеспе́че́ния — процесс исследования, испытания программного продукта, имеющий своей целью проверку соответствия между реальным поведением программы и её ожидаемым поведением на конечном наборе тестов, выбранных определённым образом.
Определения тестирования
В разное время и в различных источниках тестированию давались различные определения, в том числе:
· процесс выполнения программы с целью нахождения ошибок;
· интеллектуальная дисциплина, имеющая целью получение надежного программного обеспечения без излишних усилий на его проверку;
· техническое исследование программы для получения информации о её качестве с точки зрения определённого круга заинтересованных лиц;
· проверка соответствия между реальным поведением программы и её ожидаемым поведением на конечном наборе тестов, выполненных определённым образом;
· процесс наблюдения за выполнением программы в специальных условиях и вынесения на этой основе оценки каких-либо аспектов её работы;
· процесс, имеющий целью выявление ситуаций, в которых поведение программы является неправильным, нежелательным или не соответствующим спецификации;
· процесс, содержащий в себе все активности жизненного цикла, как динамические, так и статические, касающиеся планирования, подготовки и оценки программного продукта и связанных с этим результатов работ с целью определить, что они соответствуют описанным требованиям, показать, что они подходят для заявленных целей и для определения дефектов;
Тестирование компонентов — тестируется минимально возможный для тестирования компонент, например, отдельный класс или функция. Часто тестирование компонентов осуществляется разработчиками программного обеспечения.
using System;
namespace BankAccountNS
{
 /// <summary>
 /// Bank account demo class.
 /// </summary>
 public class BankAccount
 {
 private readonly string m_customerName;
 private double m_balance;
 private BankAccount() { }
 public BankAccount(string customerName, double balance)
 {
 m_customerName = customerName;
 m_balance = balance;
 }
 public string CustomerName
 {
 get { return m_customerName; }
 }
 public double Balance
 {
 get { return m_balance; }
 }
 public void Debit(double amount)
 {
 if (amount > m_balance)
 {
 throw new ArgumentOutOfRangeException("amount");
 }
 if (amount < 0)
 {
 throw new ArgumentOutOfRangeException("amount");
 }
 m_balance += amount; // intentionally incorrect code
 }
 public void Credit(double amount)
 {
 if (amount < 0)
 {
 throw new ArgumentOutOfRangeException("amount");
 }
 m_balance += amount;
 }
 public static void Main()
 {
 BankAccount ba = new BankAccount("Mr. Bryan Walton", 11.99);
 ba.Credit(5.77);
 ba.Debit(11.22);
 Console.WriteLine("Current balance is ${0}", ba.Balance);
 }
 }
}
Верификация (Verification) - это процесс оценки системы или её компонентов с целью определения удовлетворяют ли результаты текущего этапа разработки условиям, сформированным в начале этого этапа [IEEE]. Т.е. выполняются ли наши цели, сроки, задачи по разработке проекта, определенные в начале текущей фазы.
Валидация (Validation) - это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, требованиям к системе [BS7925-1].
План Тестирования (Test Plan) - это документ, описывающий весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков с вариантами их разрешения.
Тест дизайн (Test Design) - это этап процесса тестирования ПО, на котором проектируются и создаются тестовые случаи (тест кейсы), в соответствии с определёнными ранее критериями качества и целями тестирования.
Тестовый случай (Test Case) - это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.
Баг/Дефект Репорт (Bug Report) - это документ, описывающий ситуацию или последовательность действий приведшую к некорректной работе объекта тестирования, с указанием причин и ожидаемого результата.
Тестовое Покрытие (Test Coverage) - это одна из метрик оценки качества тестирования, представляющая из себя плотность покрытия тестами требований либо исполняемого кода.

Задания для практической работы
Вариант 1. У вас есть программа, которая определяет по трём введённым целым числам, может ли существовать треугольник с такими длинами сторон. Допустим, что ваша программа выполняется в некой изолированной идеальной среде, и вам всего-то осталось проверить корректность её работы на трёх 8-байтовых знаковых целых числах. Вы используете автоматизацию, и компьютер может провести 100 миллионов проверок в секунду. Сколько займёт проверка всех вариантов?
Вариант 2. У вас есть программа, которая определяет по трём введённым целым числам, может ли существовать треугольник с такими длинами сторон. Допустим, что ваша программа выполняется в некой изолированной идеальной среде, и вам всего-то осталось проверить корректность её работы на трёх 8-байтовых знаковых целых числах. Вы используете автоматизацию, и компьютер может провести 100 тысяч проверок в секунду. Сколько займёт проверка всех вариантов?
Вариант 3. У вас есть программа, которая определяет по трём введённым целым числам, может ли существовать треугольник с такими длинами сторон. Допустим, что ваша программа выполняется в некой изолированной идеальной среде, и вам всего-то осталось проверить корректность её работы на трёх 8-байтовых знаковых целых числах. Вы используете автоматизацию, и компьютер может провести 150 миллионов проверок в минуту. Сколько займёт проверка всех вариантов?

Контрольные вопросы
1. Что такое тестирование программного обеспечения ?
2. Что такое план тестирования?
3. Какие есть определения источника?

Практическая работа №5-6
“Оценка качества программного обеспечения”

Цель работы: Овладеть навыками оценки качества ПО.

Краткие теоретические материалы
На современных компьютерах установлено множество разнообразного программного обеспечения (ПО).
1) качество программного обеспечения – это степень, в которой программное обеспечение обладает требуемой комбинацией свойств. [1061-1998 IEEE Standard for Software Quality Metrics Methodology];
2) качество программного средства – совокупность свойств программного средства (ПС), которые обусловливают его пригодность удовлетворять заданные или подразумеваемые потребности в соответствии с его назначением [ГОСТ 28806–90 «Качество программных средств. Термины и определения»].
Согласно этой модели, функциональность программного средства (functionality) – совокупность свойств ПС, определяемая наличием и конкретными особенностями набора функций, способных удовлетворять заданные или подразумеваемые потребности качества наряду с ее надежностью как технической системы. Надежность (Reliability) – способность ПО выполнять требуемые задачи в обозначенных условиях на протяжении заданного промежутка времени или указанное количество операций. Удобство использования программного средства (usability) – совокупность свойств ПС, характеризующая усилия, необходимые для его использования, и оценку результатов его использования заданным кругом пользователей ПС. Эффективность (Efficiency) – способность ПО обеспечивать требуемый уровень производительности в соответствии с выделенными ресурсами, временем и другими обозначенными условиями. Удобство сопровождения (Maintainability) – легкость, с которой ПО может анализироваться, тестироваться, изменяться для исправления дефектов, для реализации новых требований, для облегчения дальнейшего обслуживания и адаптироваться к именующемуся окружению. Портативность (Portability) – совокупность свойств ПС, характеризующая приспособленность для переноса из одной среды функционирования в другие

Рисунок 1 Модель качества программного обеспечения
Стандартизация информационных технологий
Стандарт - общепринятое определение компонента технических или программных средств, являющихся результатом соглашения. Профиль - набор юридических и/или фактических стандартов, ориентированных на выполнение конкретной задачи [Козлов 1999].
Стандарты можно классифицировать следующим образом:
· по типу установления требований:
· устанавливающие требования к объекту;
· устанавливающие требования к процессу;
· по масштабу:
· международные;
· государственные;
· отраслевые;
· предприятий;
· по степени юридического оформления:
· принятые юридически;
· действующие фактически.
Процесс стандартизации информационных технологий поддерживают три основные группы организаций
· Международные организации, входящие в структуру ООН.
· International Organization for Standardization (ISO) - международная организация по стандартизации.

Об ISO
В 1947 году представители 25 стран решили создать организацию, основной задачей которой стала бы координация разработок и унификация международных стандартов. Новая организация получила название International Organization for Standardization (ISO). Несоответствие полного названия и аббревиатуры объясняется тем, что "ISO" - это греческий префикс, означающий "равный".
· International Electrotechnical Commision (IEC) - международная электротехническая комиссия.
· International Telecommunication Union-Telecommunications (ITU-T) - международный союз по телекоммуникации - телекоммуникация. До 1993 года эта организация называлась International Telegraph and Telephone Consultative Committee - международный консультативный комитет по телефонии и телеграфии.
· Промышленные профессиональные или административные организации.
· Institute of Electrical and Electronic Engineers (IEEE) - институт инженеров по электротехнике и электронике.
· Internet Activity Board (IAB) - совет управления деятельностью Интернета.
· Промышленные консорциумы.
· Object Management Group (OMG) - группа управления объектами.
· Х/Open - консорциум, организованный группой поставщиков компьютерной техники.
· Open Software Foundation (OSF) - фонд открытого программного обеспечения.
В 1987 году ISO и IEC объединили свою деятельность в области стандартизации информационных технологий и создали единый орган - Joint Technical Committee 1 (JTC1) - объединенный технический комитет 1. Этот комитет предназначен для формирования системы базовых стандартов з области информационных технологий.
Об абсолютной стандартизации
Идеальный подход мог бы состоять в разработке исчерпывающего набора стандартов. Однако для некоторых современных направлений в области информационных технологий это нереально, учитывая скорость (а также стоимость) происходящих изменений. Ко времени внесений очередной порции изменений может появиться новая версия, или программистское сообщество может вообще начать двигаться в другом направлении. Абсолютная стандартизация - это мираж.

