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ПРЕДИСЛОВИЕ


Методические указания созданы в помощь для работы на занятиях, подготовки к практическим работам, правильного составления отчетов.


Приступая к выполнению практической работы необходимо внимательно прочитать цель работы, ознакомиться с требованиями к уровню подготовки в соответствии с федеральными государственными стандартами, краткими теоретическими сведениями, выполнить задания работы, ответить на контрольные вопросы для закрепления теоретического материала и сделать выводы. 


Отчет о практической работе необходимо выполнить и сдать в срок, установленный преподавателем. 

Наличие положительной оценки по практическим  работам  необходимо для получения зачета по дисциплине и допуска к экзамену, поэтому в случае отсутствия студента на уроке по любой причине или получения неудовлетворительной оценки за практическую работу необходимо найти время для ее выполнения или пересдачи.

Правила выполнения практических (лабораторных) работ


1. Студент должен прийти на лабораторное занятие подготовленным к выполнению лабораторной работы.


2. После проведения лабораторной работы студент должен представить отчет о проделанной работе.


3. Отчет о проделанной работе следует выполнять в журнале лабораторных работ на листах формата А4 с одной стороны листа.

Оценку по лабораторной работе студент получает, если:

- студентом работа выполнена в полном объеме;

- студент может пояснить выполнение любого этапа работы;

- отчет выполнен в соответствии с требованиями к выполнению работы;

- студент отвечает на контрольные вопросы на удовлетворительную оценку и выше.


Зачет по выполнению лабораторных работ студент получает при условии выполнения всех предусмотренных программой лабораторных работ после сдачи журнала с отчетами по работам и оценкам.

Внимание! Если в процессе подготовки к практическим работам или при решении задач возникают вопросы, разрешить которые самостоятельно не удается, необходимо обратиться к преподавателю для получения разъяснений или указаний в дни проведения дополнительных занятий. 

Обеспеченность занятия (средства обучения):

Учебно-методическая литература:

    1. Гулин А.В. Введение в численные методы в задачах и упражнениях:учеб.пособие/А.В.Гулин,О.С.Мажорова,В.А.Морозова.-М.:ИНФРА-М 2017-368с.-(Высшее образование:Бакалавриат).ISBN978-5-16-012876-4(print), ISBN978-5-16-101108-9(online)

2.Колдаев В.Д. Численные методы и программирование : учеб. пособие / В.Д. Колдаев ; под ред. проф. Л.Г. Гагариной. — М. : ИД «ФОРУМ» : ИНФРА-М, 2017. — 336 с. : ил. — (Профессиональное образование).

Технические средства обучения:

· персональный компьютер.
· мультимедиа проектор;

· принтер;
· экран; 

· калькулятор  инженерный.

Программное обеспечение: компьютер по количеству обучающихся с лицензионным программным обеспечением: Microsoft Office, MS Exсel, MathCad, Maple,  MatLab.
Порядок выполнения отчета по практической работе

1) Ознакомиться с теоретическим материалом по лабораторной работе.

2) Записать краткий конспект теоретической части.

3) Выполнить предложенное задание согласно варианту по списку группы.

4) Продемонстрировать результаты выполнения предложенных заданий преподавателю.

5) Записать код программы в отчет.

6) Ответить на контрольные вопросы.

7) Записать выводы о проделанной работе.

Практическая работа № 1 
 «Вычисление погрешностей результатов арифметических действий»
Цель работы: научиться производить арифметические действия с погрешностями

Образовательные результаты, заявленные в ФГОС:


Студент должен 


Уметь:


- давать математические характеристики точности исходной

            информации и оценивать тоочность полученного численого решения;


Знать:


- методы хранения чисел в памяти электронно-вычислительных машин


 (ЭВМ) и действия над ними, оценку точности вычислений.

Краткие теоретические и учебно методические материалы по теме практической работы:
Погрешности приближенных вычислений

Правила оценки погрешностей

Пусть
A
и
a
–
два
«близких»
числа.
A
–
точное,
a
– приближенное.
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Пусть a и b – два приближенных числа.

Абсолютные погрешности:
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Относительные погрешности:
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Определение.
Для
приближенного
числа,
полученного
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округлением,
предельная
абсолютная
погрешность

половине единицы последнего разряда числа.


равна

[image: image106.png]


Пример. a = 0,817,       ∆  = 0,0005 .

Определение. Значащими цифрами числа называются все его цифры, начиная с первой ненулевой слева.

Пример. 0,00015 – две значащие цифры, 12,150 – все цифры значащие.

Определение. Округлением числа a называется замена его числом

b с меньшим количеством значащих цифр.

Определение. Значащую цифру приближенного числа называют верной, если абсолютная погрешность числа не превосходит  половины единицы разряда, в котором стоит эта цифра (в узком смысле) или единицы разряда (в широком смысле).
Оценка ошибок при вычислении функций
Пусть  дана  функция  y  =  f(x)  и  a  –  приближенное     значение

аргумента x, ∆a  – его абсолютная погрешность. Тогда за  абсолютную

погрешность
функции
можно
принять
ее
приращение
или дифференциал.
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Правила подсчета цифр

Принцип Крылова: Согласно техническому подходу, приближенное число должно записываться так, чтобы в нем все значащие цифры, кроме последней, были верными и лишь последняя была бы сомнительна и притом в среднем не более чем на одну единицу.

Чтобы результаты арифметических действий, совершенных над приближенными числами, записанными в соответствии с принципом Крылова, так же соответствовали этому принципу, нужно придерживаться следующих правил:

1. При сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков.

2. При умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр.

3. [image: image107.png]
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При определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента  следует грубо оценить значение модуля производной функции. Если это значение не превосходит единицы или близко к ней, то в значении функции можно считать верными столько знаков после запятой, сколько их имеет значение аргумента. Если же модуль производной функции в окрестности приближенного значения аргумента превосходит единицу, то количество верных десятичных знаков в значении функции меньше, чем в значении аргумента на величину k, где k – наименьший показатель степени, при котором имеет место        f `(x) < 10k .

4. Результаты промежуточных вычислений должны иметь 1–2 запасных знака, которые затем должны быть отброшены.

Вычисления со строгим учетом предельных абсолютных погрешностей
Этот метод предусматривает использование правил вычисления предельных абсолютных погрешностей.

При пооперационном учете ошибок промежуточные результаты, так же как и их погрешности, заносятся в специальную таблицу, состоящую из двух параллельно заполняемых частей – для результатов и их погрешностей.
Вычисления по методу границ
Если нужно иметь абсолютно гарантированные границы возможных значений вычисляемой величины, используют специальный метод вычислений – метод границ.

Пусть f(x,y) – функция непрерывная и монотонная в некоторой области допустимых значений аргументов х и у. Нужно получить ее значение f(a, b), где а и b – приближенные значения аргументов, причем достоверно известно, что

НГa < а < ВГa; НГb  < b < ВГb.

Здесь НГ, ВГ – обозначения соответственно нижней и верхней границ значений параметров. Итак, вопрос состоит в том, чтобы  найти строгие границы значения f(a, b) при известных границах значений а и b.

Допустим, что функция f(x,y) возрастает по каждому из аргументов х и у. Тогда

f(НГa, НГb) < f(a, b) < f(ВГa, ВГb).

Пусть теперь f(x,y) возрастает по аргументу х и убывает по аргументу у. Тогда будет строго гарантировано неравенство

f(НГa, ВГb) < f(a, b) < f(ВГa, НГb).

Рассмотрим указанный принцип на примере основных арифметических действий.

Пусть f(x,y) = х + у. Тогда очевидно, что НГa  + НГb < a + b < ВГa  + ВГb.

Точно так же для функции f(x,y) = х – у (она по х возрастает, а   по

у убывает) имеем

НГa – ВГb < a – b < ВГa – НГb. Аналогично для умножения и деления: НГa · НГb   < a · b < ВГa · ВГb.

НГa  / ВГb < a / b < ВГa / НГb.

Вычисляя по методу границ с пошаговой регистрацией промежуточных результатов, удобно использовать обычную вычислительную таблицу, состоящую из двух строк – отдельно для вычисления НГ и ВГ результата (по этой причине метод границ называют еще методом двойных вычислений). При выполнении промежуточных вычислений и округлении результатов используются все рекомендации правил подсчета цифр с одним важным дополнением: округление нижних границ ведется по недостатку, а верхних – по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.
.Пример выполнения лабораторной работы
1. Число X, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа X1X найдите предельную абсолютную и предельную относительную погрешности. В записи  числа X1  укажите количество верных цифр (в узком и широком смысле).

2. Вычислите  с  помощью  микрокалькулятора  значение  величины Z
при заданных значениях параметров a, b и с, используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:

1) по правилам подсчета цифр;

2) по методу строгого учета границ абсолютных погрешностей;

3) по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

Решение типового примера

1. Число X = 7,3344, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа X1X найдите предельную абсолютную и предельную относительную погрешности. В записи числа X1 укажите количество верных цифр (в узком и широком смысле).

Пусть X = 7,3344.

Округлим данное число до трех значащих цифр, получим число:

X1  = 7,33.

Вычислим абсолютную погрешность:

∆X1  = |X – X1| = |7,3344 – 7,33| = 0,0044.

Определим
границы
абсолютной
погрешности
(предельную погрешность), округляя с избытком до одной значащей цифры:

[image: image109.png]


∆
= 0,005 .

1

Предельная относительная погрешность составляет:

[image: image110.png]
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X1 = 0,005 = 0,0007 = 0,07% .

X1
7,33

Укажем количество верных цифр в узком и широком смысле в записи числа X1  = 7,33.

Так
как

∆
= 0,005 ≤ 0,005,
следовательно,
в
узком
смысле

[image: image114.png]


1

верными являются все цифры числа X1  7, 3, 3.

Так
как

∆
= 0,005 ≤ 0,01,
следовательно,
в
широком
смысле

[image: image115.png]


1

верными являются также все цифры числа X1  7, 3, 3.

2. Вычислите с помощью микрокалькулятора значение  величины

[image: image8.png]4 ab-dc
" lna+b



при заданных значениях параметров a = 12,762, b = 0,4534
и с = 0,290, используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:

1) по правилам подсчета цифр;

2) по методу строгого учета границ абсолютных погрешностей;

3) по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

1) «Правила подсчета цифр»
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       ab - 4c

ln a + b

	a
	b
	c
	a·b
	4·c
	a·b – 4·c
	ln a
	ln a + b
	Z

	12,762
	0,4534
	0,290
	5,7863
	1,160
	4,626
	2,5465
	3,0000
	1,542


Прокомментируем ход вычислений.

1) Сначала вычислим a·b = 12,762·0,4534 = 5,786 290 8. Воспользуемся правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число 12,762 содержит пять значащих цифр, число 0,4534 –  четыре значащие цифры, т. е. в полученном значении следует сохранить четыре значащие цифры. Округляя с одной запасной цифрой, получаем 5,7863 (запасная цифра выделена) и заносим результаты в таблицу.

a·b = 12,762 · 0,4534 = 5,786 290 8 ≈ 5,7863.

2) Вычислим 4·c = 4·0,290 = 1,160. Воспользуемся правилом, что при определении количества верных цифр в значениях элементарных функций   от    приближенных   значений   аргумента   следует    грубо

оценить  значение  модуля  производной  функции.  Оценка величины

производной  в  этой   точке:


4 < 101 ,  т.  е.  в  полученном   значении

следует сохранить на один десятичный знак меньше, чем в значении аргумента. Округляя с одной запасной цифрой, получаем 1,160 (запасная цифра выделена) и заносим результаты в таблицу.

4·c = 4·0,290 = 1,160 ≈ 1,160.

3) Вычислим a·b – 4·c = 5,7863 – 1,160 = 4,6263. Воспользуемся правилом, что при сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков. Число 5,7863 содержит три десятичных знака, число 1,160 – два десятичных знака, т. е. в полученном значении следует сохранить два десятичных знака. Округляя с одной запасной цифрой, получаем 4,626 (запасная цифра выделена) и заносим результаты в таблицу.

a·b – 4·c = 5,7863 – 1,160 = 4,6263 ≈ 4,626.

4) Вычислим ln a = ln 12,762 = 2,546 472 005 446. Воспользуемся правилом, что при определении количества верных цифр в значениях элементарных функций от приближенных значений аргумента  следует грубо оценить значение модуля производной функции. Оценка          величины          производной          в          этой         точке:

(ln a)’ = 1
a


= 
1
≈ 0,784 < 100 . Так  как
значение  производной  не

12,762

превосходит единицы, то в значении функции можно считать  верными столько знаков после запятой, сколько их имеет значение аргумента. Округляя с одной запасной цифрой, получаем 2,5465 (запасная цифра выделена) и заносим результаты в таблицу.

ln a = ln 12,762 = 2,546 472 005 446 ≈ 2,5465.

5) Вычислим ln a + b = 2,5465 + 0,4534 = 2,9999. Воспользуемся правилом, что при сложении и вычитании приближенных чисел в результате следует сохранять столько десятичных знаков, сколько их в приближенном данном с наименьшим количеством десятичных знаков.   Число   2,5465    содержит    три    десятичных    знака,    число 0,4534 – четыре десятичных знака, т. е. в полученном значении следует сохранить три десятичных знака. Округляя с одной запасной цифрой, получаем 3,0000 (запасная цифра выделена) и заносим результаты в таблицу.

ln a + b = 2,5465 + 0,4534 = 2,9999 ≈ 3,0000.

6) Вычислим

Z = ab - 4c
ln a + b



= 4,626 3,0000



= 1,542



.
Воспользуемся

правилом, что при умножении и делении в результате следует сохранять столько значащих цифр, сколько их имеет приближенное данное с наименьшим числом значащих цифр. Число 4,626 содержит три значащих цифры, число 3,0000 – четыре значащие цифры, т. е. в полученном значении следует сохранить три значащие цифры. Округляя с одной запасной цифрой, получаем 1,542 (запасная цифра выделена) и заносим результаты в таблицу.

Z  ab - 4c
ln a + b

= 4,626 3,0000

= 1,542 ≈ 1,542.

Округляя окончательный результат без запасной цифры, получим

Z = 1,54 (три верные значащие цифры).

2) «Метод строгого учета границ абсолютных погрешностей»

Проделаем пошаговые вычисления по методу строгого учета границ предельных абсолютных погрешностей в предположении, что исходные данные а, b и с имеют предельные абсолютные погрешности ∆а = 0,0005, ∆b = 0,000 05, ∆c = 0,0005 (т. е. у а, b и с все цифры верны в узком смысле).

Промежуточные результаты вносятся в таблицу после округления до одной запасной цифры (с учетом вычисленной параллельно величины погрешности); значения погрешностей для удобства округляются (с возрастанием) до двух значащих цифр.

	a
	12,762
	∆a
	0,0005

	b
	0,4534
	∆b
	0,000 05

	c
	0,290
	∆c
	0,0005

	a·b
	5,786
	∆(a·b)
	0,000 87

	4·c
	1,160
	∆(4·c)
	0,002

	a·b – 4·c
	4,626
	∆(a·b–4·c)
	0,0029

	ln a
	2,546 47
	∆(ln a)
	0,000 040

	ln a + b
	2,9999
	∆(ln a + b)
	0,000 09

	Z
	1,542
	∆Z
	0,0011


1) Вычисляем a·b = 12,762·0,4534 = 5,786 290 8. Подсчитаем предельную абсолютную погрешность:

∆(a·b) = b · ∆a + a · ∆b = 0,4534 · 0,0005 + 12,762 · 0,000 05 =

= 0,000 865 ≈ 0,000 87.

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 5,786 (запасная цифра выделена) и вносим его в таблицу.

2) Вычисляем 4·c = 4·0,290 = 1,160. Подсчитаем предельную абсолютную погрешность:

∆(4·c) = | (4c)’ | · ∆c = 4 · 0,0005 = 0,002.

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 1,160 (запасная цифра выделена) и вносим его в таблицу.

3) Вычисляем a·b – 4·c = 5,7863 – 1,160 = 4,6263. Подсчитаем предельную абсолютную погрешность:

∆(a·b – 4·c) = ∆(a·b) + ∆(4·c) = 0,000 87 + 0,002 = 0,002 87 ≈ 0,0029.

Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 4,626 (запасная цифра выделена) и вносим его в таблицу.

4) Вычисляем ln a = ln 12,762 = 2,546 472 005 446. Подсчитаем предельную абсолютную погрешность:

∆(ln a) = | (ln a)’ | · ∆a = 1  / 12,762 · 0,0005  =     0,000 039 178 81 ≈

≈ 0,000 040.

Судя по ее величине, в полученном значении в узком смысле верны четыре знака после запятой. Округляем это значение с одной запасной цифрой 2,546 47 (запасная цифра выделена) и вносим его в таблицу.

5) Вычисляем ln a + b = 2,546 47 + 0,4534 = 2,999 87. Подсчитаем предельную абсолютную погрешность:

∆(ln a + b) = ∆(ln a) + ∆b = 0,000 040 + 0,000 05 = 0,000 09.

Судя по ее величине, в полученном значении в узком смысле верны три знака после запятой. Округляем это значение с одной запасной цифрой 2,9999 (запасная цифра выделена) и вносим его в таблицу.

6)
Вычисляем
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2,9999

= 1,542 051 4.
Подсчитаем

предельную абсолютную погрешность:
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Судя по ее величине, в полученном значении в узком смысле верны два знака после запятой. Округляем это значение с одной запасной цифрой 1,542 (запасная цифра выделена) и вносим его в таблицу.

Округляя окончательный результат до последней верной в узком смысле цифры, а также округляя погрешность до соответствующих разрядов результата, окончательно получаем: Z = 1,54 ± 0,01.

3) «Способ границ»

Нижняя и верхняя границы значений а, b и с определены из условия, что в исходных данных а = 12,762, b = 0,4534 и с = 0,290 все цифры   верны   в   узком   смысле   (∆a   =   0,0005,   ∆b   =   0,000 05 и

∆c = 0,0005), т. е.

12,7615 < a < 12,7625; 0,453 35 < b < 0,453 45; 0,2895 < c < 0,2905.

При выполнении промежуточных вычислений и округлении результатов будем использовать все рекомендации правил подсчета цифр с одним важным дополнением: округление нижних границ ведется по недостатку, а верхних – по избытку. Окончательные результаты округляются по этому же правилу до последней верной цифры.

	
	НГ
	ВГ

	a
	12,7615
	12,7625

	b
	0,453 35
	0,453 45

	c
	0,2895
	0,2905

	a·b
	5,785 42
	5,787 16

	4·c
	1,1580
	1,1620

	a·b – 4·c
	4,6234
	4,6292

	ln a
	2,546 43
	2,546 52

	ln a + b
	2,999 78
	2,999 97

	Z
	1,5414
	1,5432
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1) НГab = НГa · НГb = 12,7615 · 0,453 35 = 5,785 426 025 ≈ 5,785 42;

ВГab = ВГa   ВГb = 12,7625 · 0,453 45 = 5,787 155 625 ≈ 5,787 16.

2) НГ4c  = 4 · 0,2895 = 1,1580;

ВГ4c = 4 · 0,2905 = 1,1620.

3) НГab – 4с  = НГab – ВГ4с = 5,785 42 – 1,1620 = 4,623 42 ≈ 4,6234;

ВГab – 4с = ВГab – НГ4с = 5,787 16 – 1,1580 = 4,629 16 ≈ 4,6292.

4) НГln a  = ln(НГa) = ln(12,7615) = 2,546 432 825 867 ≈ 2,546 43;

ВГln a  = ln(ВГa) = ln(12,7625) = 2,546 511 183 491 ≈ 2,546 52.

5)  НГln  a  +  b =  НГln  a   +  НГb   =  2,546 43  +  0,453 35  =  2,999 78  ≈

≈ 2,999 78;

ВГln   a   +   b   =  ВГln   a   +  ВГb   =  2,546 52  +  0,453 45  =  2,999 97 ≈

≈ 2,999 97.

6) НГZ  = НГab–4c  / ВГln a+ b  = 4,6234 / 2,999 97 = 1,541 148 744 821 ≈

≈ 1,5411;

ВГZ  = ВГab–4c  / НГln a + b  = 4,6292 / 2,999 78 = 1,543 179 833 188 ≈

≈ 1,5432.

Таким образом, результат вычислений значения Z по методу границ имеет вид 1,541 < Z < 1,543.

Вычисляя
значение
величины
Z
тремя
разными
способами, получили следующие результаты:

1)
Z ≈ 1,54,

2)
Z = 1,54  ± 0,01,

3)
1,541 < Z < 1,543.

Варианты заданий

	№
	X
	Z
	a
	b
	c

	1
	0,068 147
	(b - c)2
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2a + b
	1,105
	6,453
	3,54

	2
	0,121 38
	ln b - a a2 +12c
	0,9319
	15,347
	0,409


[image: image123.png]


[image: image124.png]


[image: image125.png]


[image: image126.png]


[image: image127.png]


[image: image128.png]


[image: image129.png]X=37000-x



[image: image130.png]4

K L
7.10667

DA

=J1-(J1"3+11-1000)/300




[image: image131.png]J K L

Q66667 9.966667

K1 b

=J1-(J1"3+J1-1000)/300




[image: image132.png]x = 1000

-



[image: image133.png]{0;45 la, +b,=-0572,

08674, + b, =-2,015,

0.867a, +b, =-2,015,
{3,315,1, +b,=-3342;
3315a, +b, =-3342,
{s,oua, +

{s,o 13a, +

6.432a, +b, =611



[image: image134.png]0,123a, + 03516, + ¢,
0,752a, +0.867b, +¢,

10989, +3315, + ¢, =-3342;
10.989a, +3315b, +

25,130a, +5,013b, +
41370a, +6.432b, + ¢, = 6911




[image: image135.png]x: 0324 0,645 0,966 1,287 1,609 1,930 2,251 2,572 2,893
e 2,052 -1.756 -1.076 -0.284 0982 2.209 4.013 5.796 8,011



[image: image136.png]oo

0,184 0,519 0,854 1,188 1,523 1,858 2,192 2,527 2,862
: 1,687 -3,056 -4,493 -6,928 -10,524 -15,400 -22,049 -32,380 -44,538

0,351 0,674 0998 1321 1,645 1968 2,291 2,615 2,938
0,571 -0,517 -0,895 -1,125 -1,637 -2,231 -2,971 -3,874 -4,711



[image: image137.png]x: 0,259 0,597 0,934 1,272 1,610 1,948 2,286 2,623 2,961
y: 0,018 -0,920 -1,516 -1,647 -1,586 -1,328 -0,573 0,172 1,122



Продолжение

	№
	X
	Z
	a
	b
	c

	3
	7,321 47
	ln (b + c) b - ac
	0,2399
	4,893
	1,172

	4
	0,007 275
	(a - c) 2
a + 3b
	11,437
	0,609 37
	8,67081

	5
	45,548
	a - bc
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ln a + 3b
	10,589
	0,5894
	0,125

	6
	10,7818
	b 2  - ln c

c + a
	2,038
	3,912 53
	5,0075

	7
	1,005 745
	a - cos b 13c + b
	3,149
	0,85
	0,007

	8
	2,189 01
	cos 2 a + 2b 2c - a
	1,068 32
	3,043
	2,7817

	9
	35,3085
	a + b
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3a - c
	9,6574
	1,4040
	1,126

	10
	78,5457
	a - sin b b b2  + 6c
	2,751
	1,215
	0,1041

	11
	0,9538
	ln a + 4b ab - c
	7,0345
	0,231
	0,6572

	12
	2,0543
	ab b - 2c
	3,124
	5,92
	1,789

	13
	0,108 34
	c + sin b c c- a 2
	0,3107
	13,27
	4,711

	14
	0,001 245
	b - sin a a a+ 3c
	3,672
	3,863
	0,1098

	15
	11,2621
	ln c - 10a bc
	0,1135
	0,101 56
	89,453

	16
	2,734 91
	lg (a - b) b b- c
	8,325 74
	3,156
	1,0493

	17
	37,5461
	b+ cos c b + 2a
	0,134 87
	14,025
	3,001 29
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Окончание

	№
	X
	Z
	a
	b
	c

	18
	23,6394
	a 2  - b

ab + c
	2,7252
	3,034
	0,7065

	19
	14,1674
	b - c
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ln a + b
	19,034 73
	3,751
	0,1071

	20
	1,450 06
	ac + b b - c
	0,093
	2,3471
	1,231 74

	21
	0,5485
	10c +
b a 2  - b
	1,289
	1,0346
	0,34

	22
	3,8469
	a +
c
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lg(a 2  +b) b)
	1,621
	5,5943
	16,65

	23
	15,0897
	(a -  c) 2
a + 3b
	11,7
	0,0937
	5,081

	24
	0,058 64
	10c +
b a 2  - b
	1,247 34
	0,346
	0,051

	25
	2,504 71
	ln b - a a 2 +10c 10c
	0,7219
	135,347
	0,013

	26
	6,200 89
	(b - c)2

[image: image14]
2a + b
	4,05
	6,723
	0,032 54

	27
	12,4782
	b 2  - ln c

c - a
	0,038
	3,9353
	5,75

	28
	5,023 84
	ln a + 4b ab - c
	7,345
	0,31
	0,098 72

	29
	8,5441
	a 2  - b

ab + c
	3,714 52
	3,03
	0,765

	30
	0,246 89
	b + cos c b + 2a
	0,115 87
	4,25
	3,009 71


Контрольные вопросы 
1.  Как формулируются правила подсчета цифр?
2.  В каких случаях рекомендуется применять правила подсчета цифр?
3.  Какие два способа применения правил подсчета цифр возможны в вычислениях на МК и ЭВМ?
4.  Какова последовательность действий на каждом промежуточном этапе расчетной таблицы в вычислениях по правилам подсчета цифр с пооперационным учетом ошибок? на заключительном этапе?
5.  Как оформляются вычисления со строгим учетом предельных погрешностей при пооперационном учете ошибок?
6.  Какова последовательность действий на каждом промежуточном этапе расчетной таблицы в вычислениях по методу строгого учета предельных погрешностей с пооперационным учетом ошибок? на заключительном этапе?
7.  Как вычисляются предельные погрешности результата при использовании методики итоговой оценки ошибки вычислений?
8. Охарактеризуйте целочисленные типы данных: какие они могут принимать значения, в каких операциях могут принимать участие, сколько места занимают в памяти.

9. Какие типы отношений определены над данными целого типа? Какие стандартные функции определены для целых чисел?

10. Чем отличаются вещественные числа от целых?
11.  В чем основное отличие метода границ от вычислений по методу строгого учета границ погрешностей?
12.  Какова последовательность действий на каждом промежуточном этапе расчетной таблицы в вычислениях по методу границ с поопераци​онным учетом ошибок? На заключительном этапе?
Практическая работа № 2,3
 «Нахождение аппроксимирующего полинома третьей степени. Метод наименьших квадратов»

Цель работы: научиться составлять интерполяционные формулы Лагранжа и Ньютона
Образовательные результаты, заявленные в ФГОС:


Студент должен 


Уметь:


- давать математические характеристики точности исходной

            информации и оценивать точность полученного численного решения;
· выбирать оптимальный численный метод для решения поставленной задачи;

Знать:


- методы хранения чисел в памяти электронно-вычислительных машин


 (ЭВМ) и действия над ними, оценку точности вычислений.

Интерполяция таблично заданных функций

Интерполяционный многочлен Лагранжа
Пусть в точках x0, x1,..., xn таких, что a ≤ x0 <...< xn≤ b известны значения функции y = f(x), то есть на отрезке [a; b] задана табличная (сеточная) функция:

	x
	x0
	x1
	…
	xn

	y
	y0
	y1
	…
	yn


Определение. Функция φ(x) называется интерполирующей (интерполяционной) для f(x) на [a; b], если ее значения φ(x0), φ(x1), ..., φ(xn) в заданных точках x0, x1,..., xn, называемых узлами интерполяции, совпадают с заданными значениями функции f(x), то есть с y0, y1,..., yn соответственно.

Будем строить многочлен n-степени Ln(x) в виде линейной комбинации
[image: image15.png]Lx)= ;P. ) f&),




(1)
где базисные многочлены имеют вид

[image: image16.png]p) = —E= R K= M =5, N =x,)






обладающий свойством:


Ln (xi ) 

f (xi ),i  0, n ,
(2)

[image: image152.png]


если известны значения функции f(x) в точках

x 
, i  0, n .
Теорема. Полином n-й степени, обладающий свойством (2), единственный.

Полином Ньютона

Пусть
интерполируемая
функция

y   f (x)


задана
таблично

[image: image153.png]


значениями y0, y1,..., yn  на системе равностоящих узлов x0, x1,..., xn:  xk
можно представить в виде шаг сетки.


xk    x0   kh ,


k  0, n ,  h  > 0,


fk = f (xk ) ,  h –

Определение. Конечной разностью 1-го порядка называется

[image: image154.png]


  fk   

fk 1    fk

(0  f


fk  ) .

[image: image155.png]


Конечная разность n-порядка:

[image: image156.png]


[image: image157.png]


n  f    n 1  f
 n1  f  .

Свойства:

1. [image: image158.png]03005001 (5) 02305005+ + 0, 301500 (5) = 3w ()

030,500 (50) + 301 (5)0a(5) -+ 0 30150 (5) = 30 (5)

030 (50615 + 00 30 (502 (5) 4.+, 30 (50 (5) = 30 (5)



n P ( x)  const
(конечная  разность  n-го  порядка  от  полинома

n-й степени равно константе).

[image: image159.png]Tyers » - $=% x=x, 4, Torma

P =P k) = v+ Ry, EESL

k=D (k=n+D) pr

o Ay,

A2,
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( n 1) P ( x)  0   (конечная  разность  (n+1)-го  порядка  от  полинома

n-го порядка равна нулю).

2. Пусть

f (x)


имеет все производные, тогда


n  f   

f ( n ) (x  )hn .

[image: image160.png]o(x)



[image: image161.png]Teopena 3. Tiycts £ (o HeNemseT 3maK FR
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10651 ypasHeHHe (3.1) mMeno 1 np 5ToM ehHHCTBeHHBI KopeHb Ha oTpeske [a, b].



Непосредственно  через  значения  функции  конечные   разности

[image: image162.png]PacemoTprM f(X) =0 HIIOCTPOHM HTePaUHOHHEIH IPOLECC:
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можно представить рекуррентной формулой


  fk


n
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 (1)i (Ci
i0


) fn k i  .
Пусть


f (x)


задана таблично и


xk    x0   kh ,



[image: image17]
k  0, n ,


f k  = f (xk ) .
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Определение.
Разделенной
разностью f (x ,..., x )

называется:


n-го
порядка
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f (x0 , x1 ,..., xn ) =


f (x1 , x2 ,..., xn ) 

f (x0 , x1 ,..., xn1 )

xn   x0
Разделенная разность первого порядка:


.

f (x


, x ) =



[image: image166.png]HTepaUHE  JOCTHTaeM  HEOOXOFEMOH  TOwHOCTH

ClefomaTeTsHO,  MCKOMBHY  KODeHB  ypaBHemma
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f (x1 ) 


f (x0 )

0
1
Разделенная разность второго порядка:


x1   x0
.
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f (x0 , x1 , x2 ) =


f (x1 , x2 )  f (x0 , x1 )

                                           x2   x0

Свойства разделенной разности.

1. [image: image168.png]Torxa xBaapaTHYHBIH CILIaHH HMEET BHX

1 :
o)t OT6IF ~3724040642. 1 (03513 315]
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Пусть

f (x)


имеет  все  производные,  тогда  при равномерном

разбиении:



f (x


, x ,..., x


) = f


( n) (( ),



f (x



, x ,..., x


) =   f0
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0
1
n

0
1
n


n!hn    .
2. Разделенная разность n-го порядка, примененная к полиному n-й степени равна константе. Разделенная разность (n+1)-го порядка от полинома n-й степени равна нулю.