Задания для практической работы
Разработайте сценарий тестирования для одного из следующих модулей:
Вариант 1: решение квадратного уравнения.
Вариант 2: определение площади треугольника.
Вариант 3: интегрирование функции.

Контрольные вопросы
1. Для чего предназначены программные продукты?
2. Какие варианты легального распространения программных продуктов существуют?
3. Какие качества По бывают?
	Практическая работа №7-8
“Применение стохастического тестирования классов”

Цель работы: получить знания в использовании стохастического тестирования классов
Краткие теоретические материалы
Стохастическое тестирование – использование в качестве исходных данных множества случайных величин с соответствующими распределениями, а для сравнения полученных результатов используется также распределения случайных величин.
Стохастическое тестирование используется для обнаружения ошибок, для диагностики и локализации ошибок применяют детерминированное тестирование.
Стохастическое тестирование основано на генерации тестовых наборов, а именно множества X, случайным образом.
Стохастическое тестирование выполнимо, если удаётся автоматически и независимым образом определить эталонное множество Y или экспертно указать распределение выходных данных.
Как правило, к стохастическому критерию прибегают в случае необходимости построения тестовых наборов большой мощности.
Недостаток стохастического тестирования заключается в малой вероятности получения оптимального тестового набора, то есть набора, обладающего высокой обнаруживающей способностью.
Критерии стохастического тестирования
Статистические методы окончания тестирования представляют собой стохастические методы принятия решений о совпадении гипотез о распределении случайных величин. К ним принадлежат такие широко известные методы, как метод Стьюдента (St), метод Хи-квадрат и т. п.
Метод оценки скорости выявления ошибок основан на модели скорости выявления ошибок, согласно которой тестирование прекращается, если оцененный интервал времени между текущей ошибкой и следующей слишком велик для фазы тестирования приложения.
При формализации модели скорости выявления ошибок используют следующие обозначения:
N - исходное число ошибок в программном комплексе перед тестированием,
С - константа снижения скорости выявления ошибок за счет нахождения очередной ошибки,
t1,t2,...tn - кортеж возрастающих интервалов обнаружения последовательности из n ошибок,
T - время выявления n ошибок.
Если допустить, что за время T выявлено n ошибок, то справедливо соотношение (3.2-1), утверждающее, что произведение скорости выявления одной i- той ошибки и времени выявления этой i-той ошибки есть 1 по определению:
(3.2-1) (N-i+1)*C*ti = 1. Отсюда для n ошибок справедливо соотношение (3.2-2):
(3.2-2 N*C*t1+(N-1)*C*t2+...+(N-(n-1))*C*tn=n
 N*C*(t1+t2+...+tn) – C*Σi [(i-1)*ti] = n, i=1..n
 N*C*T - C* Σi[(i-1)*ti] = n
Если из (3.2-1) определить ti и просуммировать от 1 до n, то придем к соотношению (3.2-3) для времени T выявления n ошибок
(3.2-3) Σi[1/(N-i+1)] = T*C, i=1..n
Если из (3.2-2) выразить С, приходим к соотношению (3.2-4):
(3.2-4) C = n/(N*T - Σi[(i-1)*ti)], i=1..n
Наконец, подставляя С в (3.2-3), получаем окончательное соотношение (3.2-5), удобное для оценок:
(3.2-5) Σi[1/(N-i+1)] = n/(N - (1/T)* Σi[(i-1)*ti])
Если оценить величину N приблизительно, используя известные методы оценки числа ошибок в программе [4] или данные о плотности ошибок для проектов рассматриваемого класса из исторической базы данных проектов. И, кроме того, использовать текущие данные об интервалах между ошибками t1,t2...tn, полученные на фазе тестирования, то, подставляя эти данные в (3.2-5), можно получить оценку tn+1 временного интервала необходимого для нахождения и исправления очередной ошибки (будущей ошибки).
Если tn+1>Td - допустимого времени тестирования проекта, то тестирование заканчиваем, в противном случае продолжаем поиск ошибок.
Наблюдая последовательность интервалов ошибок t1,t2...tn, и время, потраченное на выявление n ошибок T= Σiti, можно прогнозировать интервал времени до следующей ошибки и уточнять в соответствии с (3.2-4) величину С.
Стохастические тестовые варианты генерируются следующей последовательностью шагов.
1. Для создания тестов используют списки операций каждого класса-клиента. Операции будут посылать сообщения в классы-серверы.
2. Для каждого созданного сообщения определяется класс-сотрудник и соответствующая операция в классе-сервере.
3. Для каждой операции в классе-сервере, которая вызывается сообщением из класса-клиента, определяются сообщения, которые она, в свою очередь, посылает.
4. Для каждого из сообщений определяется следующий уровень вызываемых операций; они вставляются в тестовую последовательность.

Задания для практической работы
Вариант 1. Написать программу нахождения дискриминанта и произвести её стохастическое тестирование.
Вариант 2. Написать программу нахождения площади треугольника по двум сторонам и углу между ними и произвести её стохастическое тестирование.
Вариант 3. Написать программу нахождения арифметической прогрессии и произвести её стохастическое тестирование.

Контрольные вопросы
1. Какие есть последовательности шагов?
2. Что такое стохастические тестирование?
3. Какие есть обозначения?

Практическая работа № 9-10
“Применение тестирования разбиений на уровне классов”

Цель работы: научиться применять тестирование разбиений.

Тестирование разбиений уменьшает количество тестовых вариантов, требуемых для проверки классов (тем же способом, что и разбиение по эквивалентности для стандартного ПО). Области ввода и вывода разбивают на категории, а тестовые Варианты разрабатываются для проверки каждой категории.
Обычно используют одну из трех категории разбиения [43]. Категории образуются операциями класса.
Первый способ — разбиение на категории по состояниям. Основывается на способности операций изменять состояние класса. Обратимся к классу Счет. Операции Снять, Положить изменяют его состояние и образуют первую категорию. Операции Остаток, Итог, ОграничитьКредит не меняют состояние Счета и образуют вторую категорию. Проектируемые тесты отдельно проверяют операции, которые изменяют состояние, а также те операции, которые не изменяют состояние. Таким образом, для нашего примера:

Тестовый вариант 1:

Открыть ►Установить ►Положить ►Положить ►Снять ►Снять ►Закрыть.

Тестовый вариант 2:

Открыть ►Установить ►Положить ►Остаток ►Итог ►ОграничитьКредит ►Снять ►Закрыть.
ТВ1 изменяет состояние объекта, в то время как ТВ2 проверяет операции, которые не меняют состояние. Правда, в ТВ2 пришлось включить операции минимальной тестовой последовательности, поэтому для нейтрализации влияния операций Снять и Положить их аргументы должны иметь одинаковые значения.
Второй способ —разбиение на категории по свойствам. Основывается на свойствах, которые используются операциями. В классе Счет для определения разбиений можно использовать свойства остаток и ограничение кредита. Например, на основе свойства ограничение кредита операции подразделяются на три категории:
1) операции, которые используют ограничение кредита;
2) операции, которые изменяют ограничение кредита;
3) операции, которые не используют и не изменяют ограничение кредита.
Для каждой категории создается тестовая последовательность.
Третий способ — разбиение на категории по функциональности. Основывается на общности функций, которые выполняют операции. Например, операции в классе Счет могут быть разбиты на категории:
q операции инициализации (Открыть, Установить);
q вычислительные операции (Положить, Снять);
q запросы (Остаток, Итог, ОграничитьКредит);
q операции завершения (Закрыть).

Задания для практического занятия:

Вариант 1. Разбить на категорию по состояниям ситуацию “Пополнение вклада”;
Вариант 2. Разбить на категории по свойствам ситуацию “Пополнение вклада”
Вариант 3. Разбить на категории по функциональности ситуацию “Пополнение вклада”

Контрольные вопросы:
1.Какие существуют три категории разбиения?
2.Для чего применяется тестирование разбиений?
3.Какой способ разбиения основывается на способности операций менять состояние класса?