3. [image: image170.png]


Разделенная
разность
n-го
порядка симметричная функция своих аргументов.


f (x0

, x1 ,..., xn )
–

Для функции


f (x) , заданной таблично на узлах


xi , i  0, n , можно

записать интерполяционный полином Ньютона:

Nn (x)  f (x0 )  f (x0 , x1 )(x  x0 )  f (x0 , x1 , x2 )(x  x0 )(x  x1 )  ... 


(3)

 f (x0 , x1 ,..., xn )(x  x0 )(x  x1 )...(x  xn1 )
.
Замечание: Полином Ньютона есть одна из форм представления полинома Лагранжа.

Резюме: Обычно интерполяция проводится не на всех точках разбиения, а только на 5–7 соседних. В этой ситуации при изменении точек интерполирования полином Лагранжа приходится строить заново каждый раз. А полином Ньютона изменяется лишь на несколько слагаемых. При увеличении числа точек интерполяции на одну точку все слагаемые полинома Ньютона сохраняются, добавляются только последующие слагаемые. Для полинома Лагранжа все n слагаемых должны быть построены заново.
[image: image171.png]
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Формулы (5.4) и (5.5) применяются для интерполирования в начале отрезка для значения k  из интервала (0,1).
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Путем переобозначений за начальное значение  x   можно принять

любое табличное значение аргумента x , отбросив лишние узлы сетки.

I интерполяционная формула Ньютона

Когда значения аргумента находятся ближе к концу отрезка интерполяции, применять первую интерполяционную формулу становится невыгодно. В этом случае строят полином в виде:

Pn    (x)  Pn (xn
· 
kh)  yn
· 
ky


n1


 ...  k (k 1)...(k  n 1) n y
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Пример выполнения лабораторной работы

Задание к лабораторной работе

Функция


y =  f (x)

задана таблично в узлах

x0    x1
y0    y1

x2   x3
y2    y3

x4 y4 .

1. Построить
интерполяционный
многочлен
Лагранжа.

Вычислить L4(x1+x2). Построить график многочлена Лагранжа.

2. Построить таблицы конечных и разделенных разностей.

3. Построить полином Ньютона и вычислить значение N4(x1+x2). Построить график многочлена Ньютона.
4. Построить
интерполяционные
сплайны
линейный
и квадратичный. Построить графики сплайнов.

5. На одном чертеже с графиком полиномов построить графики сплайнов.

Решение типового примера

Функция

y =  f (x)

задана таблично в узлах

	x
	0,351
	0,867
	3,315
	5,013
	6,432

	y
	–0,572
	–2,015
	–3,342
	–5,752
	–6,911


1. Построим  интерполяционный  многочлен  Лагранжа  4-й   степени

L4(x) в виде линейной комбинации



4

L4 (x)   pi (x) f (xi ).
i 0

Вычислим базисные многочлены.

p0 (x) 

(x  x1 )(x  x2 )(x  x3 )(x  x4 )

[image: image174.png](s S




(x0  x1 )(x0   x2 )(x0  x3 )(x0  x4 )
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
(x  0,867)(x  3,315)(x  5,013)(x  6,432)

(0,351 0,867)(0.351 3,315)(0,351 5,013)(0,351 6,432)

 0,0231(x  0,867)(x  3,315)(x  5,013)(x  6,432),

p1 (x)  0,0343(x  0,351)(x  3,315)(x  5,013)(x  6,432),

p2 (x)  0,0260  (x  0,351)(x  0,867)(x  5,013)(x  6,432),

p3 (x)  0,0215  (x  0,351)(x  0,867)(x  3,315)(x  6,432),

p4 (x)  0,0067  (x  0,351)(x  0,867)(x  3,315)(x  5,013) .

Тогда интерполяционный многочлен Лагранжа 4-й степени будет иметь вид

L4 (x)  0,0132  (x  0,867)(x  3,315)(x  5,013)(x  6,432) 
 0,0691 (x  0,351)(x  3,315)(x  5,013)(x  6,432) 
 0,0870  (x  0,351)(x  0,867)(x  5,013)(x  6,432) 
 0,1235  (x  0,351)(x  0,867)(x  3,315)(x  6,432) 
 0,0462  (x  0,351)(x  0,867)(x  3,315)(x  5,013).

Вычислим значение полинома в точке

L4 (x1   x2 )  L4 (x1   x2 )  L4 (0,867  3,315)  4,3453.

[image: image176.png]


Построим график многочлена Лагранжа (рис. 1).

Рис. 1. График полинома Лагранжа

2. Построим таблицы конечных и разделенных разностей.

Таблица 5.1
	xk
	yk
	∆yk
	∆2yk
	∆3yk
	∆4yk

	0,351
	–0,572
	–1,4430
	0,1160
	–1,1990
	3,5330

	0,867
	–2,015
	–1,3270
	–1,0830
	2,3340
	

	3,315
	–3,342
	–2,4100
	1,2510
	
	

	5,013
	–5,752
	–1,1590
	
	
	

	6,432
	–6,911
	
	
	
	


Таблица конечных разностей
Таблица 5.2

Таблица разделенных разностей

	xk
	yk
	1-го порядка
	2-го порядка
	3-го порядка
	4-го порядка

	0,351
	–0,572
	–2,7965
	0,7606
	–0,2085
	0,0463

	0,867
	–2,015
	–0,5421
	–0,2116
	0,0728
	

	3,315
	–3,342
	–1,4193
	0,1933
	
	

	5,013
	–5,752
	–0,8168
	
	
	

	6,432
	–6,911
	
	
	
	


[image: image177.png]



Вычислим значение полинома Ньютона в точке

N 4 (x1   x2 )  N 4 (x1   x2 )  L4 (0,867  3,315)  4,3453.
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Построим график многочлена Ньютона (рис. 5.2).

Рис. 5.2. График полинома Ньютона

3. Построим
интерполяционные
сплайны
линейный
и квадратичный.

Кусочно-линейная аппроксимация.

 a1 x  b1 ,
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
  2
2


a3 x  b3 ,

a4 x  b4 ,


0,351  x  0,867,

0,867  x  3,315,

3,315  x  5,013,

5,013  x  6,432.

b4 ,

Для нахождения неизвестных коэффициентов строим систему:
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Решая каждую подсистему отдельно, получим:

a1   2,797 ,
b1     0,490


a2   0,542 ,
b2    1,545


a3    1,419 ,
b3    1,362


a4    0,817 .
b4    1,656

Тогда линейный сплайн имеет вид

 2,797 x  0,490,
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


  1,419x  1,362,
  0,817x  1,656,


0,351  x  0,867,

0,867  x  3,315,

3,315  x  5,013,

5,013  x  6,432.
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Построим график линейного сплайна (рис. 5.3).

Рис. 5.3. График линейного сплайна

Кусочно-квадратичная аппроксимация.


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2


 b1 x  c1 ,


x [0,351;3,315]  .
a2 x

 b2 x  c2 ,


x [3,315;3,6.432]
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Решая каждую подсистему отдельно, получим:

a1    0,761 b1  3,724 , c1   0,642


a2    0,193 b2  3,029 . c2    4,576
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Построим график квадратичного сплайна (рис. 5.4).

График квадратичного сплайна
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Рис. 4. График квадратичного сплайна
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На одном чертеже с графиком полиномов построим графики сплайнов.
Рис. 5. Графики полиномов и сплайнов
Метод наименьших квадратов

Предположим,
что
между
независимой
переменной
x
и зависимой переменной  y   имеется некая неизвестная функциональная

зависимость  y =  f (x) . Эта связь отображается таблицей:

	x
	x0
	x1
	…
	xn

	y
	y0
	y1
	…
	yn



[image: image19]
yi  

f (xi ) ,


i  0, n.

Задача:  требуется  дать  приближенное  аналитическое описание

этой
связи,
т.
е.
подобрать
функцию

Ф(x)


такую,
которая

аппроксимировала
бы
на
отрезке

x0 , xn ,
заданную
отдельными

приближенными значениями


yi   

f (xi ).

Решение:
Функция

Ф(x)


берется
из
определенного

m -параметрического семейства функций и ее параметры подбираются

так, чтобы сумма квадратов отклонений вычисленных значений Ф(xi  )
от заданных приближенных значений yi   была минимальной.

Задаем семейство m -параметрических функций y  Ф(x, a1 , a2 ,..., am )

и ищем значения параметров a1 , a2 ,..., am , решая экстремальную задачу:
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Для
этого   находим   частные производные  функционала
S
и приравниваем  их  к  нулю,  решаем  полученную  систему, оцениваем

параметры a1 , a2 ,...,am .
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Выберем  m  линейно  независимых  на   отрезке


x , x 

функций

(1 (x), ( 2 (x),..., (m (x)
комбинацией


и
аппроксимируем
функцию

f (x)


линейной
Ф(x)  a1 (1 (x)  a2 ( 2 (x)  ...  am (m (x) .



(6.1) Приравнивая
частные
производные
функционала
S
к
нулю,
получим систему нормальных уравнений
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решая которую, находим параметры a1 , a2 ,...,am .

Пример выполнения лабораторной работы

Задание к лабораторной работе

Функция точках

y   f (x)
задана  в  виде  таблицы  своих  значений  в   9
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1. Нанести точки на график функции. Путем моделирования на компьютере из предложенных 10 аппроксимирующих законов выбрать два закона, которые на Ваш взгляд дадут наилучшую аппроксимацию по методу наименьших квадратов.

[image: image23.png]Dy=ac +bx+c

2y=2.0.
. X

3y=br+c

Yy=be" +c

-2 wc

6)y=ax+be +c

Ny=S+bé+c
x
§y=axinx+be +c

9 y=bexp(-a(x+c))+c

10) y=a-x +bsinx +c




2. [image: image192.png]o rren=1234 =




[image: image193.png]f@=e+ T + ;‘L_.



[image: image194.png]um Yce~



Для каждого из двух выбранных законов составить нормальную систему уравнений, решив которую, найти параметры выбранных законов.

3. Построить графики выбранных законов вместе с графиком исходной функции. Для каждого из аппроксимирующих законов найти невязку.

Решение типового примера

Функция

y   f (x)
задана таблицей своих значений в 9 точках

	x
	0,034
	0,394
	0,754
	1,114
	1,474
	1,833
	2,193
	2,553
	2,913

	y
	2,156
	2,988
	3,377
	3,708
	3,802
	3,900
	4,067
	4,129
	4,171


1. [image: image195.png]14, = (.



Нанесем точки на график функции (рис. 1).

Рис. 1. Точки графика функции  y =  f (x)
Из предложенных 10 аппроксимирующих законов путем подбора коэффициентов a, b, c выберем два закона, которые дадут наилучшую аппроксимацию по методу наименьших квадратов.

Моделирование на компьютере позволяет выделить два таких закона:
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2. Для каждого из двух выбранных законов составим нормальную систему уравнений, решив которую, найдем параметры выбранных законов.

1) В первый закон параметр a входит нелинейно, поэтому мы не можем сразу составить нормальную систему. Выберем c = c0 = – 0,4. Преобразуем закон так:

                                                   [image: image26.png]V=6 =bx',
In(y-c¢)=alnx+Inb.




Делаем замену ln x  t , ln( y  c0 )  z, приведем исходный закон

к виду: z  at  ln b.

Теперь нормальная система параметров a и ln b будет состоять из двух уравнений и иметь вид:
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Решая  данную  систему,  получаем  a  =  0,1345,  ln  b  =     1,3796,

b = 3,9733.

y  3,9733x0,1345  0,4 .
Найдем невязку δ = 0,1641.

Варьируя  далее  параметром  с,  получим  с  =  0,5,  a  =     0,1838,

b = 3,0535,

y  3,0535x0,1838   0,5 .

Невязка при этом равна δ = 0,1449.

Построим график найденного закона вместе с графиком исходной функции (рис. 6.4).
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2) Для второго закона имеем m = 3, φ1(х) = x, φ2(х) = e-x, φ3(х) = 1. Тогда система нормальных уравнений имеет вид


n
n
n
n

i
 i
i

[image: image196.png]= max( S )
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a x 2   b x e  xi     c x  
x y


i1


n


i1

n

i1

n

i1

n
a x e xi
· 
be 2 xi
· 
c e xi

 e  xi   y


i1


n


i1

n

i1 n


i1
.
a xi
· 
b e xi     cn   y
i

i1

n


i1

n

i1

n
n
 xi

i1

n

 13,2620 ,

 yi
i1

n


 32,2980 ,

 xi

i1
n


 27,31  1 ,


i1

n

xie


 xi

 2,2513 ,
 e xi
i1

 3,0723 ,  e2 xi
i1


 1,8176 ,  xi yi
i1


 52,2908


, 
i1

y e xi

 9,4010 .
27,3111a  2,2513b  13,2620c  52,2908

2,2513a  1,8176b  3,0723c  9,4010
.
13,262a  3,0723b  9c  32,2980
Решая систему, получим a = – 0,1075, b = – 2,4313, с = 4,5771,

y  0,1075x  2,4313e x  4,5771 . Найдем невязку δ = 0,1727.

Построим график найденного закона вместе с графиком исходной функции (рис. 5).


[image: image29]
Рис. 5. . График функции y  0,1075x  2,4313e x   4,5771 с нанесенными

точками функции  y  f ( x)

Из
двух
законов
наиболее
оптимальным
является

y  3,0535x0,1838  0,5

с невязкой δ = 0,1449.

Варианты  заданий

	№
	Таблица значений функции

	1
	

	2
	

	3
	

	4
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Окончание

№
Таблица значений функции

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
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29

30

5.2.1. Варианты заданий

	№
	Таблица значений функции

	1
	x:  0,847 1,546
1,834
2,647  2,910

y:–1,104  1,042
0,029  –0,344 –0,449

	2
	x: 0,284
0,883  1,384  1,856
2,644

y:–3,856 –3,953 –5,112 –7,632 –8,011

	3
	x: 0,259
0,841   1,562   2,304  2,856

y: 0,018  –1,259  –1,748 –0,532  0,911

	4
	x: 0,172
0,567   1,113   2,119  2,769

y:–7,057 –5,703 –0,132   1,423   2,832

	5
	x: 0,092
0,772   1,385   2,108  2,938

y: 3,161
1,357 –0,158 –0,129 –4,438

	6
	x: 0.357
0.871   1,567 2,032
2,628

y: 0,548
1,012   1,159  0,694 –0,503

	7
	x: 0,235
0,672   1,385 2,051
2,908

y: 1,082
1,805   4,280 5,011
7,082

	8
	x: 0,015
0,681 1,342 2,118
2,671

y:–2,417 –3,819 –0,642 0,848
2,815

	9
	x:  0,231   0,848   1,322   2,224  2,892

y:–2,748 –3,225 –3,898 –5,908 –6,506

	10
	x:  0,083   0,472  1,347
2,117 2,947

y:–2,132 –2,013 –1,613 –0,842   2,973

	11
	x:  0,119   0,718   1,342 2,859
3,948

y:–0,572 –2,015 –3,342 –6,752 –6,742


Окончание

	12
	x:  0,184
0,865  1,213
2,019  2,862

y:–1,687  –2,542 –5,082 –7,042  –8,538

	13
	x:  0,351
0,867 1,315
2,013
2,859

y:  0,605
0,218 0,205
1,157
5,092

	14
	x:  0,135  0,876
1,336  2,301
2,642

y:–2,132 –2,113 –1,613   –0,842   1,204

	15
	x: 0,135   0,876
1,336
2,301
2,851

y: 2,382 –0,212  –1,305  –3,184 –4,365

	16
	x: 0,079   0,637
1,345
2,095
2,782

y:–4,308 –0,739   1,697
4,208
6,203

	17
	x: 2,119   3,618
5,342
7,859
8,934

y: 0,605   0,718
0,105
2,157
3,431

	18
	x:  0,345 0,761
1,257  2,109
2,943

y:–1,221 –0,525
2,314  5,106
9,818

	19
	x: 0,234   0,649
1,382
2,672
2,849

y: 0,511   0,982
2,411
3,115
4,184

	20
	x: 0,238   0,647
1,316  2,108
4,892

y: 0,092   0,672
2,385 3,108
2,938

	21
	x:  0,248 0,663
1,238  2,092
2,939

y:–3,642  0,802
0,841 0,513
0,328

	22
	x:  0,282   0,872   1,513  2,022
2,672

y:  6,324 –0,405 –1,114 –1,315 –1,469

	23
	x:  0,324   0,718   1,315  2,035
2,893

y:–2,052 –1,597 –0,231  2,808
8,011

	24
	x: 0,218   0,562  1,492
2,119
2,948

y: 0,511   0,982  2,411
3,115
4,561

	25
	x:
0,132  0,567  1,153
2,414  3,939

y: 69,531 1,112 –1,672  –1,922 –1,925

	26
	x: 0,234   0,649  1,382
3,672
5,911

y: 3,902   2,675   0,611  –3,256 –3,615

	27
	x:  0,134  0,561  1,341
2,291
6,913

y:  2,156  3,348  3,611
4,112
4,171

	28
	x: 0,452   0,967   2,255  4,013
5,432

y: 1,252   2,015   4,342   5,752
6,911

	29
	x: 0,151
0,862  1,282  2,139
2,739

y:–4,528 –0,345  0,638  1,342
3,645

	30
	x: 0,219
0,811  1,341  2,111
2,874

y:–2,151 –0,452  1,214  2,891
4,617


Контрольные вопросы 
1. Как ставится задача аппроксимации?

2. Какая функция называется сеточной?

3. Что такое интерполяция?

4. Какой многочлен называется интерполяционным?

5. Выпишите формулу интерполяционного многочлена Лагранжа? 

6. В чем его преимущества и недостатки?

7. В чем заключается метод наименьших квадратов?

8. Какова максимальная и минимальная степени интерполяционного полинома?

9. Как вычислить суммарную квадратичную погрешность?

10. На чем основан выбор аппроксимирующей функции? 

11. Раскройте понятия интерполяции и аппроксимации функций.

12. Основное условие интерполяции.

13. Что общего и какие отличия между интерполяционными формулами Лагранжа и Ньютона?

14. Что такое конечные разности (какие бывают, где применяются)?

15. Что такое разделенные конечные разности?

16. Оценочная формула погрешности интерполяции. Назовите ключевые этапы ее вывода.

17. Что такое интерполяционный сплайн?

18. Что можно сказать о точности интерполяции, если интерполируемая функция – многочлен степени n?

Лабораторная работа № 4.
«Использование встроенных  модулей.»
Цель работы: научиться использовать встроенные модули

Образовательные результаты, заявленные в ФГОС:


Студент должен 


Уметь:


- давать математические характеристики точности исходной

            информации и оценивать точность полученного численного решения;
· выбирать оптимальный численный метод для решения поставленной задачи;

Знать:


- методы хранения чисел в памяти электронно-вычислительных машин


 (ЭВМ) и действия над ними, оценку точности вычислений.

Уточнение корней уравнений с использованием встроенных модулей Excel

Циклические ссылки и итерации в Excel.
Если в ячейку Excel введена формула, содержащая ссылку на эту же самую ячейку (может быть и не напрямую, а опосредованно - через цепочку других ссылок), то говорят, что имеет место циклическая ссылка (цикл). На практике к циклическим ссылкам прибегают, когда речь идет о реализации итерационного процесса, вычислениях по рекуррентным соотношениям. В обычном режиме Excel обнаруживает цикл и выдает сообщение о возникшей ситуации, требуя ее устранения. Excel не может провести вычисления, так как циклические ссылки порождают бесконечное количество вычислений. Есть два выхода из этой ситуации: устранить циклические ссылки или допустить вычисления по формулам с циклическими ссылками (в последнем случае число повторений цикла должно быть конечным).

Возьмем для примера уравнение x3 + x -1000 = 0.

Очевидно, что корень данного уравнения несколько меньше 10. Если переписать это уравнение в виде x = g(x) =1000 - x3 и начать итерационный процесс при x0=10, то из первых же приближений очевидна его расходимость. Если же учесть, что f'(x)=3x2+1>0 и принять за приближенное значение максимума f '(x) число Max =300, то можно построить сходящийся итерационный процесс на основе представления x = g(x) = x – c(x3 + x -1000), где c – произвольная постоянная, например c = 1/Max:
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Можно и искусственно подобрать подходящую форму эквивалентного уравнения x = g(x) , например:

или

Рассмотрим задачу нахождения корней уравнения: x3 + x -1000 = 0, графическое представление которого приведено на рисунке. Найти корень этого (и любого другого) уравнения можно, используя всего одну ячейку Excel. Для этого последовательно введем:

1) в ячейку J1 начальное приближение к корню x0= 4, а в ячейку K1 — формулу для вычисления функции g(x) = x

– c (x3 + x -1000);

2) изменим содержимое ячейки J1, согласно итерационной формулы x = g(x), т.е. введем формулу ”= K2”.

Для включения режима циклических вычислений в меню Сервис/Параметры/вкладка Вычисления включаем флажок Итерации, при необходимости изменяем число повторений цикла в поле Предельное число итераций и точность вычислений в поле Относительная погрешность  (по  умолчанию  их значения равны 100 и  0,0001 соответственно). Кроме  этих установок выбираем вариант ведения вычислений: автоматически или     вручную. При автоматическом вычислении Excel выдает сразу конечный результат, при вычислениях, производимых вручную, можно наблюдать результат каждой итерации.

Подбор параметра
Когда желаемый результат вычислений по формуле известен, но  неизвестны значения, необходимые для получения этого результата, можно воспользоваться средством Подбор параметра, выбрав команду Подбор параметра в меню Сервис. При подборе параметра Excel изменяет значение в одной конкретной ячейке до тех пор, пока вычисления по формуле, ссылающейся на эту ячейку, не дадут нужного результата.

Возьмем в качестве примера все то же уранение x3 + x -1000 = 0.. Для нахождения корня уравнения выполним следующие действия:


[image: image37]
Рис. 1. Окно диалога Подбор  параметра

· В ячейку С3 введем формулу для вычисления значения функции,

стоящей в уравнении слева от знака равенства. В качестве аргумента используем ссылку на ячейку С2, т.е. =C2^3+C2-1000.

· В окне диалога Подбор параметра в поле Установить в ячейке введем ссылку на ячейку с формулой, в поле Значение - ожидаемый результат, в поле Изменяя значения ячейки - ссылку на ячейку, в которой будет храниться значение подбираемого параметра (содержимое этой ячейки не может быть формулой).

· После нажатия на кнопку Ok Excel выведет окно диалога Результат подбора параметра. Если подобранное значение необходимо сохранить, то нажмите на Оk, и результат будет сохранен в ячейке, заданной ранее в поле Изменяя значения ячейки. Для восстановления значения, которое было в ячейке С2 до использования команды Подбор  параметра,  нажмите  кнопку Отмена.

· При подборе параметра Excel использует итерационный (циклический) процесс. Количество итераций и точность устанавливаются  в  меню Сервис/Параметры/вкладка Вычисления. В случае, когда уравнение имеет более одного корня, необходимо задавать разные начальные приближения,  соответствующие отрезкам изоляции этих корней и после этого снова запустить процесс  Подбор параметра.

Задание. Самостоятельно в Excel сделайте графические иллюстрации, отделите корни, приведите уравнения в каждом отдельном интервале изоляции к виду, пригодному для итераций и уточните корни с точностью 0,5·10-5.

1) (4 + x2)(ex  – e-x) =18 x  [1,2; 1,3]. 2) x2  – 1,3 ln (x + 0,5) – 2,8x + 1,15 = 0.  3)
 0 .

Практическая работа № 5,6,7
 «Решение линейных и трансцендентных уравнений различными методами»
Цель работы: научиться производить арифметические действия с линейными и трансцендетными уравнениями
Образовательные результаты, заявленные в ФГОС:


Студент должен 


Уметь:


- давать математические характеристики точности исходной

            информации и оценивать тоочность полученного численого решения;


Знать:


- методы хранения чисел в памяти электронно-вычислительных машин


 (ЭВМ) и действия над ними, оценку точности вычислений.

Краткие теоретические и учебно-методические материалы по теме практической работы:

Численные методы решения нелинейных уравнений

Локализация корней

Будем рассматривать задачу приближенного нахождения нулей функции одной переменной

f (x)  0 ,
(1)

где


f : R1

 R1

– алгебраическая или трансцендентная функция.

Слабость теоремы:

1. Не дает ответа на вопрос о количестве корней на [a, b] в случае выполнения условия (2).

2. Если условие (2) не выполнено, то не позволяет утверждать, что корней на [a, b] нет.

Усиление теоремы.

Теорема 2. Непрерывная, строго монотонная функция f(x) имеет  и при том единственный ноль на отрезке [a, b] тогда и только тогда, когда на его концах она принимает значения разных знаков.

Установить монотонность на данном отрезке можно для дифференцируемой функции, потребовав знакопостоянства ее производной на всем отрезке.

Метод Ньютона


Затем проводим касательную в x  и находим x   и так далее.

Поэтому метод Ньютона так же называют методом касательных.


Рис. 1. Метод Ньютона (касательных)

Необходимые условия сходимости метода Ньютона:

Теорема.
При
выполнении
необходимых
условий
1–4,

итерационный
процесс
Ньютона
(3)
сходится
к
решению
x*
уравнения (1) с квадратичной скоростью в окрестности корня x* .

Метод секущих
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Рис. 3.2. Метод секущих

Из геометрических  соображений  легко  понять,   что xn1  
есть абсцисса точки пересечения с осью Ох прямой, проведенной через точки ( xn1 ; f (xn1 ) ) и ( xn  ; f (xn ) ), т. е. секущей.

Рассмотрим пересечение хорды с осью Ох, получим точку x2

[image: image39.png]



Рис. 3.3. Метод хорд

Выбираем две новые точки таким образом, чтобы на данном отрезке выполнялось условие (3.2).
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Метод простой итерации
Пусть решается уравнение  f (x) = 0 . Заменим его равносильным

x = ( (x) .
(12)

Выберем начальное приближение  x0

и подставим в правую часть

уравнения (3.12) и получим


x = ( (x

) .
(3.13)

Подставляя
в
правую
часть
уравнения
(3.13)

x1
вместо
x0
получим
x = ( (x ) .
Повторяя
этот
процесс,
будем
иметь

последовательность чисел
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Теорема  (о   простых   итерациях).  Пусть


( (x)

определена  и

дифференцируема на [a;b], причем все ее значения принадлежат [a;b].

Тогда, если q

– правильная дробь:


( ' (x)

≤ q <1, то при


a < x < b :

1) процесс итерации


xn = ( (xn1 ),


n= 1,2,...

сходится независимо от

начального значения


x0  =[a; b] ;
2) предельное
значение



является
единственным

корнем уравнения


x = ( (x)

на [a;b].

Погрешность метода: Метод итераций обеспечивает на n-м  шаге абсолютную погрешность приближения к корню уравнения  (3.1), не превосходящую  длины n-го отрезка,  умноженной на    дробь

q
:
1  q

x*   x


1  q

xn    x


n1


, где


q  max ( '(x) .

xa ,b 
Чтобы
функция

( (x)

обеспечивала
сходимость

последовательности (14), она должна иметь вид

( (x) = x -

f (x) ,
(16)

k
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Пример выполнения лабораторной работы

Задание к лабораторной работе

1. Локализуйте
корень
уравнения

f (x) = 0


на
начальном

промежутке длиной не менее 1 графическим методом.
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Решение типового примера

1. Локализуем
корень
уравнения
f (x)  2x 2   x3  ex  0
на

начальном промежутке длиной не менее 1 графическим методом.

Преобразуем уравнение к виду полученных функций (рис. 3.4).


2x 2    x3   ex, и построим графики


[image: image44]
Рис. 3.4. Графическая локализация корня уравнения
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Рис. 3.5. График производной функции  f (x)



[image: image47]
Рис. 3.6. График производной функции ( (x)
Выполним первую итерацию

x  ( (x

)  4

x0    2 0

3
x0
0



 0,3420 .

1
0
4
Вычисления занесем в таблицу.

	n
	xn
	f(x )
n
	
	xn   - xn1
	

	
	
	
	

	0
	–1,0000
	–0,3420
	

	1
	–0,3420
	–0,4511
	0,6580

	2
	–0,4511
	–0,4856
	0,1091

	3
	–0,4856
	–0,4929
	0,0345

	4
	–0,4929
	–0,4942
	0,0073

	5
	–0,4942
	–0,4944
	0,0013

	6
	–0,4944
	–0,4945
	0,0002


Поскольку


x6    x5

 0,0002,
считаем,
что
корень
уравнения

x*   0,494 с точность (  0,001.
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На
пятой
итерации
достигаем
необходимой
точности

6

x5   - x4   < 10
,
следовательно,
искомый
корень
уравнения

x*  =-0,494 468.

2. Найдите
методом
по
варианту
корень
уравнения
с точностью 106 .

1) Разностный метод Ньютона с постоянным шагом

Построим итерационный процесс разностного метода Ньютона с постоянным шагом h= 0,001

x
 x  


f (xn )  h
.
n1
n
f (x
· 
h)  f (xn )
Будем
выполнять
вычисления
до
выполнения
условия

xn   xn1


 (  106 .

	n
	xn
	f (xn )
	
	xn   - xn1
	

	
	
	
	

	0
	–1,000 000
	2,632 121
	

	1
	–0,642 524
	0,564 968
	0,357 476

	2
	–0,512 074
	0,059 462
	0,130 450

	3
	–0,494 742
	0,000 910
	0,017 331

	4
	–0,494 468
	–0,000 001
	0,000 274

	5
	–0,494 468
	0
	0


Сведем все вычисления в таблицу.

2) Метод Стеффенсена

Построим итерационный процесс метода Стеффенсена

 f (x  )2
x
 x


 
n
.
n1


n
f (x    f (x ))   f (x )

n
n

Будем
выполнять
вычисления
до
выполнения
условия

xn   xn1


 (  106. Сведем все вычисления в таблицу.

	n
	xn
	f (xn )
	
	xn   - xn1
	

	
	
	
	

	0
	–1,000 000
	2,632 121
	

	1
	0,023 821
	–1,022 985
	1,023 821

	2
	–0,262 973
	–0,612 266
	0,286 794

	3
	–0,419 295
	–0,232 177
	0,156 322

	4
	–0,483 759
	–0,035 206
	0,064 464

	5
	–0,494 219
	–0,000 827
	0,010 461

	6
	–0,494 468
	–0,000 000 5
	0,000 249

	7
	–0,494 468
	0
	0


На
седьмой
итерации
достигаем
необходимой
точности

6

x7   - x6   =10
,
следовательно,
искомый
корень
уравнения

x*  = -0,494 468.

3) Метод секущих

Построим итерационный процесс метода секущих

xn1   x  


f (xn )  (xn1   xn ) .
f (xn1 )  f (xn )

Зададим


x0  = -1
и


x  = 0 .
Будем
выполнять
вычисления
до

выполнения
условия таблицу.


xn  - xn1

≤ ( = 106 .
Сведем
все
вычисления
в

На
восьмой
итерации
достигаем
необходимой
точности

6

x8   - x7   ≤ 10
,
следовательно,
искомый
корень
уравнения

x*  = -0,494 468.

4) Метод «лоцмана»

Построим итерационный процесс метода «лоцмана»

x
= x  

2 f (xn ) f '(xn )
.
n-1


n
2 f '2  (x ) -

f (xn

) f ''(xn )

Будем
выполнять
вычисления
до
выполнения
условия

xn  - xn1


≤ ( = 106 . Сведем все вычисления в таблицу.

	n
	xn
	f (xn )
	
	xn   - xn1
	

	
	
	
	

	0
	–1,000 000
	2,632 121
	

	1
	–0,533 922
	0,136 050
	0,466 078

	2
	–0,494 503
	0,000 114
	0,039 419

	3
	–0,494 468
	0
	0,000 034

	4
	–0,494 468
	0
	0


На
четвертой
итерации
достигаем
необходимой
точности

6

x4   - x3   ≤ 10
,
следовательно,
искомый
корень
уравнения

x*  = -0,494 468.