Практическая работа №11-12
“Тестирование программного средства”

Цель работы: Научиться делать тестирование программного средства

Тести́рование програ́ммного обеспе́че́ния — процесс исследования, испытания программного продукта, имеющий своей целью проверку соответствия между реальным поведением программы и её ожидаемым поведением на конечном наборе тестов, выбранных определённым образом.
Определения тестирования
В разное время и в различных источниках тестированию давались различные определения, в том числе:
· процесс выполнения программы с целью нахождения ошибок;
· интеллектуальная дисциплина, имеющая целью получение надежного программного обеспечения без излишних усилий на его проверку;
· техническое исследование программы для получения информации о её качестве с точки зрения определённого круга заинтересованных лиц;
· проверка соответствия между реальным поведением программы и её ожидаемым поведением на конечном наборе тестов, выполненных определённым образом;
· процесс наблюдения за выполнением программы в специальных условиях и вынесения на этой основе оценки каких-либо аспектов её работы;
· процесс, имеющий целью выявление ситуаций, в которых поведение программы является неправильным, нежелательным или не соответствующим спецификации;
· процесс, содержащий в себе все активности жизненного цикла, как динамические, так и статические, касающиеся планирования, подготовки и оценки программного продукта и связанных с этим результатов работ с целью определить, что они соответствуют описанным требованиям, показать, что они подходят для заявленных целей и для определения дефектов;
Тестирование компонентов — тестируется минимально возможный для тестирования компонент, например, отдельный класс или функция. Часто тестирование компонентов осуществляется разработчиками программного обеспечения.
using System;
namespace BankAccountNS
{
 /// <summary>
 /// Bank account demo class.
 /// </summary>
 public class BankAccount
 {
 private readonly string m_customerName;
 private double m_balance;
 private BankAccount() { }
 public BankAccount(string customerName, double balance)
 {
 m_customerName = customerName;
 m_balance = balance;
 }
 public string CustomerName
 {
 get { return m_customerName; }
 }
 public double Balance
 {
 get { return m_balance; }
 }
 public void Debit(double amount)
 {
 if (amount > m_balance)
 {
 throw new ArgumentOutOfRangeException("amount");
 }
 if (amount < 0)
 {
 throw new ArgumentOutOfRangeException("amount");
 }
 m_balance += amount; // intentionally incorrect code
 }
 public void Credit(double amount)
 {
 if (amount < 0)
 {
 throw new ArgumentOutOfRangeException("amount");
 }
 m_balance += amount;
 }
 public static void Main()
 {
 BankAccount ba = new BankAccount("Mr. Bryan Walton", 11.99);

 ba.Credit(5.77);
 ba.Debit(11.22);
 Console.WriteLine("Current balance is ${0}", ba.Balance);
 }
 }
}

Верификация (Verification) - это процесс оценки системы или её компонентов с целью определения удовлетворяют ли результаты текущего этапа разработки условиям, сформированным в начале этого этапа [IEEE]. Т.е. выполняются ли наши цели, сроки, задачи по разработке проекта, определенные в начале текущей фазы.
Валидация (Validation) - это определение соответствия разрабатываемого ПО ожиданиям и потребностям пользователя, требованиям к системе [BS7925-1].
План Тестирования (Test Plan) - это документ, описывающий весь объем работ по тестированию, начиная с описания объекта, стратегии, расписания, критериев начала и окончания тестирования, до необходимого в процессе работы оборудования, специальных знаний, а также оценки рисков с вариантами их разрешения.
Тест дизайн (Test Design) - это этап процесса тестирования ПО, на котором проектируются и создаются тестовые случаи (тест кейсы), в соответствии с определёнными ранее критериями качества и целями тестирования.
Тестовый случай (Test Case) - это артефакт, описывающий совокупность шагов, конкретных условий и параметров, необходимых для проверки реализации тестируемой функции или её части.
Баг/Дефект Репорт (Bug Report) - это документ, описывающий ситуацию или последовательность действий приведшую к некорректной работе объекта тестирования, с указанием причин и ожидаемого результата.
Тестовое Покрытие (Test Coverage) - это одна из метрик оценки качества тестирования, представляющая из себя плотность покрытия тестами требований либо исполняемого кода.

Задания для практической работы
Вариант 1. У вас есть программа, которая определяет по трём введённым целым числам, может ли существовать треугольник с такими длинами сторон. Допустим, что ваша программа выполняется в некой изолированной идеальной среде, и вам всего-то осталось проверить корректность её работы на трёх 8-байтовых знаковых целых числах. Вы используете автоматизацию, и компьютер может провести 100 миллионов проверок в секунду. Сколько займёт проверка всех вариантов?
Вариант 2. У вас есть программа, которая определяет по трём введённым целым числам, может ли существовать треугольник с такими длинами сторон. Допустим, что ваша программа выполняется в некой изолированной идеальной среде, и вам всего-то осталось проверить корректность её работы на трёх 8-байтовых знаковых целых числах. Вы используете автоматизацию, и компьютер может провести 100 тысяч проверок в секунду. Сколько займёт проверка всех вариантов?
Вариант 3. У вас есть программа, которая определяет по трём введённым целым числам, может ли существовать треугольник с такими длинами сторон. Допустим, что ваша программа выполняется в некой изолированной идеальной среде, и вам всего-то осталось проверить корректность её работы на трёх 8-байтовых знаковых целых числах. Вы используете автоматизацию, и компьютер может провести 150 миллионов проверок в минуту. Сколько займёт проверка всех вариантов?

Контрольные вопросы
1. Что такое тестирование программного обеспечения ?
2. Что такое план тестирования?
3. Какие есть определения источника?

Практическая работа №13-14
“Отладка и тестирование программы на уровне модуля”

Цель работы: научиться делать отладку и тестирование программы на уровне модуля

Краткие теоретические материалы.
Отладка и тестирование модулей
Применение данных методов предполагает, что отдельные модули, входящие в модульную структуру, прошли процесс автономной отладки и тестирования. На средства автономной отладки и тестирования никаких ограничений не накладывается.
Модульное программирование
В большинстве случаев будет, по меньшей мере, неосторожно заключить, что программа не содержит ошибок, если она правильно выполняется и приводит к получению искомых результатов для одного тестового набора исходных данных. Более того, многие решаемые задачи настолько сложны, что тестирование путем задания некоторых стандартных исходных данных не дает никакой уверенности в отсутствии ошибок. Таким образом, наша задача сводится к определению, содержит ли данная программа или набор программ ошибки или нет. Если ошибки содержатся в самой логике программ (мы, естественно, сейчас исключаем ошибки, обнаруживаемые аппаратными средствами или операционной системой), то как организовать их поиск в достаточно сложных случаях?
Конечно, уже при составлении программы следует предусмотреть возможность возникновения описанных трудностей. Для этого обычно крупные программы подразделяются на более мелкие, так называемые модули, каждый из которых предназначен для решения узкой и специфичной задачи.
Отладка модульной структуры
Задачи отладки модульных структур состоят в проверке правильности построения модульной структуры и выполнения программного агрегата, соответствующего данной модульной структуре. Рассмотрим эти задачи более подробно.
Проверка правильности построения модульной структуры
Существует два способа проверки. Первый основан на анализе результатов процесса редактирования связей (сборки модулей), выполняемого специальной программой ОС.
Данный способ позволяет выявить грубые ошибки — отсутствие модулей в модульной структуре, к которым есть обращения. Эти ошибки — следствие реального отсутствия модулей или неверного имени в операторе вызова LINK.
Второй способ основан на анализе самой модульной структуры, который заключается в следующем:
· визуальный анализ графа модульной структуры. Проверку правильности построения непосредственно осуществляет сам разработчик ПС. Отображение графа модульной структуры на экране терминала или вывод его на печать;
· анализ матриц, описывающих модульные структуры и основанных на результатах п. 1.2.3. Для проверки правильности построения модульных структур используются матрицы вызовов и достижимости. Результат анализа — установка существования циклов, числа маршрутов и достижимости между каждой парой модулей (данная информация используется для определения количества маршрутов при тестировании).
Перейдем к рассмотрению второй основной задачи отладки модульных структур. Проверка правильности выполнения модульной структуры
Решение данной задачи тесно связано с реализацией проблем межъязыкового интерфейса. Проверка правильности выполнения модульной структуры предполагает отслеживание в динамике последовательности передач управления и данных между взаимодействующими модулями. Такая возможность позволяет фиксировать цепочки выполняемых модулей и выполнять трассировку передаваемых данных. Результаты этих операций отображаются на экране или выводятся на печать. На основе их анализа определяются:
· правильность последовательности вызовов модулей в соответствии с графом модульной структуры и в зависимости от входных данных;
· правильность передаваемых данных между взаимодействующими модулями согласно описанию их типов в списке формальных и фактических параметров;
· последний выполняемый модуль в момент аварийной ситуации при выполнении программного агрегата;
· некоторые виды зацикливания в модулях при выполнении программных агрегатов.