5) Метод хорд

Построим итерационный процесс метода хорд

x
 x



f (xn1 )


(x   x
) .

n1


n1

f (xn ) 


f (x


n1 )

n1

Зададим


x0  = -1
и


x  =0 .
Будем
выполнять
вычисления
до

выполнения
условия таблицу.


xn  - xn1

≤ ( = 106 .
Сведем
все
вычисления
в

На
восьмой
итерации
достигаем
необходимой
точности

6

x8   - x7   ≤ 10
,
следовательно,
искомый
корень
уравнения

x*  = -0,494 468.

Заание к лабораторной работе

1.Локализуйте корень уравнения f(x)=0

2.Выбрав в качестве начального приблежения один из концов начального отрезка, уточните корень методом простых итераций с точностью ε= 0,001
3.Найдите с тчностью 10^-6 корень уравнения методом Ньютона

4.Найдите методом по варианту корень уравнения с точностью 10^-6

                            Варианты заданий

	№
	Уравнение
	№
	Уравнение

	1
	f (x) 
x  x 1 ln x  4  1,5
	16
	f (x)  exp(0,5x)  0,2x 2   1

	2
	f (x)  cos x  exp(x)  0,5
	17
	f (x)  exp(0,4x 2 )  0,5x 2  1

	3
	f (x)  1,5  0,4   x3    0,5ln x
	18
	2
f (x)  1,5  0,4   x3   e x sin x

	4
	f (x)  2 
x3   2 ln x
	19
	f (x)  2  0,5x2   0,5x 1 sin x  x

	5
	f (x)  1  0,5x 2  ln x  0,3 x
	20
	f (x)  0,3exp(x)  cos2  x  2

	6
	f ( x)  1  x ln x  0,3   x
	21
	f (x)  0,5exp(x 2 )  x cos x

	7
	f (x)  3  0,5
x  exp(0,5x 2 )
	22
	f (x)  cos 2  x  0,8x 2

	8
	f (x)  3 
x3    0,5ln x
	23
	f (x)  1  exp(
x )  ln(x)

	9
	f ( x)  0,3exp(0,7
x )  2x 2    4
	24
	f (x)  x ln x  exp(0,5x2 )

	10
	f (x)  0,5exp(  x )  0,2  x3   2
	25
	f (x)  sin0,5x 1 x2

	11
	f (x)  exp(0,7x)  0,3
x  1
	26
	f (x)  cos(0,5x)  0,4 ln x

	12
	f (x)  3 
x  0,5ln x
	27
	f (x)  exp(0,3x 2 ) 
x  1

	13
	f (x)  0,2 exp(x 2 ) 
x  3
	28
	f (x)  cos2   x  0,1exp(x)

	14
	f (x)  0,3cos 2  x  ln x  2
	29
	f (x)  x 2   exp( x 2 )

	15
	f (x)  exp(0,5x 2 )  x3  0,2
	30
	f (x)  x  sin x  0,25


Контрольные вопросы 

1. Каковы достаточные условия сходимости итерационной последовательности к корню уравнения?

2. Какова последовательность действий при решении уравнения F(x)=0 методом простой итерации?

3. Какое условие является критерием для достижения заданной точности при решении уравнения x=f(x) методом простой итерации?

4. По каким причинам методы хорд и касательных предпочтительнее метода простой итерации?

5. Какова последовательность действий при решении уравнения F(x)=0 методом касательных? Методом хорд?

6. Каков порядок определения начальных приближений при использовании комбинированного метода хорд и касательных?

7. Какое условие следует применять в качестве критерия для достижения заданной точности при решении уравнения F(x)=0 методом касательных? Методом хорд? Комбинированным методом хорд и касательных?

8. В чем заключается этап отделения корней при использовании численных методов решения уравнения?

9. Каким образом графической отделение корней уточняется с помощью вычислений? Какие свойства функций одной переменной при этом используются?

10. В чем состоит основная идея метода половинного деления?

11. Может ли метод половинного деления дать точное значение корня уравнения?
Практическая работа № 8
 «Вычисление интегралов при помощи формул Ньютона-Котеса»
Образовательные результаты, заявленные в ФГОС:


Студент должен 


Уметь:


- давать математические характеристики точности исходной

            информации и оценивать тоочность полученного численого решения;


Знать:


- методы хранения чисел в памяти электронно-вычислительных машин


 (ЭВМ) и действия над ними, оценку точности вычислений.

Задача численного интегрирования

Пусть  на  отрезке  a, b

 задана  функция


f (x) .  Найти значение

b
интеграла   f (x)dx . Для некоторых функций трудно найти интеграл.

a
Определение. Выражение  gi  fi  , где

i

gi  R ,


fi  

f (xi )


называется

квадратурной формулой.

Таким  образом,  задача  сводится  к  представлению  интеграла  с

помощью квадратурной формулы:



b
 f (x)dx gi  fi

на отрезке a, b.
a
i
Квадратурная формула прямоугольников

Рис. 1. График функции

Как видно, из рис. 1 интеграл можно вычислить как

h / 2


f (x)dx  hf0  .
h / 2



b
[image: image50.png]7.1.2. Keadpamyprote dopauy: Heromona ~Komeca
Hoew v wmerpan [f(ia  BMECTO ()  TOACTaBmOT

HHTEpIOTAIHORHE momEON JTarparsa.




 

Функция


f (x)  Cn1

может
быть
единственным
образом

представлена в виде

f (x)  Ln (x)  Rn (x) ,

где



n
Ln (x)   pi (x) fi ,

i0


pi (x)

· 
базисные многочлены,

(n1) 
R n (x) =

f
(  ) W

(x)

· 
отклонение,


(n 1)!
n
Wn (x)  (x x0 )(x x1 )...(x xn ) . Пусть  последовательность  x n n


совпадает  с  точками разбиения

i    i 0

отрезка a, b с шагом h

xk   x0  + kh , тогда
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Квадратурные формулы трапеций и Симпсона

Формула трапеций и Симпсона являются частными случаями формулы Ньютона – Котеса.

Применим
полином
Ньютона
(эквивалентный
многочлену Лагранжа в силу единственности):

Pn  (x0

+kh) = y0

+ky0

+k (k - 1) 2 y
2!


+ ... + k (k - 1)...(k - n + 1) n y0 .

n!

I. Формула трапеций

Пусть


n = 1,  т.  е.  имеем  две точки


x0
и  x1   = x0  + h ,  и известны

значения функции


y0  

f (x0

), y1  

f (x ) .  Этим  точкам соответствуют

k = 0, k = 1 ,
тогда
получим
простейшую
квадратурную формулу трапеций
x1
1


2





 f (x)dx 
x0
0
  y0   y1 h
2

( y0
· 
ky0

)hdk  h


y k  k
0
2


y0 
0

 h y0

· 
y1

y0   
2



,
(7.4)

где


h  b  a .
n
Остаточный член формулы трапеций

II. Формула Симпсона



r    f  (1 ) h3 ,
1
12
1



x



, x .

Пусть


n  2 , т. е. интерполируем  функцию


f (x)


по трем точкам

x0 ,


x1    x0   h ,


x2    x0   2h ,
тогда
получим
простейшую
формулу

Симпсона

x
f (x)dx 
 y


· ky


 k (k 1) 2 y


hdk 


            0
0

0 
x0
0

Для
применения
простейшей
формулы
Симпсона
интервал

должен быть симметричен относительно точки


x1 :


(x1  - h; x1  + h) .

Распространим формулы трапеций и Симпсона на все отрезки разбиения a, b.
Глобальная формула трапеций

b
y
 f (x)dx h(


y
 y1    y2   ... 

) .
(6)

0
n
a
2
2

Оценка погрешности

| Rn

| M | b  a | h , M 12


 max |


f  (x) |; x a, b.
(7)

Глобальная формула Симпсона

f (x)dx  2h ( y0   y2m    2 y  y

 ...  2 y

) .
(8)

Оценка погрешности

| Rn

| M | b a | h  , M
180



= max |


f IV (x) |; x a, b.
(9)

Формула Симпсона обладает повышенной точностью по сравнению с формулой трапеции, в ней можно брать меньше отрезков разбиения.

Правило Рунге

Как следует из оценочных формул погрешностей интегрирования (7) и (9), вычисление Rn возможно лишь тогда, когда подынтегральная функция задана аналитически, что не всегда известно. На практике широко применяется  следующий эмпирический прием.

Искомый  интеграл  вычисляется  дважды  при   делении   отрезка

a, b
на  n  и  на  2n  частей.  Затем  полученные  значения   интеграла

~

(обозначим I(n) и I(2n)) сравниваются и совпадающие первые десятичные знаки считаются верными. Можно получить выражения, позволяющие хотя бы грубо контролировать точность численного интегрирования на основе двойного счета с шагом h и 2h:

I  I (hp




2 p -1


,
(7.10)

где p – порядок метода.

Например, p = 2 соответствует формуле трапеций, тогда

I - I ТР

h
,
3
p = 4 соответствует формуле Симпсона.

Пример выполнения лабораторной работы

Задание к лабораторной работе

1. Найдите   шаг   интегрирования  h   для   вычисления интеграла

b
  f(x)dx
a

по формуле трапеций с точностью (

= 0,001.

2. Вычислите интеграл по формуле трапеций с шагами 2h и h. Дайте уточненную оценку погрешности.

3. Вычислите интеграл по формуле Симпсона с шагами 2h и h. Дайте уточненную оценку погрешности.

4. Вычислите определенный интеграл по формуле Ньютона–Лейбница. Сравните приближенные значения интеграла с точными. Какая формула численного интегрирования дала более точный результат?

Указание. Шаг h следует выбирать с учетом дополнительного условия: отрезок интегрирования должен разбиваться на  число частей, кратное 4.

Решение типового примера

Найти  значение интеграла функции
f (x)  (x2  1)1 , заданной на отрезке 2,4.

1. Сначала
найдем
шаг
интегрирования
h
для
вычисления

b
интеграла f (x)dx
a

по формуле трапеций с точностью (

= 0,001.

Чтобы
найти
шаг
h
с
помощью
формулы

M | b - a | h
12



  (  ,

M   max |


f  (x) |; x a, b, найдем вторую производную.

f '(x)  
2x
,
(x2 1)2



f "(x) 


6x2   2 (x2  1)3  .
M  = max |


f   (x) |= max

6x2  + 2


=  f 
=
Тогда


xa,b
x2,4 (x2 -1)3

(2)


0,9630 .
M | b - a | h
12


< (  ,


0,9630| 4 - 2 | h
12


< 0,001,


h2  < 0,0062,


h < 0,0787.

Найдем количество шагов, на которое нужно разделить отрезок  с

шагом


h < 0,0787


для достижения точности (= 0,001.

n > b - a ,
h


n > 25,4130.

т. е.


Следуя указанию, возьмем количество частей отрезка кратное   4,

n = 28 . Следовательно, шаг интегрирования h = 0,0714.

2. Вычислим интеграл по формуле трапеций с шагом h = 0,0714. Получим

4

I (h) =  (x2  -1)-1 dx 0,0714(0,1667  0,3039 0,2787 ...  0,0333)  0,2940.
2

Увеличим шаг в два раза и посчитаем интеграл I (2h) .

2h = 0,1428,

n = 14,

I (2h)   0,2945.
Для определения погрешности воспользуемся правилом Рунге.

I   I ТР h 0,2940 - 0,2945  0,0002 .
3
Итак, по формуле трапеций

4
 (x2  -1)-1 dx = 0,2940,0002 .
2
3. Вычислим интеграл по формуле Симпсона с шагами 2h и h.

Интеграл с шагом


h = 0,0714,

n = 2m = 28,

m =14

4
I (h) =  (x2  -1)-1 dx  

2
Увеличим шаг в два раза и посчитаем интеграл I (2h) .

2h = 0,1428,

n = 2m = 14,

m = 7 ,


I (2h)  0,29385.

Для определения погрешности воспользуемся правилом Рунге.

I  I С h 0,29384  0,29385  4,03107.

Итак, по формуле Симпсона

4
(x2  1)1 dx  0,2938  4,03107 .
2
4. Вычислим
определенный
интеграл
по
формуле Ньютона–Лейбница.
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Получаем, что I = 0,293 89.

Сравнивая приближенные значения интеграла с точными, видим, что формула Симпсона дает более точный результат интегрирования  в отличие от формулы трапеций.

Варианты заданий

	№
	Интеграл

	1
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	2
	[image: image54.png]f)=x%>,

a=0,

LB,





	3
	[image: image55.png]f(x)= x5 Inx,





	4
	[image: image56.png]f(x) = xsin3x,





	5
	[image: image57.png]f(x)=+x+1lg(x+1) a=0,1 b=L1





	6
	[image: image58.png]f(x):x2 Inx,





	7
	[image: image59.png]fx)=x2(x+1)2, a=1, b=4.





	8
	[image: image60.png]Flx)=sensix, a=0, b=1.





	9
	[image: image61.png]f(x)=x2 Inx,





	10
	[image: image62.png]f(x)=+xInx,

a=1,





	11
	[image: image63.png]




	12
	[image: image64.png]f(x)=e* cosx, a=0, b=2.





	13
	[image: image65.png]) =vxx+1), a=1, b=4.





	14
	[image: image66.png]




	15
	[image: image67.png]Jix)=xarcigx, a=0, b=1.





	16
	[image: image68.png]f(x)=xarccosx, a=-0,5, b=05.





	17
	[image: image69.png]f(x)=xarcsinx, a=0, 5=09.





	18
	[image: image70.png]f)=(+x)7", a=1, b=272.





	19
	[image: image71.png]flx)=x37", a=0, b=15.





	20
	[image: image72.png]f(x)=x%7", a=0, b=1.





	21
	[image: image73.png]f(x)=x>/1+x%), a=0, b=2.





	22
	[image: image74.png]f)=x2+x)7",

a=1,

b

Il





	23
	[image: image75.png]




	24
	[image: image76.png]f(x)=x2sinx, a=0, b=1.





	25
	[image: image77.png]f(x)=xsinx, a=0, b=16.





	26
	[image: image78.png]fx)=x2 IVx2 +1. a=-04. b=08.





	27
	[image: image79.png]f(x):xzcosx, a=0, b=1.





	28
	[image: image80.png]f(x)=x27%, a=0, b=2.





	29
	[image: image81.png]f(x)=e*sinx, a=1, k=12,





	30
	[image: image82.png]x) = x2arctgx, a=0, b=1.
fgx






Контрольные вопросы 
1.Чем заменяется интеграл при использовании любой численной формулы?

2. Какая формула используется в  методе прямоугольников?

3. Как будет выглядеть графически метод прямоугольников?

4. Какая формула используется в  методе трапеций?

5. Как будет выглядеть графически метод трапеций? 

6. Какая формула используется в  методе Симпсона?

7. Как будет выглядеть графически метод Симпсона?

8. Каков порядок метода трапеций?

9. Какой порядок метода Симпсона?

10. Укажите, в чем различие между этими тремя формулами?

Практическая работа № 9,10

 «Нахождение решений обыкновенных дифференциальных уравнений при помощи формул Эйлера, Рунге-Кутта»
Образовательные результаты, заявленные в ФГОС:


Студент должен 


Уметь:


- давать математические характеристики точности исходной

            информации и оценивать тоочность полученного численого решения;


Знать:


- методы хранения чисел в памяти электронно-вычислительных машин


 (ЭВМ) и действия над ними, оценку точности вычислений.

Постановка задачи

Рассмотрим
обыкновенные
дифференциальные
уравнения первого порядка.

Задача Коши:

 y'(x) 


f (x, y),


x x0 , b


.
(8)

 y(x0 )  y0
Пусть требуется найти решение y(x) на отрезке  a, b, где



x0    a .
Применим  к  отрезку  a, b

равномерное  разбиение,  т.  е.   получим

h  b  a
n

и xk

 x0
· 
kh , где

xn    b ,

xk    – узлы сетки, h – шаг сетки.

Обозначим через


y(xk )


точное  значение функции


y(x)


в точке

xk  ,  через  yk

приближенное  вычисленное  значение функции


y(x)  в
точке


xk .
Метод Эйлера

Разложим
в
ряд
Тейлора
в
точке
xk


значение
функции

y(xk

 h)  y(xk 1 ) .
h2

y(xk 1 ) 

y(xk )  hy'(xk )   2

y"( ( ) , где

xk  (

 xk 1 .
Согласно
задаче
Коши
(8.1)

y'(xk ) 

f (xk , y(xk ))
тогда
h2

разложение Тейлора


y( xk 1 ) 

y(xk )  hf (xk , y(xk )) 
2


y"( ( )  .
yk 1    yk

 hf (xk , yk ).
(8)
Эта формула и определяет метод Эйлера.