Сборка программы
После того как модули окончательно проверены и отлажены, встает вопрос о компоновке из этих модулей программного пакета.
Если несколько модулей являются составными частями какой-то подпрограммы, то эта подпрограмма должна включать в себя предложения, определяющие, какие именно модули принадлежат ей. Например, подпрограмма обработки записей состоит из нескольких модулей. При вызове подпрограммы должно однозначно определяться, какие именно модули следует использовать. Эта цель обычно достигается выполнением команд, анализирующих управляющий код, задаваемый основной программой в виде одного из элементов входных данных.
Каждая подпрограмма должна быть отлажена точно таким же образом, что и входящие в нее модули. Это обычно требует разработки генераторов входных данных и программ вывода. Снова необходимо проверить правильность работы каждой подпрограммы и обеспечить диагностику возможных ошибок.
Наконец мы добрались до управляющей программы. Как правило, эта программа не производит никаких вычислений, она лишь определяет порядок выполнения подпрограмм и передает им соответствующие данные и управляющую информацию. Зная, какие действия выполняются отдельными модулями и подпрограммами, нетрудно, просмотрев основную программу, определить, как работает система в целом.

Задания для практической
Вариант 1. Описать процесс создания модульного теста.
Вариант 2. Описать запуск теста в обозревателе тестов.
Вариант 3. Привести пример написания теста.

Контрольные вопросы
1.Что отображается на экране после анализа операции?
2.Способы анализа модульной структуры
3.Перечислите задачи отладки модульной структуры
4.Что такое модульное тестирование?

Практическая работа № 15-16
“Ручная отладка программного обеспечения”

Цель работы: Ознакомиться с ручной отладкой ПО

Краткие теоретические материалы.
Отладка программы - один их самых сложных этапов разработки программного обеспечения, требующий глубокого знания:
• специфики управления используемыми техническими средствами,
• операционной системы,
• среды и языка программирования,
• реализуемых процессов,
• природы и специфики различных ошибок,
• методик отладки и соответствующих программных средств.

Классификация ошибок
 Отладка — это процесс локализации и исправления ошибок, обнаруженных при тестировании программного обеспечения. Локализацией называют процесс определения оператора программы, выполнение которого вызвало нарушение нормального вычислительного процесса. Для исправления ошибки необходимо определить ее причину, т. е. определить оператор или фрагмент, содержащие ошибку. Причины ошибок могут быть как очевидны, так и очень глубоко скрыты.
В целом сложность отладки обусловлена следующими причинами:
• требует от программиста глубоких знаний специфики управления используемыми техническими средствами, операционной системы, среды и языка программирования, реализуемых процессов, природы и специфики различных ошибок, методик отладки и соответствующих программных средств;
• психологически дискомфортна, так как необходимо искать собственные ошибки и, как правило, в условиях ограниченного времени;
• возможно взаимовлияние ошибок в разных частях программы, например, за счет затирания области памяти одного модуля другим из-за ошибок адресации;
• отсутствуют четко сформулированные методики отладки.
синтаксические ошибки — ошибки, фиксируемые компилятором (транслятором, интерпретатором) при выполнении синтаксического и частично семантического анализа программы;
ошибки компоновки — ошибки, обнаруженные компоновщиком (редактором связей) при объединении модулей программы;
ошибки выполнения — ошибки, обнаруженные операционной системой, аппаратными средствами или пользователем при выполнении программы,
Синтаксические ошибки. Синтаксические ошибки относят к группе самых простых, так как синтаксис языка, как правило, строго формализован, и ошибки сопровождаются развернутым комментарием с указанием ее местоположения. Определение причин таких ошибок, как правило, труда не составляет, и даже при нечетком знании правил языка за несколько прогонов удается удалить все ошибки данного типа.
Следует иметь в виду, что чем лучше формализованы правила синтаксиса языка, тем больше ошибок из общего количества может обнаружить компилятор и, соответственно, меньше ошибок будет обнаруживаться на следующих этапах, В связи с этим говорят о языках программирования с защищенным синтаксисом и с незащищенным синтаксисом. К первым, безусловно, можно отнести Pascal, имеющий очень простой и четко определенный синтаксис, хорошо проверяемый при компиляции программы, ко вторым - Си со всеми его модификациями. Чего стоит хотя бы возможность выполнения присваивания в условном операторе в Си, например:
If (c=n) x=0; /*
в данном случае не проверятся равенство с и n, а выполняется присваивание с значения n, после чего результат операции сравнивается с нулем, если программист хотел выполнить не присваивание, а сравнение, то эта ошибка будет обнаружена только на этапе выполнения при получении результатов, отличающихся от ожидаемых */
Ошибки компоновки. Ошибки компоновки, как следует из названия, связаны с проблемами, обнаруженными при разрешении внешних ссылок. Например, предусмотрено обращение к подпрограмме другого модуля, а при объединении модулей данная подпрограмма не найдена или не стыкуются списки параметров. В большинстве случаев ошибки такого рода также удается быстро локализовать и устранить.
Ошибки выполнения. К самой непредсказуемой группе относятся ошибки выполнения. Прежде всего, они могут иметь разную природу, и соответственно по-разному проявляться. Часть ошибок обнаруживается и документируется операционной системой. Выделяют четыре способа проявления таких ошибок:
• появление сообщения об ошибке, зафиксированной схемами контроля выполнения машинных команд, например, переполнении разрядной сетки, ситуации «деление па ноль», нарушении адресации и т. п.;
• появление сообщения об ошибке, обнаруженной операционной системой, например, нарушении зашиты памяти, попытке записи на устройства, защищенные от записи, отсутствии файла с заданным именем и т. п.;
• «зависание» компьютера, как простое, когда удается завершить программу бел перезагрузки операционной системы, так и «тяжелое», когда для продолжения работы необходима перезагрузка;
• несовпадение полученных результатов с ожидаемыми.
Причины ошибок выполнения очень разнообразны, а потому и локализация может оказаться крайне сложной. Все возможные причины ошибок можно разделить на следующие группы:
• неверное определение исходных данных,
• логические ошибки,
• накопление погрешностей результатов вычислений (рис.2). Неверное определение исходных данных происходит, если возникают любые ошибки при выполнении операций ввода-вывода: ошибки передачи, ошибки преобразования, ошибки перезаписи и ошибки данных. Причем использование специальных технических средств и программирование с защитой от ошибок позволяет обнаружить и предотвратить только часть этих ошибок, о чем безусловно не следует забывать.
Логические ошибки имеют разную природу. Так они могут следовать из ошибок, допущенных при проектировании, например, при выборе методов, разработке алгоритмов или определении структуры классов, а могут быть непосредственно внесены при кодировании модуля. К последней группе относят:
• ошибки некорректного использования переменных, например, неудачный выбор типов данных, использование переменных до их инициализации, использование индексов, выходящих за границы определения массивов, нарушения соответствия типов данных при использовании явного или неявного переопределения типа данных, расположенных в памяти при использовании нетипизированных переменных, открытых массивов, объединений, динамической памяти, адресной арифметики и т. д.
 • ошибки вычислений, например, некорректные вычисления над неарифметическими переменными, некорректное использование целочисленной арифметики, некорректное преобразование типов данных в процессе вычислений, ошибки, связанные с незнанием приоритетов выполнения операций для арифметических и логических выражений, и т. п.;
• ошибки межмодульного интерфейса, например, игнорирование системных соглашений, нарушение типов и последовательности при передаче параметров, несоблюдение единства единиц измерения формальных и фактических параметров, нарушение области действия локальных и глобальных переменных;
 Методы отладки программного обеспечения
 Отладка программы в любом случае предполагает обдумывание и логическое осмысление всей имеющейся информации об ошибке. Большинство ошибок можно обнаружить по косвенным признакам посредством тщательного анализа текстов программ и результатов тестирования без получения дополнительной информации. При этом используют различные методы:
• ручного тестирования;
• индукции;
• дедукции;
• обратного прослеживания.
Метод ручного тестирования. Это - самый простой и естественный способ данной группы. При обнаружении ошибки необходимо выполнить тестируемую программу вручную, используя тестовый набор, при работе с которым была обнаружена ошибка.
Метод очень эффективен, но не применим для больших программ, программ со сложными вычислениями и в тех случаях, когда ошибка связана с неверным представлением программиста о выполнении некоторых операций. Данный метод часто используют как составную часть других методов отладки. Метод индукции. Метод основан на тщательном анализе симптомов ошибки, которые могут проявляться как неверные результаты вычислений или как сообщение об ошибке. Если компьютер просто «зависает», то фрагмент проявления ошибки вычисляют, исходя из последних полученных результатов и действий пользователя. Полученную таким образом информацию организуют и тщательно изучают, просматривая соответствующий фрагмент программы. В результате этих действий выдвигают гипотезы об ошибках, каждую из которых проверяют. Если гипотеза верна, то детализируют информацию об ошибке, иначе - выдвигают другую гипотезу. Последовательность выполнения отладки методом индукции показана на рис. 3 в виде схемы алгоритма. Самый ответственный этап - выявление симптомов ошибки. Организуя данные об ошибке, целесообразно записать все, что известно о ее проявлениях, причем фиксируют, как ситуации, в которых фрагмент с ошибкой выполняется нормально, так и ситуации, в которых ошибка проявляется. Если в результате изучения данных никаких гипотез не появляется, то необходима дополнительная информация об ошибке. Дополнительную информацию можно получить, например, в результате выполнения схожих тестов.

Задания для практической работы
Написать программу и выполнить ручную отладку:
1.Опишите математическую модель задачи с указанием имен и назначения переменных;
2.Опишите спецификацию программы;
3.Запишите алгоритм программы;
4.Выполните отладку логики программы методом «грубой силы» с помощью соседа;
5.Составьте тестовые наборы для проверки функционала системы.
К следующему линейному уравнению:
Вариант 1.
Вариант 2.
Вариант 3.

Контрольные вопросы
1. Какие есть методы отладки программного обеспечения?
2. Написать четыре способа проявления таких ошибок
3. В чем заключается сложность отладки?

Практическая работа №17-18
“Тестирование с помощью инструментов среды разработки”

Цель работы: Получить знания тестирования с помощью инструментов среды разработки

Современные среды разработки должны предоставлять инструменты управления и поддержки тестирования, такие как протоколирование проверок, управление дефектами и изменениями, планирование тестирования, задание расписания и назначения задач, как на людей, так и на виртуальные и реальные тестовые машины, управление виртуальными тестовыми средами и «снимками» их состояний и т. д.
Подобный инструментарий должен решать следующий набор проблем, часто возникающих при тестировании сложных систем:
· постановка проблем и целей в тестировании;
· информирование об изменениях;
· управление серьезными изменениями в тест-скриптах при минимальных изменениях кода;
· определение достаточного объема регрессионного тестирования, а именно: на какой функционал оказывает влияние изменение кода, что тестировать при тех или иных изменениях кода, насколько глубоко и что еще может быть затронуто;
· создание одинаковых сред для воспроизведения ситуации у разных участников команды (в частности, работающих в разных организациях);
· протоколирование -- что, когда, кем тестировалось;
· с каким результатом, на каких средах и данных закончился тот или иной прогон тестов;
· статистика и ее динамическое измерение;
· отчетность о тестировании.
Если какая-то часть функционала после внесения изменений не протестирована, не может быть гарантии надежной и безопасной работы этой части приложения. Критически важные для бизнеса приложения должны внедряться только после многоуровневой проверки технических и пользовательских аспектов функционирования, а также проверки нефункциональных параметров и взаимодействия с интегрированными приложениями технического парка организации.
Для обеспечения этих процессов интегрированная среда разработки и тестирования должна позволять организовать планирование тестирования, однозначно связывать требования, код, покрытие тестами и ошибки, что дает точную информацию о том, где нужно повторить тестирование при тех или иных изменениях и насколько широко и углубленно.
Управление средами необходимо организовать на простом понятийном уровне, с разрешением конфликтов борьбы за ресурсы. Должна присутствовать возможность назначать автоматические и ручные скрипты на исполнение на определенных средах (и на конкретных исполнителей). Обязательно должен вестись протокол прохождения тестов.
При возникновении ошибок описание дефектов с максимальной сопроводительной информацией (которая заполняется автоматически) должно быстро и удобно заводиться в систему. При воспроизведении проблемы разработчик получает возможность поднять точный снимок состояния системы (snapshot), на котором возникла проблема. Весьма полезно, когда при проведении автоматического тестирования сведения о дефектах заносятся автоматически. Необходимо, чтобы было реализовано хранение и управление (с контролем версий) библиотек test cases, сред, дефектов, путей решения проблем, знаний и т. п.
Эффективность тестирования резко возрастает, когда оно интегрировано с кодом. Чрезвычайно полезно, когда связи прослеживаются до требований и можно проверять покрытие и степень протестированности каждого требования. Сценарий сборки обычно включает в себя построение исполняемых программ, получение отчета о том, какие тесты необходимо повторить из-за изменений в собранной системе (impacted tests). Если эти тесты автоматические, они этим же скриптом самостоятельно запускаются сразу после сборки. Все тесты и протоколы их выполнения должны быть документированы.
При реализации предложенных подходов мы получим заметную экономию времени при управлении средами, описании дефектов, а также упрощение ручного и автоматизированного тестирования. Результаты тестирования станут прозрачнее, соответственно продукт - качественнее и безопаснее. Можно будет гарантировать ненарушение работы приложений при внедрении любых изменений или добавлении новых систем.
3 лучших инструментов для автоматизации тестирования ПО
1. Selenium
Selenium — это среда тестирования для тестирования веб-приложений в различных браузерах и платформах, таких как Windows, Mac и Linux. Selenium помогает тестировщикам писать тесты на разных языках программирования, таких как Java, PHP, C #, Python, Groovy, Ruby и Perl. Selenium предлагает функции записи и воспроизведения для написания тестов без изучения Selenium IDE.

[image: Картинки по запросу "selenium"]
Рисунок 1 selenium

2. TestingWhiz
TestingWhiz — это инструмент автоматизации тестирования со сценариями без кода от Cygnet Infotech, поставщика ИТ решений 3-го уровня CMMi. Редакция Enterprise инструмента TestingWhiz предлагает полный пакет различных решений для автоматизированного тестирования, таких как веб-тестирование, тестирование программного обеспечения, тестирование баз данных, тестирование API, тестирование мобильных приложений, обслуживание набора регрессионных тестов, оптимизация и автоматизация, а также межбраузерное тестирование.
[image: Картинки по запросу "TestingWhiz"]
Рисунок 2 TestingWhiz
3. HPE Unified Functional Testing (HP – UFT ранее QTP)
HP QuickTest Professional был переименован в HPE Unified Functional Testing. HPE UFT предлагает автоматизацию тестирования для функционального и регрессионного тестирования для программных приложений.
Язык сценариев Visual Basic Scripting Edition используется этим инструментом для регистрации процессов тестирования и управления различными объектами и элементами управления при тестировании приложений.
QTP предлагает различные функции, такие как:
· Интеграция с Mercury Business Process Testing и Mercury Quality Center
· Уникальное распознавание смарт-объектов
· Механизм обработки ошибок
· Создание параметров для объектов, контрольных точек и таблиц, управляемых данными
· Автоматизированная документация
[image: Картинки по запросу "HPE Unified Functional Testing (HP – UFT ранее QTP)"]
Рисунок 3 HPE Unified Functional Testing (HP – UFT ранее QTP)

Задания для практической работы
Вариант 1. Произвести тестирование программы из прошлой практической работы с помощью любого инструмента из приведенного в данной практической перечня.
Контрольные вопросы
1.Для чего нужны программы тестировщики?
2.Какие проблемы решает тестировщик?

Практическая работа №19-20

“Выполнение функционального тестирования”

Цель работы: Ознакомиться с функциональным тестированием
Краткие теоретические сведения.
Функциональное тестирование является одним из ключевых видов тестирования, задача которого – установить соответствие разработанного программного обеспечения (ПО) исходным функциональным требованиям компании клиента. То есть проведение функционального тестирования позволяет проверить способность информационной системы в определенных условиях решать задачи, нужные пользователям.
В зависимости от степени доступа к коду системы можно выделить два типа функциональных испытаний:
⦁ тестирование black box (черный ящик) – проведение функционального тестирования без доступа к коду системы,
⦁ тестирование white box (белый ящик) – функциональное тестирование с доступом к коду системы.
Тестирование black box проводится без знания внутренних механизмов работы системы и опирается на внешние проявления ее работы. При этом тестировании проверяется поведение ПО при различных входных данных и внутреннем состоянии систем. В случае тестирования white box создаются тест-кейсы, основанные преимущественно на коде системы ПО. Также существует расширенный тип black-box тестирования, включающего в себя изучение кода, – так называемый grey box (серый ящик).
Ключевые преимущества
⦁ Функциональное тестирование ПО полностью имитирует фактическое использование системы.
⦁ Позволяет своевременно выявить системные ошибки ПО и, тем самым, избежать множества проблем при работе с ним в дальнейшем.
⦁ Экономия за счет исправления ошибок на более раннем этапе жизненного цикла ПО.
Основные этапы функционального тестирования
Подготовка — Проводится анализ исходных документов о системе: функциональные и бизнес-требования, техническое задание, паспорт проекта. Также происходят разработка и согласование плана тестирования, тест-кейсов, согласование проектных сроков, числа итераций, оценка возможных рисков. Задачи по этому этапу выполняются совместно с представителями заказчика.
Проведение — Функциональное тестирование ведется вручную по подготовленным заранее тестовым сценариям с занесением всех найденных ошибок в багтрекинговую систему. В случае отсутствия такой системы у компании клиента, компания модератор краудтестинга может: предоставить систему управления тестированием на своей площадке; поставить компании клиенту лицензии; использовать имеющиеся у компании клиента средства; обходиться только офисным пакетом; поставить процесс тестирования у компании клиента на основе бесплатных средств.
Отчет — Происходит разработка и согласование отчетов о проведенном тестировании со списком обнаруженных отклонений и рекомендациями по улучшению системы. Если необходимо, проводится обучение пользователей.
Направления функционального тестирования
Регрессионное тестирование — Тестирование функциональности продукта после исправления ошибок или реализации новых функциональных возможностей
Тестирование безопасности — Оценка уязвимости ПО к различным атакам и попыткам несанкционированного доступа к данным.
Системное тестирование — Проверка соответствия ПО требованиям, заявленным в спецификации
Тестирование мобильных приложений — Выявление дефектов в работе графического интерфейса
Тестирование установки — Тестирование процесса инсталляции/деинсталляции программного обеспечения
Конфигурационное тестирование — Проверка работы ПО на различных программных и аппаратных окружениях.
Интеграционное тестирование — Тестирование взаимодействий между компонентами системы и между несколькими системами.
Smoke-тестирование — Короткий цикл тестов для выявления правильной работы основных функций приложения.
Тестирование документации — Проверка документов на соответствие принятым стандартам, а также соответствие определенным характеристикам
Обеспечение тестового покрытия — Оценка плотности покрытия системы тестами
Тестирование удобства использования — Определение степени удобства использования, понятности и привлекательности разрабатываемого продукта