Замечание. Метод Эйлера имеет первый порядок точности О(h).

Методы Рунге – Кутта

I. Метод Рунге – Кутта II порядка

Проинтегрируем  дифференциальное  уравнение  (8)  на отрезке

x ; x
, получим

xk 1


xk 1


xk 1

 y'(x)dx  

f (x, y)dx ,

y(xk 1 )  y(xk ) 


 f (x, y)dx.
xk
xk
xk
Воспользуемся формулой трапеций, тогда получим

h
y(xk 1 ) 


y(xk ) 


 f (xk , y(xk )) 

2

f (xk 1 , y(xk 1 )).
Эта формула дает приближенное значение

yk 1   yk

· 
h  f (x
2
k


, yk ) 



f (x



k 1

, yk 1 )


.
(8)

Формула (8) – это неявная формула метода Рунге–Кутта II порядка.

Воспользуемся методом предиктор – корректор для     избавления

от «неявности». Заменим формуле Эйлера на


yk 1
в  правой  части  равенства  (8)   по

* k 1
k

+hf (xk

, yk )


.                                                      
(8)

Затем подставим  y*

в формулу (8.3) вместо


yk 1

в правой части

yk 1   yk

· 
h f (x
2
k


, yk ) 



f (x



k 1


*

k 1

).
(8)

Формула (8) – явная формула Рунге–Кутта II порядка. Формула (8) – предиктор, формула (8) – корректор. Точность метода О(h2).

II. Метод Рунге–Кутта IV порядка

h
yk 1    yk



F1   2F2   2F3   F4 .
(8)
6
F1      f (xk , yk ) ,

h
h

F2   


f  xk


+    , yk
2


F1   ,
2



h
h

F3   


f  xk

+
,+     yk
2


F2   ,
2

F4   


f xk 1 , yk

 hF3 .
Замечание. Точность метода О(h4).

Выбор шага интегрирования

Точность расчетов существенным образом зависит от величины шага интегрирования h, поэтому важно правильно выбрать его начальное значение h0.

Выбор    начального   шага   h0      проведем    на    примере  метода

Рунге–Кутта IV порядка. Итак, пусть ε – заданная точность счета. Поскольку метод Рунге–Кутта имеет точность четвертого порядка относительно шага h, должно выполняться условие h4  = ε. Кроме того,

отрезок a, b

должен быть разбит  на четное число частей.    Поэтому

начальный шаг h0  должен быть определен из двух условий:

b - a
h0  =
,
– четно.
(8)

0
Наибольшее h0, удовлетворяющее условиям (8), является грубым приближением начального шага. Для его  уточнения поступаем следующим образом. Находим решение задачи Коши в точке х0  + 2h0  по формулам Рунге–Кутта с шагами h0  и 2 h0, получаем

~

два значения  y2   и  y2 . Путем увеличения или уменьшения шага в   два

раза  (не  обязательно  однократного)  подберем  наибольшее значение

h0,  при  котором  будет  выполнено   неравенство


y2   ~y2

  ( .  Это и

будет величина шага h, с которым решается задача Коши методом Рунге–Кутта.

Многошаговые методы Адамса

Рассмотренные  методы  Рунге–Кутта   описываются   формулой yk 1  Ф(xk , yk ), т. е. только в одной точке используется только один шаг.

Идея:
получить
значение,
на
следующем
шаге
используя

значение не только в одной точке, но и в точках, стоящих перед ней  (N + 1 шаг)

yk 1   Ф(xk ,..., xk  N ; yk ,..., yk  N ) .
Рассмотрим
интегральное
представление
дифференциального уравнения (8)

y(xk 1 ) 

y(xk ) 

xk 1


xk

f (x, y)dx .
(8)
Идея:
построить
интерполяционный
полином
Лагранжа

L(xk N , xk  N 1 ,..., xk 1, xk )


для функции


f (x, y) .

Пример выполнения лабораторной работы

Задание к лабораторной работе

Решается задача Коши:


y' 

f ( x, y),

y(a)  y0

на отрезке [a, b].
1. Найти шаг интегрирования для решения задачи Коши методом Рунге–Кутта (IV) с точностью 10-4.
2. Найти решение задачи Коши на  отрезке


[a, b]


методом Рунге–

Кутта
(IV)
с
точностью интегральную кривую.


104.


Построить
приближенную

3. Найти решение задачи Коши на отрезке


[a, b]

методом Эйлера.

Построить на одном графике (с п. 2) приближенную интегральную кривую.

4. Найти точное решение задачи Коши. Сравнить точное решение с приближенным. Найти максимум модуля отклонений в узловых точках приближенного решения от точного.

5. Записать результаты расчетов в сводную таблицу.

Решение типового примера

Решим задачу Коши: xy' y  2 y2 ln x ,

y(1)  1,5;

a  1,

b  3 .

1. Найдем
шаг
интегрирования
для
решения
задачи
Коши методом Рунге–Кутта (IV) с точностью 10-4.
y 

y (2 y ln x  1).
x
Найдем начальный шаг интегрирования h0. Согласно первому условию (8.7)

h0   = 4   0,0001   0,1 .

Выберем x0 = a = 1, y0 = 1,5. Найдем решение  данной задачи  Коши методом Рунге–Кутта (IV) сначала в точке x0 + h0, затем в точке x0  + 2h0, получим соответственно

y1  ≈ 1,3813 и y2  ≈ 1,3078.

Далее снова найдем решение задачи Коши в точке x0  + 2h0, но с

шагом 2h0, получим


~y  ≈ 1,3078.

Погрешность


y2   ~y2

 1,7 106  0,0001,
следовательно,

увеличиваем шаг в два раза h0  = 0,2.

Затем проделываем те же вычисления с новым шагом. Получаем

y1  ≈ 1,3078, y2  ≈ 1,2402,


~2   ≈ 1,2401.

Погрешность


y2   ~y2

 8,9 106  0,0001,
следовательно,

увеличиваем шаг в два раза h0  = 0,4, получим

y1  ≈ 1,2401, y2  ≈ 1,2891,


~2   ≈ 1,2929.

Погрешность


y2   ~y2

 0,0003  0,0001,
следовательно,
для

решения выбираем шаг h0  = 0,4.

Определим


n -b - a
h0

=
2
= 5 .  Так  как  n  должно  быть четным

0,4

числом, то выбираем n = 6. При таком значении n шаг h0  = 0,33. Снова

~

вычислим погрешность  y2  - y2    с шагами 0,33 и 0,66.

y1  ≈ 1,2545, y2  ≈ 1,2493,


~2   ≈ 1,2507.

Погрешность точность.


y2  - ~y2

= 8*10-5 ,
что
укладывается
в
заданную

2. Найдем   решение   задачи Коши  на
отрезке

[a, b]

методом

Рунге–Кутта (IV) с точностью 104

шагом h = 0,33, 2h = 0,66.

	xi
	Метод Рунге–Кутта (IV)

	
	yi
	~y
i
	    y   ~y

i
i
i

	1
	1,5
	1,5
	0

	1,33
	1,2545
	
	

	1,66
	1,2493
	1,2507
	8,7·10-5

	1,99
	1,3830
	
	

	2,32
	1,6948
	1,6955
	4,3·10-5

	2,65
	2,4025
	
	

	3
	4,7040
	4,5124
	0,013


  max | yi
i
· 
~y

| 0,013 .
Построим  приближенную
интегральную
кривую,
полученную методом Рунге–Кутта (IV).


[image: image83]
Рис. 8.1. Интегральная кривая, полученная методом Рунге–Кутта (IV)

3. Найдем   решение   задачи Коши  на
отрезке Эйлера с шагом h = 0,33, 2h = 0,66.


[a, b]


методом

	xi
	Метод Эйлера

	
	yi
	~y
i
	    y   ~y

i
i
i

	1
	1,5
	1,5
	0

	1,33
	1,0050
	
	

	1,66
	0,8986
	0,5100
	0,3886

	1,99
	0,8826
	
	

	2,32
	0,9141
	0,4121
	0,5020

	2,65
	0,9841
	
	

	3
	1,0966
	0,3761
	0,7205


  max | yi
i
· 
~y

| 0,7205 .
Построим
на
одном
графике
(с
п.
2)
приближенную интегральную кривую.


[image: image84]
Рис. 8.2. Интегральные кривые, полученные методами Рунге–Кутта (IV) и Эйлера

4. Найдем точное решение задачи Коши.

5. xy' y  2 y 2 ln x ,
y(1)  1,5 .

Это
уравнение
Бернулли,
значит,
нужно
привести
его
к линейному виду. Разделим все уравнение на y2, получим

x  y  1
y 2
y

 2 ln x .
Далее делаем замену z = y1-α, z = 1/y, y = 1/z,
z’ = – z/z2.

· xz 2


z
· z  2 ln x ,

z 2

разделим все уравнение на – x,

z  z
x

  2 ln x ,
x
и мы получили линейное дифференциальное уравнение.

Решение будем искать в виде

z = U(x)V(x),

z’ = U’V + UV’,

U’V + UV’– UV/x = –2(lnx)/x, U’V + U(V’–V/x) = –2(lnx)/x.


V ' V



 0,

U 'V


  2 ln x.

x
dV   V ; dV

 dx ; ln V

 ln x  c , положим с = 0, тогда V = x,

dx
x
V
x
dU x   2 ln x  dU dx
x

   2

x2


ln xdx ,

U  2


ln xdx 


U  ln x;


V  1

x

 2 ln x




dx 


2 ln x



1 

  c 


[image: image85]
x2

 2 (ln x 1)  c,

x


dU  1 ;

x


dV   1
  x x2


[image: image86]

[image: image87]
x 2

  x
x 

z = U(x)V(x), z = 2(lnx + 1) + cx,

y  1
z

 
1
, далее определим константу c.

2(ln x  1)  cx
1
 1,5; 2  c  2 ; c   4

Так как y(1)=1,5, то

1 
 c


3
3 ,

тогда точное решение задачи Коши

y 
1

2 ln x  2  4 x .
3
Сравним точное решение с приближенным. Найдем максимум модуля отклонений в узловых точках приближенного решения от точного.

	xi
	Точное решение
	Метод Рунге–Кутта
	∆i

	
	yi
	yi
	

	1
	1,5
	1,5
	0

	1,33
	1,2547
	1,2545
	10-4

	1,66
	1,2495
	1,2493
	2 · 10-4

	1,99
	1,3832
	1,3830
	3 · 10-4

	2,32
	1,6954
	1,6948
	6 · 10-4

	2,65
	2,4050
	2,4025
	0,003

	3
	5,0704
	4,7040
	0,366


Максимум
модуля
отклонения
точного
значения
от

приближенного:  

 max | y(xi )  yi  | 0,366 .
i

[image: image88]
Рис. 8. Интегральные кривые

Варианты заданий

	№
	Задача Коши

	1
	y' xy  0,5( x  1)e x y 2 ,  y(0)  2;
a  0,  b  2.

	2
	y' ytgx  2 / 3y 4 sin x ,  y(0)  1;
a  0, b  1,2.

	3
	y' y 2   x,   y(0)  1;
a  0 ,  b  2 .

	4
	xy' y  y3e x ,  y(1)  1;
a  1,  b  2.

	5
	y' xy  0,5( x  1)e x y 2 ,  y(0)  1;   a  0;  b  2.

	6
	xy' y   y2 (2ln x  ln2 x),   y(1)  2;  a  1,  b  2.

	7
	y'4x3 y  4 y2e4 x (1  x3 ) ,  y(1)  1;
a  1,
b  2,8.

	8
	2 y'3 y cos x  e2 x (2  3 cos x) / y ,  y(1)  2 ;
a  1,  b  1,6 .

	9
	y'2xy  2x3 y3 ,  y(0)  1;
a  0, b  1.

	10
	xy' y  y 2 ln x , y(1)  0,5;
a  1, b  5.

	11
	2 y'3y cos x  (8  12cos x)e2 x / y,  y(0)  2;
a  0, b  2.

	12
	4 y' x3 y  ( x3  8)e2 x y 2 ,  y(0)  0,5;
a  0, b  2,4.

	13
	8xy' 12 y  (5x2  3) y3 , y(1)  1;
a  1, b  3.

	14
	y' y  0,5xy2 ,  y(0)  2;
a  0, b  2.

	15
	y' xy  (x  1)e x y 2 ,  y(0)  1;
a  0,  b  2.

	16
	3y'3y cos x  e 2 x (2  3 cos x) / y,  y(0)  1,1;
a  0 ,  b  0,8.

	17
	y' y  xy 2 ,  y(0)  0,5;
a  0,  b  0,8.

	18
	xy' y  y 2 ln x , y(1)  1;
a  1, b  2,6.

	19
	y' y  xy 2 , y(0)  1;
a  0,  b  2.

	20
	xy' y  xy2 , y(1)  1;
a  1, b  2.

	21
	2 y'3y cos x  e2 x (2  3cos x) / y ,  y(0)  1;
a  0,  b  1,6.

	22
	3( xy' y)  xy 2 ,  y(1)  1;
a  1,  b  5.

	23
	y' y  2xy 2 , y(1)  0,2;
a  1,  b  0,6.

	24
	2xy'3 y  (20x2  12) y3 , y(1)  0,25;
a  1, b  5.

	25
	2 y'3 y cos x  (8 12 cos x)e 2 x  / y,
y(0)  3;
a  0 ,  b  3.

	26
	y' xy  (1  x)e x y 2,
y(0)  1,
a  0,  b  1,6 .

	27
	xy' y  2 y 2 ln x ,
y(1)  0,5 ;
a  1,
b  5

	28
	2xy'2 y  xy 2 ,  y(1)  2 ;
a  1, b  1,8.

	29
	y'4x 3 y  4( x 3   1)e 4 x y 2 ,  y(0)  0,5 ;
a  0 ,  b  1.

	30
	xy' y   y 2 (2ln x  ln 2 x),  y(1)  1;   a  1, b  3.


Контрольные вопросы 
1. Какая задача называется задачей Коши?

2. Соблюдение каких условий требуется для решения задачи Коши?

3. Опишите суть метода ломаных Эйлера.

4. Что такое точность метода?

5. Дайте определение разностной схемы метода.

6. Что такое порядок метода?

7. Что такое точность метода?

8. Дайте определение погрешности аппроксимации и погрешности решения.

9.. В чем недостаток и преимущество метода Эйлера?

10. Каков порядок метода Рунге-Кутты?

11.Что понимается под задачей А?

12.Что понимается под задачей Б?

13.Какое число следует брать в методе деления отрезка пополам?

14.Какой из методов дает лучшую гарантированную точность?

15.Всегда ли методы последовательного поиска дают лучшую гарантированную точность по сравнению с методами пассивного поиска?

16.Для каких классов функций следует использовать методы пассивного поиска? Метод деления отрезка пополам? Метод золотого сечения? Метод Фибоначчи? Метод ломанных? Метод касательных?
Практическая работа №11
 Разложение функций в ряд Фурье. Разложение функции в ряд Маклорена.
Образовательные результаты, заявленные в ФГОС:


Студент должен 


Уметь:


- давать математические характеристики точности исходной

            информации и оценивать тоочность полученного численого решения;


Знать:


- методы хранения чисел в памяти электронно-вычислительных машин


 (ЭВМ) и действия над ними, оценку точности вычислений.

Вводная теоретическая часть. Различные формы записи ряда Фурье.

Разложение в ряд Фурье функции, удовлетворяющей условиям Дирихле (согласно теореме Дирихле периодическая функция должна иметь конечное число разрывов и непрерывность производных между ними), с периодом T = 2π, т.е., f(x) = f(x+2π), имеет вид: 
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F (t) a0  
2


∑

n1


(an

cosnt bn

sinnt).
(1’)

Коэффициенты Фурье a0, an, bn вычисляются по формулам:

1

a0  


∫F (t)dt ,


1

an  


∫F(t)cosntdt,
(2’)


1

bn  


∫ F (t) sin ntdt , где n =1, 2, 3, 4, ….. .