Задания для практической работы
Вариант 1. Выполнить Smoke-тестирование к программе из практической работы 15-16.
Вариант 2. Выполнить регрессионное тестирование к программе из практической работы 15-16.
Вариант 3. Выполнить конфигурационное тестирование к программе из практической работы 15-16.

Контрольные вопросы
1. Зачем нужно функциональное тестирование?
2. Какие функции выполняет функциональное тестирование?

Практическая работа № 21-26

“Разработка и оформление ТЗ и эскизного проекта”

Цель работы: Научиться разрабатывать и оформлять ТЗ и эскизные проекты.

Теоретический материал:
Техническое задание (ТЗ) — перечень требований, условий, целей, задач, поставленных заказчиком в письменном виде, документально оформленных и выданных исполнителю работ проектно-исследовательского характера. Такое задание обычно предшествует разработке проектов и призвано ориентировать разработчика на создание проекта, удовлетворяющего желаниям заказчика и соответствующего условиям использования, применения разрабатываемого проекта, а также ресурсным ограничениям.
В России Техническое задание пишется согласно двум ГОСТам:
· ГОСТ 34.602.89 «Техническое задание на создание автоматизированной системы»;
· ГОСТ 19.201-78 «Техническое задание. Требования к содержанию и оформлению».
Для создания модуля, программы, комплекса программ требуется Техническое задание по ГОСТу. Это очень важно, ведь именно там описаны все пункты, по которым впоследствии могут возникнуть споры.
Отличие в написании ГОСТов приведена в таблице ниже:

	ГОСТ 19
	ГОСТ 34

	1. Введение
	1. Общие сведения

	2. Основания для разработки
	

	3. Назначение разработки
	
2. Назначение и цели создания системы

	
	3. Характеристика объекта автоматизации

	4. Требования к программе или программному изделию
	4. Требования к системе

	4.1. Требования к функциональным характеристикам
	4.2. Требования к функциям (задачам), выполняемым системой

	
	4.1. Требования к системе в целом

	
	4.1.1. Требования к структуре и функционированию системы

	
	4.1.3. Показатели назначения

	4.2. Требования к надёжности
	4.1.4. Требования к надёжности

	
	4. 1.5. Требования к безопасности

	
	4.1.6. Требования к эргономике и технической эстетике

	4.3. Условия эксплуатации
	4.1.2. Требования к численности и квалификации персонала системы и режиму его работы

	
	4. 1.9. Требования к защите информации от несанкционированного доступа

	
	4.1.10. Требования по сохранности информации при авариях

	
	4.1.11. Требования к защите от влияния внешних воздействий

	
	4. 1.12. Требования к патентной чистоте

	
	4.1.13. Требования по стандартизации и унификации

	4.4. Требования к составу и параметрам технических средств
	4.1.8. Требования к эксплуатации, техническому обслуживанию, ремонту и хранению компонентов системы

	4.5. Требования к информационной и программной совместимости
	

	4.6. Требования к маркировке и упаковке
	

	4.7. Требования к транспортированию и хранению
	4.1.7. Требования к транспортабельности для подвижных систем

	4.8. Специальные требования
	
4. 1.14. Дополнительные требования

	
	
4.3. Требования к видам обеспечения

	5. Требования к программной документации
	8. Требования к документированию

	6. Технико-экономические показатели
	

	7. Стадии и этапы разработки
	5. Состав и содержание работ по созданию системы

	8. Порядок контроля и приёмки
	
6. Порядок контроля и приёмки системы

	
	7. Требования к составу и содержанию работ по подготовке объекта автоматизации к вводу системы в действие

	
	9.Источники разработки

Задания для практического занятия:
Вариант 1. Разработать ТЗ по ГОСТу 19 по теме “Разработка калькулятора”;
Вариант 2. Разработать ТЗ по ГОСТу 34 по теме “Текстовый редактор для работы с pdf”;
Вариант 3. Разработать ТЗ по ГОСТу 19 по теме “Текстовый редактор для работы с rtf”;

Контрольные вопросы:
1. Что такое техническое задание?
2. По каким двум ГОСТам в России пишется ТЗ?
3. Почему важно делать ТЗ по ГОСТу?
Практическая работа № 27-28
“Оформление документации на программные средства с использованием инструментальных средств”

Цель работы: Получение практических навыков в оформление документации на программные средства с использованием инструментальных средств

Краткие теоретические сведения
Документирование программного обеспечения Качество программного обеспечения, наряду с другими факторами, определяется полнотой и качеством пакета документов, сопровождающих ПО. К программным документам относятся документы, содержащие сведения, необходимые для разработки, изготовления, сопровождения программ и эксплуатации. Техническое задание Техническое задание. Требование к содержанию и оформлению. Напомним, что техническое задание (ТЗ) содержит совокупность требований к ПС и может использоваться как критерий проверки и приемки разработанной программы. Поэтому достаточно полно составленное (с учетом возможности внесения дополнительных разделов) и принятое заказчиком и разработчиком, ТЗ является одним из основополагающих документов проекта программного средства. Техническое задание на разработку ПО должно включать следующие разделы: введение; основания для разработки; назначение разработки; требования к программе; требования к программной документации; технико-экономические показатели; стадии и этапы разработки; порядок контроля и приемки; приложения. В зависимости от особенностей разрабатываемого ПО стандарт допускает уточнение содержания разделов, введение новых разделов или их объединение. В разделе “Введение” указывается наименование, краткая характеристика области применения ПО. В разделе “Основания для разработки” указывается: документ (документы), на основание которых ведется разработка; организация, утвердившая документ, и дата утверждения; наименование (условное обозначение) темы разработки. В разделе Назначение разработки должно быть указано функциональное и эксплуатационное назначение ПО. Например, UML – как универсальный язык моделирования. Может использоваться и для постановки технического задания. Внешние и внутренние языки спецификации В процессе разработки ПО появляются следующие документы, перечисленные ниже в хронологическом порядке: Соглашение о требованиях; Внешняя спецификация; Внутренняя спецификация. Документ “Соглашение о требованиях” должен содержать первое письменное соглашение между заказчиком и разработчиком о том, что будет сделано, и что не будет делаться при разработке и выпуске программного обеспечения. В отличие от него спецификация предполагает наличие более точных и исчерпывающих формулировок и определений. При этом, первые два документа содержат информацию о том, что представляет собой ПО; а третий должен объяснять, как ПО устроено и как достигаются установленные для него цели и требования. Все документы имеют схожую структуру для облегчения контроля над проектом, а также для обеспечения прослеживаемости всех технических решений от тре- бований до их реализации. По мере продвижения проекта разделы документа либо просто копируются в соответствующие разделы следующего создаваемого документа, либо расширяются описаниями технических решений текущего этапа. Ниже приведена общая структура документа “Внешняя спецификация”, с развернутыми комментариями в тех пунктах, которые касаются технической стороны дела 1. ОПИСАНИЕ ПРОГРАММНОГО ИЗДЕЛИЯ 1.1. Наименование и шифры ПО (полное наименование, сокращенные наименования, шифры ПО и проекта). 1.2. Краткое описание ПО (включая сведения об авторском праве, иерархию документов, с указанием документов вышестоящих уровней). 1.3. Результирующие компоненты ПО (оформляется в виде таблицы или другой формы и включает в себя, перечень спецификаций, другой документации и компонентов программного обеспечения). 2. ЦЕЛИ Этот раздел содержит причины выпуска ПО с указанием различного типа заявок, планов и т.п. и носит полностью управленческий характер.
3. СТРАТЕГИЯ 3.1. Соглашения относительно представления материала. 3.1.1. Обозначения (определяются все обозначения, используемые в требованиях: например, если применяются индексы, то дается пример их использования и определяется принцип индексации).
3.1.2. Терминология (особенно специфическая для данного изделия).
3.1.3. Синтаксис (приводятся, если необходимо, синтаксические правила для дальнейшего описания требований).
3.2. Генерируемое программное обеспечение (классифицируется как вспомогательное и порождаемое описываемым изделием).
3.3. Системное программное обеспечение (все остальное ПО, включая ОС, утилиты, пакеты прикладных программ, которое классифицируется как основное, поскольку оно генерирует ПО предыдущего пункта).
3.3.n. Общие характеристики функции n. Если технически затруднительно и неестественно рассматривать ПО как один большой функциональный модуль, то следует привести его функциональную декомпозицию, показав связи между функциями (функциональными модулями) и присвоив каждой функции некоторое уникальное имя n. Затем для каждой функции отводится подраздел раздела 3.3 (т.е. 3.3.1, 3.3.2 и т.д.), в заглавии которого используется слово функция с последующим именем функционального модуля. Такая функциональная декомпозиция не указывает, как именно ПО будет фактически разбито на программные модули (это составляет содержание документа Внутренняя спецификация). Для удобства работы, конечно, полезно иметь некоторое соответствие функционального и фактического разбиения, но это не является требованием и не должно уводить с правильного пути проектирования изделия.
3.3.n.1. Внешние ограничения.
3.3.n.1.1. Стандарты (список используемых промышленных стандартов и собственных стандартов предприятия).
3.3.n.1.2. Ограничения на совместимость. Необходимо рассматривать несколько аспектов совместимости: исходный язык, машинный язык, форматы данных и сообщений, форматы отчетов, форматы листингов и т.п. Специально должна оговариваться совместимость со следующими программными изделиями: изделиями-предшественниками (т.е. такими, которые пользователь может заменить новым изделием; если число функций при такой замене уменьшается, то следует привести обоснование этому); изделиями-компаньонами (т.е. относящимися к той же группе средств и являющимися альтернативой); подобными изделиями (т.е. выполняющих похожие функции в других программных изделиях); конкурирующими изделиями (других организаций).
3.3.n.1.3. Программные ограничения. Описываются программное окружение разрабатываемого ПО, включая указание средств для его загрузки и запуска. Также отмечаются все действующие программные ограничения, например использование вычислений с удвоенной точностью для некоторых функций.
3.3.n.1.4. Аппаратные ограничения. Приводится перечень устройств, необходимых для работы ПО (с указанием минимальной, оптимальной и максимальной конфигурации). Указываются все действующие ограничения на оборудование, например, физические характеристики терминала или требование запрещения использования звукового сигнального устройства. 3.3.n.2. Внешние характеристики.
 3.3.n.2.1. Результаты. Описываются все выходные данные ПО с точки зрения их функционального содержания и назначения (например, файлы, сообщения, программно устанавливаемые сигналы и прерывания). При этом должны быть рассмотрены все возможные в системе носители и средства отображения информации. Указываются тип, структура, формат, объем, расположение и диапазон изменения. Для всех выходных данных, читаемых людьми (сообщения и отчеты) должны быть приведены образцы.
3.3.n.2.2. Процессы обработки. Описываются операции, выполняемые ПО в целом или функциональными модулями, рассматриваемыми как черный ящик. Если обсуждение идет на уровне модулей или этапов разработки, указываются также модули или этапы, требуемые для получения определенной выходной информации. Точно определяются все возможные ошибки, потенциальные условия их возникновения и способы рестарта и восстановления. Подраздел должен описывать инициацию, преобразование данных, все варианты завершения работы (нормального и аварийного). 3.3.n.2.3. Входы. Описание подобно п.
3.3.2.1 3.3.n.3. Эргономические характеристики. Примечание. Этот раздел описывает свойства, обеспечивающие надежность, комфорт и продуктивность работы пользователей и операторов, а также вопросы безопасности, секретности, восстанавливаемости после сбоев, мобильности ПО. Остановимся более подробно на двух подразделах: Надежность и Рабочие характеристики. В разделе Надежность (это свойство программы понимается здесь как способность к восстановлению нормальной работы при ошибках и сбоях в работе оборудования) рассматриваются следующие вопросы: защита данных пользователя; степень защиты программ от ошибок, возникающих в других частях системы (например, работающих одновременно с данной программой в другой области памяти). Следует рассмотреть, как могут повлиять на работу предлагаемых программных средств такие ошибки, учитывая следующие моменты: распределение ресурсов памяти (указать, если предусмотрено обеспечение изоляции отводимых областей памяти); связь программ через общие аппаратные ресурсы. Раздел “Рабочие характеристики” описывает основные параметры или принципы, по которым должна оцениваться эффективность работы программы, по возможности в количественном виде с указанием возможных допусков. Все параметры должны быть измеряемыми, к их числу могут относиться быстродействие, пропускная способность, скорость передачи данных, расход машинных ресурсов, время реакции (или задержки) и т.д. 3.3.n.4. Внутренние характеристики (этот раздел полностью расширяется в документе “Внутренняя Спецификация”, однако частично может быть заполнен с целью полного описания соответствующих внешних свойств).
3.4. Внутренние ограничения (здесь речь идет о тех свойствах, которые пользователю логично ожидать, но которые по тем или иным причинам будут исключены из программного изделия или потенциально оставлены на усмотрение разработчика: например, неполная взаимозаменяемость носителей, отсутствие поддержки каких-либо возможностей оборудования, и т.п.).
4. ИСПОЛЬЗУЕМЫЕ МАТЕРИАЛЫ (в т.ч. справочные)
5. ПЕРЕДАЧА ЗАКАЗЧИКУ И ВВОД В ДЕЙСТВИЕ

Задания для практической работы
Произвести оформление документации на ПО(из практич. раб. №15-16) с использованием инструментальных средств.

Контрольные вопросы
1. Перечислить разделы, включенные в техническое задание.
2. Руководство пользователя.
3. Руководство программиста.

Практическая работа №29-30

“Элементы документирования разработки”

Цель работы: научиться документировать требования к программному обеспечению

Основные теоретические сведения
Требования к ТЗ
Техническое задание должно содержать следующие разделы:
введение;
основания для разработки;
назначение разработки;
требования к программе или программному изделию;
требования к программной документации;
технико-экономические показатели;
стадии и этапы разработки;
порядок контроля и приемки;
в техническое задание допускается включать приложения.
В зависимости от особенностей программы или программного изделия допускается уточнять содержание разделов, вводить новые разделы или объединять отдельные из них.
Стадии разработки ПО
Выделяют следующие стадии разработки программного обеспечения:
1 Стадия технического задания (предпроектная стадия) состоит из:
сбора исходных данных;
определения цели разработки – желаемого набора основных свойств и функций разрабатываемого ПС;
обоснования и выбора критерия эффективности и качества разработки;
формирования на верхнем уровне состава входной и выходной документации по решаемой задаче;
выбора принципиальных методов решения задач;
определения требований к комплексу технических средств и операционному окружению;
определения инструментальных средств, используемых для разработки;
планирования, т.е. декомпозиции процесса на стадии и этапы с установлением сроков их выполнения;
разработки документа, называемого «Техническое задание».
2 Эскизное проектирование
На данной стадии выполняется:
детализация состава и структуры входной и выходной информации;
детализация метода решения задач.
На этапе эскизного проектирования нужно создать предварительную версию программного средства (возможно в виде модели) и выяснить принципиальные вопросы, устраняя возможные разногласия между разработчиком и заказчиком. При этом выполняется:
определение предварительной технологии решения задачи;
прогнозирование эффективности решения задачи на конкретном объекте;
ведется освоение инструментальных средств (апробирование, обучение персонала).
3 Техническое проектирование (технический проект)
На данном этапе:
окончательно определяется состав и структура информации;
разрабатывается интерфейс во всех его компонентах;
технология решения задачи доводится автоматизма;
полностью определяется конфигурация тех средств, на которых ведется разработка ПС;
определяется структура базы данных, где храниться информация о работе ПС;
разрабатывается тестовый набор для проверки правильности программной реализации;
начинается разработка программной документации;
полностью определяется структура ПС (модули, компоненты).
Технический проект может рассматриваться как постановка задачи, передаваемой специалистом-постановщиком специалисту по программной реализации.
4 Рабочее проектирование (рабочий проект)
Результат рабочего проектирования – получение ПС в состоянии операционной готовности, в котором устранены синтаксические и семантические ошибки, как в программном коде так и в программной документации.
Основные работы этой стадии:
· программная реализация (написание программного кода, привязка его к специфике конкретного объекта, адаптация и настройка программных модулей);
· отладка (автономная – в лабораторных условиях и комплексная – на объекте);
· разработка эксплуатационной документации;
· организация внедрения ПС.
5 Внедрение
На этапе внедрения осуществляют:
подготовку персонала к эксплуатации;
подготовку базы данных;
проверку работоспособности ПС на реальных данных (опытная эксплуатация);
доводка – окончательное устранение всех ошибок в коде и документации.
По отдельным компонентам может быть откат на предыдущие стадии.