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an  

2T
2
∫ f (t) cos n

0


tdt 
1 
T

∫f(t)cosntdt,
(4*)

0

bn  


2T
2
∫ f (t) sin n

0



tdt 


2 T

∫ f (t) sin ntdt , где n =1, 2, 3, 4, …...

0

Комплексная запись ряда Фурье.
Пусть f(x) удовлетворяет условиям разложимости в ряд Фурье на отрезке [-,]:



где:


f (x)  a0
2

· 
∑(an n1

1


cos nx  bn


sin nx) .
 (1*)

a0  


∫ f (x)dx ,



1

an  




∫ f (x) cos nxdx ,
(2*)

 

1

bn  




∫ f (x) sin nxdx , где n =1, 2, 3, 4, ….. .

 
Используя формулы Эйлера einx = cos nx + i sin nx, e-inx = cos nx - i sin nx, найдем, что
cos nx 

einx   einx

,

2



sin nx 

einx   einx

2i



 i

einx   e inx
.

2



(5)

Подставляя эти выражения в ряд (1*) получим






inx


inx



inx


inx

f (x)  a0
2


 ∑
n1


(an

cos nx  bn


sin nx)  a0  
2


∑

n1


(an

e
 e
 ib
2
n

e
 e
) 2


(6)

2

2
2

Введем следующие обозначения:

Тогда ряд (6) примет вид:


c    a0  ;

0
2

c    an   ibn  ;
n
2


cn


 an   ibn  .
2


inx
· 
cn

einx )
Введем вместо n новый индекс суммирования k, который может принимать и положительные и отрицательные целочисленные значения (k = 0, 1,3,2,4, …..∞) и перепишем последнее, уравнение: 

Последнее равенство можно записать так: 
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Сходимость ряда (7) понимается в смысле существования предела:

Таким образом, ряд Фурье (1*) представлен в комплексной форме (7).

Найдем выражения для коэффициентов cn и c-n через интегралы




Пример. Разложить в неполный ряд Фурье функцию f(x) = x при 0 < x < l: a) по синусам; б) по косинусам.

Решение. а) Используем формулу разложения в ряд Фурье по синусам (косинусам):


f (x)  ∑bk  sin k



a
x ,  f (x) 
0



· ∑ ak cos k
x 
k 1
l

2
k 1
l

 SHAPE  \* MERGEFORMAT 




Столбцы D, E и F используем для построения графика функции. В ячейку G6 введем формулу для вычисления общего члена разложения в ряд Фурье заданной функции. В ячейку H6 введем формулу для вычисления частичной суммы ряда Фурье и скопируем ее в следующие ячейки по строке 6. Построим диаграммы, иллюстрирующие последовательное приближение частичных сумм ряда Фурье к заданной функции по мере добавления новых гармоник, как показано на рисунке.
Задание. 1). Самостоятельно решить и проиллюстрировать часть (б) первого примера. 2). Разложить в ряд Фурье функцию f(x) = 5-x, заданную в интервале 0 < x < 5. Проиллюстрировать процесс последовательного приближения частичных сумм ряда Фурье к заданной функции по мере увеличения числа членов ряда.

2. Разложение функций в ряд Маклорена
Если функция f(x) может быть разложена в промежутке (-R, R) в степенной ряд: f(x) = a0 + a1x + a2x2 + a3x3 + a4x4 +…+ anxn  +…,

то этот ряд есть обязательно есть ряд Маклорена данной функции:

IV



( n )

f (0)


f (0)


f (0)


f
(0)

f
(0)
2
3
4
n

f ( x ) 


f (0) 
x 
x   
x   


x    ... 


x    ...


(1)

1!
2 !
3!
4 !
n !

Разложение в степенной ряд функции sinx.
Пусть f(x)= sinx. Имеем:

f(x) = cosx, f(x) = -sinx, f(x) = -cosx, fIV(x) = sinx, …;

отсюда


f(0) = 0, f(0) = 1, f(0) = 0, f(0) = -1, fIV(0) = 0, …. a0 = 0, a1 = 1, a2 = 0, a3 = -1/3!, a4 = 0, a5 = -1/5!,  …

Подставляя найденные значения коэффициентов в формулу (1), получаем ряд Маклорена функции sinx:

3
5
7
x
x
x



n1

2n1

x

sin x  

x 


 ...  (1)

 ...

3 !
5 !
7 !
(2n  1) !

С помощью программы MS Excel можно проиллюстрировать процесс приближения степенного ряда к данной функции. Для этого на рабочем листе создадим и заполним таблицу
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Ячейки в столбцах A-E заполняем, как обычно, для построения графика функции. В

ячейку F3 введем формулу для вычисления первого члена ряда  Маклорена.

G3 вставим выражение для суммирования членов ряда на основе общей формулы

,


. В ячейку

которую скопируем в ячейки H3-M3. Затем, выделим ячейки F3-M3 и скопируем их содержимое в нижележащие ячейки. Построим серию графиков, на каждом из которых вместе с функцией sinx (пунктирная кривая) изображена одна из частичных сумм ряда Маклорена (сплошная кривая).
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Задание. Привести формулы для разложения в ряд Маклорена следующих функций:

1) cosx; 2) ex; 3) shx; 4) chx; 5) 1/(1+x); 6) ln[1/(1+x)]; 7) cos2x . Построить графики, иллюстрирующие последовательное приближение частичных сумм ряда Маклорена к данным функциям.

Задание. 1). Самостоятельно решить и проиллюстрировать часть (б) первого примера. 2). Разложить в ряд Фурье функцию f(x) = 5-x, заданную в интервале 0 < x < 5. Проиллюстрировать процесс последовательного приближения частичных сумм ряда Фурье к заданной функции по мере увеличения числа членов ряда.
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Практическая работа № 12,13
 «Решение системы линейных уравнений различными методами»

Прямые методы решения

Постановка задачи

Будем рассматривать системы уравнений вида:

a11 x1   a12 x2


 ...  a1n xn

 b1
a21 x1   a22 x2   ...  a2n xn

...


 b2


,
(1)

an1 x1   an 2 x2
· 
...  an1n xn

 bn
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b  (b1, b2 ,...,bn )


–
вектор
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x  ( x1, x2 ,..., xn )
–
вектор
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с
вещественными
координатами,
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A  (aij ),


i  1, n,

j  1, n

–
вещественная
матрица
размера

n  n ,

матрица коэффициентов системы (1).

Эффективность способов решения системы (1) во многом зависит от структуры и свойств матрицы А: размера, обусловленности, симметричности, заполненности (т. е. соотношения между числом нулевых и ненулевых элементов), специфики расположения ненулевых элементов матрицы.

Теорема
Кронекера–Капелли:
Необходимым
условием существования единственного решения системы (1) является:

det A  0.

Определение. Нормой называется такая величина, обладающая свойствами:

1)
||x|| > 0, ||x|| = 0 x = 0,

2)
||x|| = ||·||x||,

3)
||x + y||  ||x|| + ||y||.
Определение.  Если  в  пространстве   векторов    x  ( x1, x2,..., xn )
введена  норма  ||x||,  то  согласованной  с  ней  нормой  в пространстве

матриц А называется норма


A   sup

, x  0.

x


Таблица 1

Виды норм векторов и матриц

	В пространстве векторов
	В пространстве матриц

	1. Кубическая норма

	x
	1
	 max x j
1 jn
	
[image: image99]

	x
	
	

	2. Октаэдрическая норма

	x
	2
	n

  xj
j 1
	
	
	
	A
	
	

	3. Сферическая норма

	x
	3
	n


 xj j 1
	2
	
	(x, x)
	


Метод Гаусса

Один из методов решения системы (1) – метод Гаусса. Суть метода Гаусса заключается в приведении исходной матрицы А к треугольному виду. Будем постоянно приводить систему (1) к треугольному виду, исключая последовательно сначала х1 из второго, третьего, …, n-го уравнений, затем x2 из третьего, четвертого, …, n-го уравнений преобразованной системы и т. д.

На первом этапе заменим второе, третье, …, n-е уравнения на уравнения,   получающиеся   сложением   этих   уравнений   с первым,

умноженным соответственно на


a21  ,
a11


 a31   , …,

a11

· 
an1  .
a11

Результатом этого этапа преобразований будет эквивалентная (1) система



коэффициенты которой (с верхним индексом 1) подсчитываются по формулам

(1)

ij


aij
· 
ai1  
a11


a1 j ,



(1)
i


 bi  


ai1 a11

 b1 ,


i, j  2,3,...,n.

При этом можно считать,  что


a11

  0 , так как по предположению

система однозначно разрешима, значит, все коэффициенты при  х1 не могут одновременно равняться нулю и на первое место всегда можно поставить уравнение с отличным от нуля первым коэффициентом.

На втором этапе проделываем такие же операции, как и на первом, с подсистемой . Эквивалентный результат будет иметь вид

a11 x1    a12 x2   a13 x3   ...  a1n xn   b1

(1)

(1)


(1)


(1)


a22  x2   a23  x3   ...  a2n xn    b2





a(1)


( 2)

33
3

...

( 2)

n3
3


 ...  a( 2) x
 ...  a( 2) x

 b(2)

 b(2)

a(1)


,
(4)

Продолжая этот процесс, на (n–1)-м шаге так называемого прямого хода метода Гаусса систему (1) приведем к треугольному виду
a11 x1    a12 x2   a13 x3   ...  a1n xn   b1

(1)

(1)


(1)


(1)


a22  x2   a23  x3   ...  a2n xn    b2


( 2)

33
3






 ...  a( 2) x

...


 b( 2)

.
(5)

(n1)

nn
n

 b( n1)

Общая формула для расчета коэффициентов:

( k )

( k )

ij


( k 1)

ij

( k 1) ik      ( k 1) kk


( k 1)

kj



( k )

i



( k 1)

i


( k 1) ik      ( k 1) kk



( k 1)
k


,
(6)

где верхний индекс k – номер этапа,  k  1, n  1, нижние индексы i  и j
изменяются от


k + 1 до n . Полагаем, что



(0)

ij

 aij ,


b( 0)   b.

i
i
Структура полученной матрицы позволяет последовательно вычислять значения неизвестных, начиная с последнего  (обратный ход метода Гаусса).

b( n1)

    n

n
(n1)

nn

…,

b(1)    a(1) x


 ...  a(1) x

    2
23     3
2n    n
2
(1)

22

x   b1

 a12 x2   ...  a1n xn .
a112

Этот процесс можно определить одной формулой


1
  ( k 1)  
n


(k 1)

 ,
(7)

xk
( k 1)   bk

akj
x j  
где k полагают равным n, n – 1, …, 2,1 и сумма по определению считается равной нулю, если нижний предел суммирования имеет значение больше верхнего.

 Итерационные методы решения

Метод простой итерации (МПИ)


(8)


Теорема (о простых итерациях). Необходимым и   достаточным

условием сходимости МПИ (2.8) при любом начальном векторе  x 0        к

решению  x *    системы (2.2) является выполнение условия: или ||B|| < 1

(хотя бы в одной норме), или все собственные числа [image: image100.png]Ag



       .

Для
определения
количества
итераций,
необходимых
для достижения заданной точности ε, можно воспользоваться   априорной
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Метод Зейделя

Метод Зейделя применяется в основном к системам, в которых преобладающими элементами являются диагональные. В противном случае скорость его сходимости практически не отличается от скорости сходимости МПИ.

Рассмотрим систему (1), где a    0

ii

i  1, n .




a
~
b
В (1) разделим i-е уравнение на


a
и обозначим a~  
ij   , b  
i   .

ii
ij
i
ii
ii
Получим  эквивалентную  (1)  систему,  выразив  в  каждом   i-м

уравнении компонент решения x
~

 1
b1

~

12    2


 ...  a~  x

~
x2
b2


21 x1  

... 

~

2 n    n


.
(10)



n1

Идея метода Зейделя: При проведении итераций по формуле (10) используется результат предыдущих уравнений в процессе одной итерации.


Общая формула:
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Пример выполнения лабораторной работы

Задание к лабораторной работе

Дана система четырех уравнений с четырьмя неизвестными:

a11 x1    a12 x2   a13 x3    a14 x4   b1
a21 x1    a22 x2    a23 x3   a24 x4   b2


a31 x1    a32 x2   a33 x3    a34 x4   b3
a41 x1   a42 x2    a43 x3    a44 x4    b4.
1. Решите систему уравнений методом Гаусса.

2. Для матрицы системы найдите обратную.
3. Зная, что свободные члены исходной системы имеют абсолютную погрешность 0,001, найдите оценку абсолютной и относительной погрешности решения.

4. Преобразуйте систему к виду, необходимому для применения метода
простой
итерации.
Выбрав
в
качестве
начального
приближения


x 0    0 , найдите


k0   необходимое  число  итеративных

шагов для решения системы методом простой итерации с точностью 0,01.

5. Сделав k
итеративных шагов, найдите приближенное решение

системы
МПИ.
Определите
уточненную
оценку
погрешности решения.

6. Преобразуйте систему к виду, необходимому для применения метода (по варианту).

Метод по вариантам:

1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31 – метод Якоби;

2, 5, 8, 11, 14, 17, 20 ,23, 26, 29, 32 – метод Зейделя;

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33 – метод релаксации. Найдите приближенное решение системы с точностью 0,001.

1.1.1.1 Решение типового примера

1. Решим систему уравнений методом Гаусса:

5,526  x1   0,305 x2  0,887  x3   0,037  x4
0,658 x1   2,453 x2   0,678 x3   0,192  x4

 0,774

 0,245

0,398 x1   0,232  x2   4,957  x3  0,567  x4   0,343

0,081 x1   0,521 x2   0,192  x3   4,988 x4   0,263.

На первом этапе заменим второе, третье, четвертое уравнения на уравнения,
получающиеся
сложением
этих
уравнений
с
первым,
умноженным
соответственно
на


 0,658 ,
5,526


 0,398 ,
5,526


 0,081 ,
т.
е.

5,526

исключаем x1 из второго, третьего и четвертого уравнений.

Система уравнений примет вид:

5,5260·x1 + 0,3050·x2 + 0,8870·x3 + 0,0370·x4 = 0,7740

2,4167·x2 + 0,5724·x3 + 0,1876·x4 = 0,1528

0,2100·x2 + 4,8931·x3 + 0,5643·x4 = 0,2873

0,5165·x2 + 0,1790·x3 + 4,9875·x4 = 0,2517.

На втором этапе проделываем такие же операции, как и на первом, с полученной подсистемой, т. е. исключаем x2 из третьего и 

четвертого уравнений. Результат будет иметь вид
5,5260·x1 + 0,3050·x2 + 0,8870·x3 + 0,0370·x4 = 0,7740

2,4167·x2 + 0,5724·x3 + 0,1876·x4 = 0,1528

4,8434·x3 + 0,5480·x4 = 0,2740

0,0567·x3 + 4,9474·x4 = 0,2190.

На третьем шаге исключаем x3 из четвертого уравнения. Система уравнений примет вид:

5,5260·x1 + 0,3050·x2 + 0,8870·x3 + 0,0370·x4 = 0,7740

2,4167·x2 + 0,5724·x3 + 0,1876·x4 = 0,1528

4,8434·x3 + 0,5480·x4 = 0,2740

4,9410·x4 = 0,2158.

Прямой ход метода Гаусса завершен. По формуле (7) находим неизвестные:

x4  = 0,0437;

x3  = 0,0516;

x2  = 0,0476;

x1  = 0,1289.

Получаем решение системы: x  = (0,1289; 0,0476; 0,0516; 0,0437)T.

2. Для матрицы системы найдем обратную. Чтобы найти обратную матрицу, нужно четыре раза решить исходную систему, в которой     столбик     свободных     членов     поочередно    заменяется

столбиками:


(1,0,0,0)T ,


(0,1,0,0)T ,


(0,0,1,0)T  ,


(0,0,0,1)T  .
Полученные

решения системы заносим в соответствующие столбики матрицы A–1. В итоге получим матрицу

  0,1856


 0,0208


 0,0305


0,0029 

A–1  =  0,0464

 0,0130



0,4202

 0,0131


 0,0488

0,2067


 0,0103
 0,0229 .

 0,0023


 0,0431


 0,0024


0,2024 
3. Зная, что свободные члены исходной системы имеют абсолютную погрешность 0,001, найдем оценку абсолютной и относительной погрешности решения.

Для этого предварительно получим оценки норм ||A|| и ||A–1||, используя формулу кубической нормы.

4

A   max  aij

= max{6,755; 3,981; 6,154; 5,782} = 6,755,

1i 4


j 1

||A–1|| = max{0,1372; 0,3147; 0,1577; 0,1592} = 0,3147,

 max bi
1i 4


= 0,774.


По условию


 = 10–3, тогда 



b   =


103


1,292 ·10–3.

≈

b
b
0.774

Абсолютная погрешность решения:  x  

A1   

= 0,4·10–3.

Относительная погрешность решения: ( x  

A   A1    (

 = 2,8·10.

4. Преобразуем систему к виду, необходимому для применения метода простой итерации. Для этого обе части первого уравнения разделим на 5,526, второго – 2,453, третьего – на 4,957, четвертого – на 4,988, и система примет вид:

x1 + 0,0552·x2 + 0,1605·x3 + 0,0067·x4 = 0,1401 0,2682·x1 + x2 + 0,2764·x3 + 0,0783·x4 = 0,0999

0,0803·x1 + 0,0468·x2 + x3 + 0,1144·x4 = 0,0692

0,0162·x1 + 0,1045·x2 + 0,0385·x3 + x4 = 0,0527.

Неизвестные, стоящие на главной диагонали, оставим слева, остальные члены уравнений перенесем вправо, и тогда система примет вид:

x1 = – 0,0552·x2 – 0,1605·x3 – 0,0067·x4 + 0,1401 x2 = – 0,2682·x1 – 0,2764·x3 – 0,0783·x4 + 0,0999 x3 = – 0,0803·x1 – 0,0468·x2 – 0,1144·x4 + 0,0692 x4 = – 0,0162·x1 – 0,1045·x2 – 0,0385·x3 + 0,0527.

Обозначим:

 x 

 0,1401 

0


 0,0552


 0,1605

 0,0067 

0

Вычислим ||B||, чтобы обосновать возможность решения системы методом итерации.

||B|| = max{0,2224; 0,6229; 0,2415; 0,1592} = 0,6299 < 1,

следовательно, условия теоремы о сходимости МПИ выполнены, и систему можно решать методом итерации.

Выбрав  в  качестве  начального  приближения   x 0    0 , найдем

k0  необходимое число итеративных шагов для решения системы методом простой итерации с точностью 0,001.

Так  как  по  условию  задачи  нулевое    приближение

x1  Bx 0   c . Значит, || x1  x 0 || = || c || = 0,1401.

   
  

x 0    0 , то

Решим неравенство


  x1   x 0

 ( .

(0,6299)k

 0,1401 0,01,

1  0,6299

(0,6299)k < 0,0264, ln(0,6299)k < ln(0,0264),

k > ln(0,0264)  7,8633 ln(0,6299)


и полагаем k0

= 8.

Сделаем 8 итеративных шагов и получим:

 0,1401 




 0,0527 

 0,0373

 0,0448

 0,0432


Столбик
x 8
выбираем
в
качестве
приближенного
решения

исходной системы. Оценим погрешность приближенного решения x 8 .
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1) «Метод Зейделя»

Преобразуйте систему к виду, необходимому для применения метода Зейделя. Для этого разделим каждое уравнение системы на диагональный  элемент  и  выразим  в  каждом  уравнении  компонент

решения


xi , получим систему вида:

xk 1   0,1401  0,0552xk   0,1605xk    0,0067 xk
1
2
3
4


xk 1   0,0999  0,2682xk 1   0,2764xk   0,0783xk

.

xk 1   0,0692  0,0803xk 1   0,0468xk 1   0,1144xk
3

  k 1

1

k 1


2

k 1


4

k 1

x4


 0,0527  0,0162x1

 0,1045x2

 0,0385x3
Проверим условие сходимости метода Зейделя:

5,526  0,305  0,887  0,037

2,453  0,658  0,678  0,192

,

4,957  0,398  0,232  0,567

4,988  0,081  0,521  0,192

следовательно, условие сходимости выполнено, и систему можно решать методом Зейделя.

Для достижения точности


( = 0,001

приближения будем находить

до тех пор, пока не выполнится неравенство

k    x k 1   
x

 (  0,3701  0,001  0,0006.

0,6299

Все вычисления занесем в таблицу.

	k
	x1
	x2
	x3
	x4
	


x k
	x k    x k 1
	

	
	
	
	
	
	

	0
	0
	0
	0
	0
	

	1
	0,1401
	0,0623
	0,0550
	0,0418
	0,1401

	2
	0,1275
	0,0472
	0,0520
	0,0437
	0,0151

	3
	0,1289
	0,0476
	0,0516
	0,0437
	0,0013

	4
	0,1289
	0,0476
	0,0516
	0,0436
	0,0001


Варианты заданий

	№
	Система уравнений

	
	4,003  x1   0,207  x2   0,519  x3   0,281 x4   0,425

	1
	0,416  x1   3,273  x2   0,326  x3   0,375  x4   0,021

0,297  x1   0,351 x2   2,997  x3   0,429  x4   0,213

	
	0,412  x1   0,194  x2   0,215  x3   3,628  x4   0,946.

	
	2,591  x1   0,512  x2   0,128  x3   0,195  x4   0,159

	2
	0,203  x1   3,469  x2   0,572  x3   0,162  x4   0,280

0,256  x1   0,273  x2   2,994  x3   0,501  x4   0,134

	
	0,381  x1   0,219  x2   0,176  x3   5,903  x4   0,864.


Продолжение

	№
	Система уравнений

	
	2,979  x1   0,427  x2   0,406  x3   0,348  x4   0,341

	3
	0,273  x1   3,951  x2   0,217  x3   0,327  x4   0,844

0,318  x1   0,197  x2   2,875  x3   0,166  x4   0,131

	
	0,219  x1   0,231 x2   0,187  x3   3,276  x4   0,381.

	
	3,738  x1   0,195  x2   0,275  x3   0,136  x4   0,815

	4
	0,519  x1   5,002  x2   0,405  x3   0,283  x4   0,191

0,306  x1   0,381 x2   4,812  x3   0,418  x4   0,423

	
	0,272  x1   0,142  x2   0,314  x3   3,935  x4   0,352.

	
	4,855  x1   1,239  x2   0,272  x3   0,258  x4   1,192

	5
	1,491 x1   4,954  x2   0,124  x3   0,236  x4   0,256

0,456  x1   0,285  x2   4,354  x3   0,254  x4   0,852

	
	0,412  x1   0,335  x2   0,158  x3   2,874  x4   0,862.

	
	5,401  x1   0,519  x2   0,364  x3   0,283  x4   0,243

	6
	0,295  x1   4,830  x2   0,421  x3   0,278  x4   0,231

0,524  x1   0,397  x2   4,723  x3   0,389  x4   0,721

	
	0,503  x1   0,264  x2   0,248  x3   4,286  x4   0,220.

	
	3,857  x1   0,239  x2   0,272  x3   0,258  x4   0,190

	7
	0,491 x1   3,941 x2   0,131 x3   0,178  x4   0,179

0,436  x1   0,281 x2   4,189  x3   0,416  x4   0,753

	
	0,317  x1   0,229  x2   0,326  x3   2,971  x4   0,860.

	
	4,238  x1   0,329  x2   0,256  x3   0,425  x4   0,560

	8
	0,249  x1   2,964  x2   0,351 x3   0,127  x4   0,380

0,365  x1   0,217  x2   2,897  x3   0,168  x4   0,778

	
	0,178  x1   0,294  x2   0,432  x3   3,701 x4   0,749.

	
	,389  x1   0,273  x2   0,126  x3   0,418  x4   0,144

	9
	0,329  x1   2,796  x2   0,179  x3   0,278  x4   0,297

0,186  x1   0,275  x2   2,987  x3   0,316  x4   0,529

	
	0,197  x1   0,219  x2   0,274  x3   3,127  x4   0,869.


Продолжение

	№
	Система уравнений

	
	2,958  x1   0,147  x2   0,354  x3   0,238  x4   0,651

	10
	0,127  x1   2,395  x2   0,256  x3   0,273  x4   0,898

0,403  x1   0,184  x2   3,815  x3   0,416  x4   0,595

	
	0,259  x1   0,361 x2   0,281 x3   3,736  x4   0,389.

	
	4,503  x1   0,219  x2   0,527  x3   0,396  x4   0,553

	11
	0,259  x1   5,121 x2   0,423  x3   0,206  x4   0,358

0,413  x1   0,531 x2   4,317  x3   0,264  x4   0,565

	
	0,327  x1   0,412  x2   0,203  x3   4,851 x4   0,436.

	
	5,103  x1   0,293  x2   0,336  x3   0,270  x4   0,745

	12
	0,179  x1   4,912  x2   0,394  x3   0,375  x4   0,381

0,189  x1   0,321 x2   2,875  x3   0,216  x4   0,480

	
	0,317  x1   0,165  x2   0,386  x3   3,934  x4   0,552.

	
	5,554  x1   0,252  x2   0,496  x3   0,237  x4   0,442

	13
	0,580  x1   4,953  x2   0,467  x3   0,028  x4   0,464

0,319  x1   0,372  x2   8,935  x3   0,520  x4   0,979

	
	0,043  x1   0,459  x2   0,319  x3   4,778  x4   0,126.

	
	2,998  x1   0,209  x2   0,315  x3   0,281 x4   0,108

	14
	0,163  x1   3,237  x2   0,226  x3   0,307  x4   0,426

0,416  x1   0,175  x2   3,239  x3   0,159  x4   0,310

	
	0,287  x1   0,196  x2   0,325  x3   4,062  x4   0,084.

	
	5,452  x1   0,401 x2   0,758  x3   0,123  x4   0,886

	15
	0,785  x1   2,654  x2   0,687  x3   0,203  x4   0,356

0,402  x1   0,244  x2   4,456  x3   0,552  x4   0,342

	
	0,210  x1   0,514  x2   0,206  x3   4,568  x4   0,452.

	
	2,923  x1   0,220  x2   0,159  x3   0,328  x4   0,605

	16
	0,363  x1   4,123  x2   0,268  x3   0,327  x4   0,496

0,169  x1   0,271  x2   3,906  x3   0,295  x4   0,590

	
	0,241 x1   0,319  x2   0,257  x3   3,862  x4   0,896.


Продолжение

	№
	Система уравнений

	
	5,482  x1   0,358  x2   0,237  x3   0,409  x4   0,416

	17
	0,580  x1   4,953  x2   0,467  x3   0,028  x4   0,464

0,319  x1   0,372  x2   8,935  x3   0,520  x4   0,979

	
	0,043  x1   0,459  x2   0,319  x3   4,778  x4   0,126.

	
	3,738  x1   0,195  x2   0,275  x3   0,136  x4   0,815

	18
	0,519  x1   5,002  x2   0,405  x3   0,283  x4   0,191

0,306  x1   0,381 x2   4,812  x3   0,418  x4   0,423

	
	0,272  x1   0,142  x2   0,314  x3   3,935  x4   0,352.

	
	3,910  x1   0,129  x2   0,283  x3   0,107  x4   0,395

	19
	0,217  x1   4,691 x2   0,279  x3   0,237  x4   0,432

0,201 x1    0,372  x2   2,987  x3   0,421 x4   0,127

	
	0,531  x1   0,196  x2   0,236  x3   5,032  x4   0,458.

	
	5,482  x1   0,617  x2   0,520  x3   0,401 x4   0,823

	20
	0,607  x1   4,195  x2   0,232  x3   0,570  x4   0,152

0,367  x1   0,576  x2   8,193  x3   0,582  x4   0,625

	
	0,389  x1   0,356  x2   0,207  x3   5,772  x4   0,315.

	
	3,345  x1   0,329  x2   0,365  x3   0,203  x4   0,305

	21
	0,125  x1   4,210  x2   0,402  x3   0,520  x4   0,283

0,314  x1   0,251 x2   4,531 x3   0,168  x4   0,680

	
	0,197  x1   0,512  x2   0,302  x3   2,951 x4   0,293.

	
	4,247  x1   0,275  x2   0,397  x3   0,239  x4   0,721

	22
	0,466  x1   4,235  x2   0,264  x3   0,358  x4   0,339

0,204  x1   0,501 x2   3,721 x3   0,297  x4   0,050

	
	0,326  x1   0,421 x2   0,254  x3   3,286  x4   0,486.

	
	3,476  x1   0,259  x2   0,376  x3   0,398  x4   0,871

	23
	0,425  x1   4,583  x2   0,417  x3   0,328  x4   0,739

0,252  x1   0,439  x2   3,972  x3   0,238  x4   0,644

	
	0,265  x1   0,291 x2   0,424  x3   3,864  x4   0,581.


Окончание

	№
	Система уравнений

	
	3,241 x1   0,197  x2   0,643  x3   0,236  x4   0,454

	24
	0,257  x1   3,853  x2   0,342  x3   0,427  x4   0,371

0,324  x1   0,317  x2   2,793  x3   0,238  x4   0,465

	
	0,438  x1   0,326  x2   0,483  x3   4,229  x4   0,822.

	
	4,405  x1   0,472  x2   0,395  x3   0,253  x4   0,623

	25
	0,227  x1   2,957  x2   0,342  x3   0,327  x4   0,072

0,419  x1   0,341 x2   3,238  x3   0,394  x4   0,143

	
	0,325  x1   0,326  x2   0,401 x3   4,273  x4   0,065.

	
	2,974  x1   0,347  x2   0,439  x3   0,123  x4   0,381

	26
	0,242  x1   2,895  x2   0,412  x3   0,276  x4   0,721

0,249  x1   0,378  x2   3,791 x3   0,358  x4   0,514

	
	0,387  x1   0,266  x2   0,431 x3   4,022  x4   0,795.

	
	3,452  x1   0,458  x2   0,125  x3   0,236  x4   0,745

	27
	0,254  x1   2,458  x2   0,325  x3   0,126  x4   0,789

0,305  x1   0,125  x2   3,869  x3   0,458  x4   0,654

	
	0,423  x1   0,452  x2   0,248  x3   3,896  x4   0,405.

	
	2,979  x1   0,427  x2   0,406  x3   0,348  x4   0,341

	28
	0,273  x1   3,951  x2   0,217  x3   0,327  x4   0,844

0,318  x1   0,197  x2   2,875  x3   0,166  x4   0,131

	
	0,219  x1   0,231 x2   0,187  x3   3,276  x4   0,381.

	
	2,048  x1   0,172  x2   0,702  x3   0,226  x4   0,514

	29
	0,495  x1   4,093  x2   0,083  x3   0,390  x4   0,176

0,277  x1   0,368  x2   4,164  x3   0,535  x4   0,309

	
	0,766  x1   0,646  x2   0,767  x3   5,960  x4   0,535.

	
	2,389  x1   0,273  x2   0,126  x3   0,418  x4   0,144

	30
	0,329  x1   2,796  x2   0,179  x3   0,278  x4   0,297

0,186  x1   0,275  x2   2,987  x3   0,316  x4   0,529

	
	0,197  x1   0,219  x2   0,274  x3   3,127  x4   0,869.


Контрольные вопросы

1. Что такое «главный» (ведущий) элемент в методе Гаусса последовательного исключения неизвестных переменных?

2. Назовите условия диагонального преобладания матрицы.

3. Дайте определение точного метода решения СЛАУ.

4. Дайте определение итерационного метода решения СЛАУ.

5. Сформулируйте условия сходимости МПИ (критерий).

6. Метод Якоби и метод Зейделя. Что общего? Какие отличия?

7. Основные отличия (преимущества и недостатки) прямых и итерационных методов решения СЛАУ.

8. Основные виды погрешности. 

9. Объясните алгоритм нахождения элементов обратной матрицы через решение СЛАУ.
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Метод Рунге-Кутта(IV)


Метод Эйлера
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Метод Рунге-Кутта(IV)


Метод Эйлера Точное решение
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