Задания к практической части
Придумать тему для разработки ПО и составить ТЗ для его разработки.

Контрольные вопросы:
1. Какие стадии разработки ПО существуют?
2. Опишите все стадии проектирования ПО.
3. Какие требования к программному обеспечению предъявляются?
4. Дайте характеристику к каждому требованию.

Практическая работа №31-32
“Расчет основных показателей надежности программ с использованием различных моделей”

Цель работы: Научиться рассчитывать основные показатели надежности программ с использованием различных моделей.

Теоретический материал:
На стадии прикидочного и ориентировочного расчетов электротехнических устройств рассчитывают основные показатели надежности.
Основными качественными показателями надежности является:
- интенсивность отказов
- вероятность безотказной работы;
- средняя наработка до отказа.
Интенсивность отказов l(t) - это число отказавшихn(t) элементов устройства в единицу времени, отнесенное к среднему общему числу элементов N(t), работоспособных к моменту времени Δt[9]
l (t)=n(t)/(Nt*Δt),
где Δt - заданный отрезок времени.
Например: 1000 элементов устройства работали 500 часов. За это время отказали 2 элемента. Отсюда,
l (t)=n(t)/(Nt*Δt)=2/(1000*500)=4*10-6 1/ч, то есть за 1 час может отказать 4-е элемента из миллиона.
Показатели интенсивности отказов l(t)элементов являются справочными данными, в приложении Г приводятся интенсивности отказов l(t)для элементов, часто применяемых в схемах.
Электротехническое устройство состоит из большого числа комплектующих элементов, поэтому определяют эксплуатационную интенсивность отказов l(t) всего устройства как сумму интенсивностей отказов всех элементов, по формуле
[image:]
где k – поправочный коэффициент, учитывающий относительное изменение средней интенсивности отказов элементов в зависимости от назначения устройства;
m – общее количество групп элементов;
nі - количество элементов в і- й группе с одинаковой интенсивностью отказов lі(t).
Вероятность безотказной работы P(t)представляет собой вероятность того, что в пределах указанного периода времени t, отказ устройства не возникнет. Этот показатель определяется отношение числа устройств, безотказно проработавших до момента времени t к общему числу устройств, работоспособных в начальный момент.
Например, вероятность безотказной работы P(t) =0,9 представляет собой вероятность того, что в пределах указанного периода времени t= 500час, отказ произойдет в (10-9=1) одном устройстве из десяти, и из 10 устройств 9 будут работать без отказов.
Вероятность безотказной работы P(t)=0,8 представляет собой вероятность того, что в пределах указанного периода времени t=1000час, отказ произойдет двух 2 устройствах из ста, и из 100 устройств 80 устройств будут работать без отказов.
Вероятность безотказной работы P(t)=0,975 представляет собой вероятность того, что в пределах указанного периода времени t=2500час, отказ произойдет в 1000-975=25 устройствах из тысячи, а 975 устройств будут работать без отказов.
Количественно надёжность устройства оценивается как вероятность P(t) события, заключающегося в том, что устройство в течение времени от 0 до t будет безотказно выполнять свои функции. Величина P(t) вероятность безотказной (рассчитанное значение Р(t) не должно быть менее 0,85) работы определяется выражением
[image:] (10.1)
где t – время работы системы, ч (t выбирается из ряда: 1000, 2000, 4000, 8000, 10000 ч.);
λ – интенсивность отказов устройства, 1/ч;
Т0 – наработка на отказ, ч.
Расчёт надёжности заключается в нахождении общей интенсивности отказов λ устройства и наработки на отказ:
[image:]. (10.2)
Время восстановления устройства при отказе включает в себя время поиска неисправного элемента, время его замены или ремонта и время проверки работоспособности устройства.
Среднее время восстановления электротехнических устройств может выбираться из ряда 1, 2, 4, 6, 8, 10, 12, 18, 24, 36, 48 час. Меньшие значения соответствуют устройствам с высокой ремонтопригодностью. Среднее время восстановления Тв можно уменьшить используя встроенный контроль или самодиагностику, модульное исполнение составных частей, доступный монтаж.
Значение коэффициента готовности определяется по формуле
[image:]
где Т0 – наработка на отказ, ч.
Тв – среднее время восстановления, ч.
Надёжность элементов в значительной степени зависит от их электрических и температурных режимов работы. Для повышения надёжности элементы необходимо использовать в облегченных режимах, определяемых коэффициентами нагрузки.
Коэффициент нагрузки – это отношение расчетного параметра элемента в рабочем режиме к его максимально допустимому значению. Коэффициенты нагрузки различных элементов могут сильно отличаться.
При расчёте надежности устройства все элементы системы разбиваются на группы элементов одного типа и одинаковыми коэффициентами нагрузки Кн.
Интенсивность отказа і- го элемента определяется по формуле:
[image:]
где Кн і - коэффициент нагрузки, рассчитывают в картах рабочих режимов, либо задают полагая, что элемент работает в нормальных режимах, в приложении Г приводятся значения коэффициентов нагрузки элементов;
λ 0і – базовая интенсивность отказов і - го элемента.
Часто, для расчета надежности, используются данные интенсивности отказа λ 0і аналогов элементов.
Пример расчета надежности устройствасостоящего из покупного комплекса BT-85W импортного производства и разрабатываемого на элементной базе серийного производства источника питания.
Интенсивности отказов изделий импортного производства определяют, как обратную величину времени эксплуатации, (иногда берут гарантийный срок обслуживания изделия) из расчета эксплуатации в одни сутки определенного числа часов.
Гарантийный срок службы покупного импортного изделия 5 лет, изделие будет работать 14,24часа в сутки:
Т=14,24час х 365дней х 5 лет = 25981 часов – время наработки на отказ.
[image:] 10-61/час - интенсивность отказов.

Задания для практической работы:
Рассчитать основные показатели надежности своей программы из практической работы №15-16.
Контрольные вопросы:
1.Какие основные показатели надежности?
2.По какой формуле находится интенсивность отказа і- го элемента?
3.Как определяется значение коэффициента готовности?

image3.png
e0e
SeleniumHQ*
Tests - +

Search tests.

Selenium Projects”

Selenium IDE - SeleniumHQ*

e

htp:fjwwsr.seleniumhg.org

Command

open

. click at

click at

click at

. click at

dlick at

click at

Target
!

=Projects
xpath=
(Jfalcontains(text0),'s
elenium WebDriver')
link=Projects
link=Selenium IDE
link=Projects

xpath=

(Jfalcontains(text0),'s
elenium Grid)])[2]

Value

21
a7
201
8811
818
799

e m

image4.jpeg
A

Siimate E3 ook o Tet Mg

izl b NEe
TR L

LA R N1l |
e o

S5 % o]

|

i
FHHIRITIR 7

 ddiliditih

aaRRAANNNED §

i

image5.jpeg
Paxtuecrve pesgreTan
Caeagrnn o6 onepaisonof cucreme

Ol i & vituelmaching? Her

01 he machine connected emoleh? Yer

0 Dperating st vession ‘Windows 7 Uinle Senice Pack 1

ORaM Prysical Memoy: 571 G, Avalable Memoy: 429 68

© Fiee Space 656819568

O Indtin G Tue

O Run s Adrin False

015 Process Elevated (UAC disbled) False

© Processtegiy Level

O System e 5

O Language Russian (Russia)

G Ditectoy for sperting system C\Windows

© Temp diectay CAUser\T\ppDatetLocahTemp
Onncanne se6-obospesarenn

© Inemet Explorer 80760117514
Unified Functional TestingCeesenn

® Urifed Functonsl Testng ucrarosnen? I

O Bepeun

©Csopea 775

Caenenn o6 wenpasnenu Unified Functionsl Tsting

-_—mm_ - M- =
Avans sasepuen

[Dunixa” & Racromu v varienera e yranceenst
|aveanis cueaeras o Unifed Functions Tesing sasepuien
[3amucx copa ceenernst 0 SAP GUI

(Quntia: AP GUI rcsrcreser cucreve

|3amcr. ciopa napanverpoe saarensoro arerts.

3amucr copa aaie

frame saseen

image6.png

image7.png
PO = £

image8.png

image9.png

image10.png

image11.png

image1.jpeg

image2.png
b e decam

Popranorocr:
sy,

